Skip to main content
Erschienen in: Medical Oncology 1/2024

01.01.2024 | Original Paper

Intestinal epithelial SNAI1 promotes the occurrence of colorectal cancer by enhancing EMT and Wnt/β-catenin signaling

verfasst von: Furong Qing, Junxia Xue, Lina Sui, Qiuxiang Xiao, Tao Xie, Yayun Chen, Junyun Huang, Zhiping Liu

Erschienen in: Medical Oncology | Ausgabe 1/2024

Einloggen, um Zugang zu erhalten

Abstract

Colorectal cancer (CRC) is a prevalent cause of cancer and mortality on a global scale. SNAI1, a member of the zinc finger transcription superfamily, is a significant contributor to embryonic development and carcinogenesis through the process of epithelial–mesenchymal transition (EMT). While prior research utilizing CRC cells and clinical data has demonstrated that SNAI1 facilitates CRC progression through diverse mechanisms, the precise manner in which epithelial SNAI1 regulates CRC development in vivo remains unclear. In this study, colitis and colitis-associated CRC were induced through the use of intestinal epithelium-specific Snai1 knockout (Snai1 cKO) mice. Our findings indicate that Snai1 cKO mice exhibit a reduced susceptibility to acute colitis and colitis-associated CRC compared to control mice. Western-blot analysis of colon tissues revealed that Snai1 cKO mice exhibited a higher overall apoptosis level during tumor formation than control mice. No significant differences were observed in the activation of the classical p53 signaling pathway. However, Snai1 cKO mice exhibited weakened EMT and Wnt/β-catenin pathway activation. In summary, our study has provided evidence in vivo that the intestinal epithelial SNAI1 protein suppresses apoptosis, amplifies the EMT, and activates the Wnt/β-catenin signaling pathways in both early and late phases of CRC formation, thus promoting the development and progression of colitis-associated CRC.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71(3):209–49.PubMedCrossRef Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71(3):209–49.PubMedCrossRef
2.
Zurück zum Zitat Arnold M, Abnet CC, Neale RE, et al. Global burden of 5 major types of gastrointestinal cancer. Gastroenterology. 2020;159(1):335-49.e15.PubMedCrossRef Arnold M, Abnet CC, Neale RE, et al. Global burden of 5 major types of gastrointestinal cancer. Gastroenterology. 2020;159(1):335-49.e15.PubMedCrossRef
3.
Zurück zum Zitat Feletto E, Yu XQ, Lew JB, et al. Trends in colon and rectal cancer incidence in Australia from 1982 to 2014: analysis of data on over 375,000 cases. Cancer Epidemiol Biomark Prev. 2019;28(1):83–90.CrossRef Feletto E, Yu XQ, Lew JB, et al. Trends in colon and rectal cancer incidence in Australia from 1982 to 2014: analysis of data on over 375,000 cases. Cancer Epidemiol Biomark Prev. 2019;28(1):83–90.CrossRef
4.
Zurück zum Zitat Brenner DR, Heer E, Sutherland RL, et al. National trends in colorectal cancer incidence among older and younger adults in Canada. JAMA Netw Open. 2019;2(7): e198090.PubMedPubMedCentralCrossRef Brenner DR, Heer E, Sutherland RL, et al. National trends in colorectal cancer incidence among older and younger adults in Canada. JAMA Netw Open. 2019;2(7): e198090.PubMedPubMedCentralCrossRef
5.
Zurück zum Zitat Dekker E, Tanis PJ, Vleugels JLA, et al. Colorectal cancer. Lancet (Lond, Engl). 2019;394(10207):1467–80.CrossRef Dekker E, Tanis PJ, Vleugels JLA, et al. Colorectal cancer. Lancet (Lond, Engl). 2019;394(10207):1467–80.CrossRef
6.
Zurück zum Zitat Rawla P, Barsouk A, Hadjinicolaou AV, et al. Immunotherapies and targeted therapies in the treatment of metastatic colorectal cancer. Med Sci (Basel, Switzerland). 2019;7(8):83. Rawla P, Barsouk A, Hadjinicolaou AV, et al. Immunotherapies and targeted therapies in the treatment of metastatic colorectal cancer. Med Sci (Basel, Switzerland). 2019;7(8):83.
7.
Zurück zum Zitat Paznekas WA, Okajima K, Schertzer M, et al. Genomic organization, expression, and chromosome location of the human SNAIL gene (SNAI1) and a related processed pseudogene (SNAI1P). Genomics. 1999;62(1):42–9.PubMedCrossRef Paznekas WA, Okajima K, Schertzer M, et al. Genomic organization, expression, and chromosome location of the human SNAIL gene (SNAI1) and a related processed pseudogene (SNAI1P). Genomics. 1999;62(1):42–9.PubMedCrossRef
8.
Zurück zum Zitat Nieto MA. The snail superfamily of zinc-finger transcription factors. Nat Rev Mol Cell Biol. 2002;3(3):155–66.PubMedCrossRef Nieto MA. The snail superfamily of zinc-finger transcription factors. Nat Rev Mol Cell Biol. 2002;3(3):155–66.PubMedCrossRef
9.
Zurück zum Zitat Swain SD, Grifka-Walk HN, Gripentrog J, et al. Slug and Snail have differential effects in directing colonic epithelial wound healing and partially mediate the restitutive effects of butyrate. Am J Physiol Gastrointest Liver Physiol. 2019;317(4):G531–44.PubMedPubMedCentralCrossRef Swain SD, Grifka-Walk HN, Gripentrog J, et al. Slug and Snail have differential effects in directing colonic epithelial wound healing and partially mediate the restitutive effects of butyrate. Am J Physiol Gastrointest Liver Physiol. 2019;317(4):G531–44.PubMedPubMedCentralCrossRef
10.
Zurück zum Zitat Du F, Yang R, Ma HL, et al. Expression of transcriptional repressor Slug gene in mouse endometrium and its effect during embryo implantation. Appl Biochem Biotechnol. 2009;157(2):346–55.CrossRef Du F, Yang R, Ma HL, et al. Expression of transcriptional repressor Slug gene in mouse endometrium and its effect during embryo implantation. Appl Biochem Biotechnol. 2009;157(2):346–55.CrossRef
11.
Zurück zum Zitat Horvay K, Jardé T, Casagranda F, et al. Snai1 regulates cell lineage allocation and stem cell maintenance in the mouse intestinal epithelium. EMBO J. 2015;34(10):1319–35.PubMedPubMedCentralCrossRef Horvay K, Jardé T, Casagranda F, et al. Snai1 regulates cell lineage allocation and stem cell maintenance in the mouse intestinal epithelium. EMBO J. 2015;34(10):1319–35.PubMedPubMedCentralCrossRef
12.
Zurück zum Zitat Horvay K, Casagranda F, Gany A, et al. Wnt signaling regulates Snai1 expression and cellular localization in the mouse intestinal epithelial stem cell niche. Stem Cells Dev. 2011;20(4):737–45.PubMedCrossRef Horvay K, Casagranda F, Gany A, et al. Wnt signaling regulates Snai1 expression and cellular localization in the mouse intestinal epithelial stem cell niche. Stem Cells Dev. 2011;20(4):737–45.PubMedCrossRef
13.
Zurück zum Zitat Zhang Y, Tu L, Zhou X, et al. MicroRNA-22 regulates the proliferation, drug sensitivity and metastasis of human glioma cells by targeting SNAIL1. J Buon. 2020;25(1):491–6. Zhang Y, Tu L, Zhou X, et al. MicroRNA-22 regulates the proliferation, drug sensitivity and metastasis of human glioma cells by targeting SNAIL1. J Buon. 2020;25(1):491–6.
14.
Zurück zum Zitat Luo WR, Chen XY, Li SY, et al. Neoplastic spindle cells in nasopharyngeal carcinoma show features of epithelial-mesenchymal transition. Histopathology. 2012;61(1):113–22.PubMedCrossRef Luo WR, Chen XY, Li SY, et al. Neoplastic spindle cells in nasopharyngeal carcinoma show features of epithelial-mesenchymal transition. Histopathology. 2012;61(1):113–22.PubMedCrossRef
15.
Zurück zum Zitat de Morais EF, Morais HGF, de França GM, et al. SNAIL1 is involved in the control of the epithelial-mesenchymal transition in oral tongue squamous cell carcinoma. Oral Surg Oral Med Oral Pathol Oral Radiol. 2023;135(4):530–8.PubMedCrossRef de Morais EF, Morais HGF, de França GM, et al. SNAIL1 is involved in the control of the epithelial-mesenchymal transition in oral tongue squamous cell carcinoma. Oral Surg Oral Med Oral Pathol Oral Radiol. 2023;135(4):530–8.PubMedCrossRef
16.
Zurück zum Zitat Kaufhold S, Bonavida B. Central role of Snail1 in the regulation of EMT and resistance in cancer: a target for therapeutic intervention. J Exp Clin Cancer Res. 2014;33(1):62.PubMedCentralCrossRef Kaufhold S, Bonavida B. Central role of Snail1 in the regulation of EMT and resistance in cancer: a target for therapeutic intervention. J Exp Clin Cancer Res. 2014;33(1):62.PubMedCentralCrossRef
18.
Zurück zum Zitat Tanaka S, Kobayashi W, Haraguchi M, et al. Snail1 expression in human colon cancer DLD-1 cells confers invasive properties without N-cadherin expression. Biochem Biophys Rep. 2016;8:120–6.PubMedPubMedCentral Tanaka S, Kobayashi W, Haraguchi M, et al. Snail1 expression in human colon cancer DLD-1 cells confers invasive properties without N-cadherin expression. Biochem Biophys Rep. 2016;8:120–6.PubMedPubMedCentral
19.
Zurück zum Zitat Ni T, Li XY, Lu N, et al. Snail1-dependent p53 repression regulates expansion and activity of tumour-initiating cells in breast cancer. Nat Cell Biol. 2016;18(11):1221–32.PubMedCentralCrossRef Ni T, Li XY, Lu N, et al. Snail1-dependent p53 repression regulates expansion and activity of tumour-initiating cells in breast cancer. Nat Cell Biol. 2016;18(11):1221–32.PubMedCentralCrossRef
20.
Zurück zum Zitat Freihen V, Rönsch K, Mastroianni J, et al. SNAIL1 employs β-Catenin-LEF1 complexes to control colorectal cancer cell invasion and proliferation. Int J Cancer. 2020;146(8):2229–42.PubMedCrossRef Freihen V, Rönsch K, Mastroianni J, et al. SNAIL1 employs β-Catenin-LEF1 complexes to control colorectal cancer cell invasion and proliferation. Int J Cancer. 2020;146(8):2229–42.PubMedCrossRef
21.
Zurück zum Zitat Kroepil F, Fluegen G, Totikov Z, et al. Down-regulation of CDH1 is associated with expression of SNAI1 in colorectal adenomas. PLoS ONE. 2012;7(9): e46665.PubMedPubMedCentralCrossRef Kroepil F, Fluegen G, Totikov Z, et al. Down-regulation of CDH1 is associated with expression of SNAI1 in colorectal adenomas. PLoS ONE. 2012;7(9): e46665.PubMedPubMedCentralCrossRef
22.
Zurück zum Zitat Kroepil F, Fluegen G, Vallböhmer D, et al. Snail1 expression in colorectal cancer and its correlation with clinical and pathological parameters. BMC Cancer. 2013;13:145.PubMedPubMedCentralCrossRef Kroepil F, Fluegen G, Vallböhmer D, et al. Snail1 expression in colorectal cancer and its correlation with clinical and pathological parameters. BMC Cancer. 2013;13:145.PubMedPubMedCentralCrossRef
23.
Zurück zum Zitat Rashed HE, Hussein S, Mosaad H, et al. Prognostic significance of the genetic and the immunohistochemical expression of epithelial-mesenchymal-related markers in colon cancer. Cancer Biomark. 2017;20(1):107–22.CrossRef Rashed HE, Hussein S, Mosaad H, et al. Prognostic significance of the genetic and the immunohistochemical expression of epithelial-mesenchymal-related markers in colon cancer. Cancer Biomark. 2017;20(1):107–22.CrossRef
24.
Zurück zum Zitat Scheel C, Onder T, Karnoub A, et al. Adaptation versus selection: the origins of metastatic behavior. Cancer Res. 2007;67(24):11476–9.PubMedCrossRef Scheel C, Onder T, Karnoub A, et al. Adaptation versus selection: the origins of metastatic behavior. Cancer Res. 2007;67(24):11476–9.PubMedCrossRef
25.
Zurück zum Zitat Fang J, Ding Z. SNAI1 is a prognostic biomarker and correlated with immune infiltrates in gastrointestinal cancers. Aging. 2020;12(17):17167–208.PubMedPubMedCentralCrossRef Fang J, Ding Z. SNAI1 is a prognostic biomarker and correlated with immune infiltrates in gastrointestinal cancers. Aging. 2020;12(17):17167–208.PubMedPubMedCentralCrossRef
26.
Zurück zum Zitat Mohammadpour S, Esfahani AT, Karimpour R, et al. High expression of Snail1 is associated with EMAST and poor prognosis in CRC patients. Gastroenterol Hepatol Bed Bench. 2019;12(Suppl1):S30.PubMedPubMedCentral Mohammadpour S, Esfahani AT, Karimpour R, et al. High expression of Snail1 is associated with EMAST and poor prognosis in CRC patients. Gastroenterol Hepatol Bed Bench. 2019;12(Suppl1):S30.PubMedPubMedCentral
28.
Zurück zum Zitat Carver EA, Jiang R, Lan Y, et al. The mouse snail gene encodes a key regulator of the epithelial-mesenchymal transition. Mol Cell Biol. 2001;21(23):8184–8.PubMedPubMedCentralCrossRef Carver EA, Jiang R, Lan Y, et al. The mouse snail gene encodes a key regulator of the epithelial-mesenchymal transition. Mol Cell Biol. 2001;21(23):8184–8.PubMedPubMedCentralCrossRef
29.
Zurück zum Zitat Ananthakrishnan AN. Epidemiology and risk factors for IBD. Nat Rev Gastroenterol Hepatol. 2015;12(4):205–17.PubMedCrossRef Ananthakrishnan AN. Epidemiology and risk factors for IBD. Nat Rev Gastroenterol Hepatol. 2015;12(4):205–17.PubMedCrossRef
30.
Zurück zum Zitat Fumery M, Dulai PS, Gupta S, et al. Incidence, risk factors, and outcomes of colorectal cancer in patients with ulcerative colitis with low-grade dysplasia: a systematic review and meta-analysis. Clin Gastroenterol Hepatol. 2017;15(5):665-74.e5.PubMedCrossRef Fumery M, Dulai PS, Gupta S, et al. Incidence, risk factors, and outcomes of colorectal cancer in patients with ulcerative colitis with low-grade dysplasia: a systematic review and meta-analysis. Clin Gastroenterol Hepatol. 2017;15(5):665-74.e5.PubMedCrossRef
31.
Zurück zum Zitat Blanchaert C, Strubbe B, Peeters H. Fecal microbiota transplantation in ulcerative colitis. Acta Gastro-Enterol Belg. 2019;82(4):519–28. Blanchaert C, Strubbe B, Peeters H. Fecal microbiota transplantation in ulcerative colitis. Acta Gastro-Enterol Belg. 2019;82(4):519–28.
32.
Zurück zum Zitat Nanki K, Fujii M, Shimokawa M, et al. Somatic inflammatory gene mutations in human ulcerative colitis epithelium. Nature. 2020;577(7789):254–9.CrossRef Nanki K, Fujii M, Shimokawa M, et al. Somatic inflammatory gene mutations in human ulcerative colitis epithelium. Nature. 2020;577(7789):254–9.CrossRef
33.
Zurück zum Zitat Wang Y, Wang P, Shao L. Correlation of ulcerative colitis and colorectal cancer: a systematic review and meta-analysis. J Gastrointest Oncol. 2021;12(6):2814–22.PubMedPubMedCentralCrossRef Wang Y, Wang P, Shao L. Correlation of ulcerative colitis and colorectal cancer: a systematic review and meta-analysis. J Gastrointest Oncol. 2021;12(6):2814–22.PubMedPubMedCentralCrossRef
34.
Zurück zum Zitat Pan M, Jiang C, Tse P, et al. TP53 gain-of-function and non-gain-of-function mutations are differentially associated with sidedness-dependent prognosis in metastatic colorectal cancer. J Clin Oncol. 2022;40(2):171–9.PubMedCrossRef Pan M, Jiang C, Tse P, et al. TP53 gain-of-function and non-gain-of-function mutations are differentially associated with sidedness-dependent prognosis in metastatic colorectal cancer. J Clin Oncol. 2022;40(2):171–9.PubMedCrossRef
36.
Zurück zum Zitat Drost J, van Jaarsveld RH, Ponsioen B, et al. Sequential cancer mutations in cultured human intestinal stem cells. Nature. 2015;521(7550):43–7.PubMedCrossRef Drost J, van Jaarsveld RH, Ponsioen B, et al. Sequential cancer mutations in cultured human intestinal stem cells. Nature. 2015;521(7550):43–7.PubMedCrossRef
37.
Zurück zum Zitat Cancer Genome Atlas Network CGA. Comprehensive molecular characterization of human colon and rectal cancer. Nature. 2012;487(7407):330–7.CrossRef Cancer Genome Atlas Network CGA. Comprehensive molecular characterization of human colon and rectal cancer. Nature. 2012;487(7407):330–7.CrossRef
38.
Zurück zum Zitat Yaeger R, Chatila WK, Lipsyc MD, et al. Clinical sequencing defines the genomic landscape of metastatic colorectal cancer. Cancer Cell. 2018;33(1):125-36.e3.PubMedCentralCrossRef Yaeger R, Chatila WK, Lipsyc MD, et al. Clinical sequencing defines the genomic landscape of metastatic colorectal cancer. Cancer Cell. 2018;33(1):125-36.e3.PubMedCentralCrossRef
39.
Zurück zum Zitat Cheng X, Xu X, Chen D, et al. Therapeutic potential of targeting the Wnt/β-catenin signaling pathway in colorectal cancer. Biomed Pharmacother. 2019;110:473–81.CrossRef Cheng X, Xu X, Chen D, et al. Therapeutic potential of targeting the Wnt/β-catenin signaling pathway in colorectal cancer. Biomed Pharmacother. 2019;110:473–81.CrossRef
40.
Zurück zum Zitat Inukai T, Inoue A, Kurosawa H, et al. SLUG, a ces-1-related zinc finger transcription factor gene with antiapoptotic activity, is a downstream target of the E2A-HLF oncoprotein. Mol Cell. 1999;4(3):343–52.PubMedCrossRef Inukai T, Inoue A, Kurosawa H, et al. SLUG, a ces-1-related zinc finger transcription factor gene with antiapoptotic activity, is a downstream target of the E2A-HLF oncoprotein. Mol Cell. 1999;4(3):343–52.PubMedCrossRef
41.
Zurück zum Zitat Wong SHM, Fang CM, Chuah LH, et al. E-cadherin: its dysregulation in carcinogenesis and clinical implications. Crit Rev Oncol Hematol. 2018;121:11–22.PubMedCrossRef Wong SHM, Fang CM, Chuah LH, et al. E-cadherin: its dysregulation in carcinogenesis and clinical implications. Crit Rev Oncol Hematol. 2018;121:11–22.PubMedCrossRef
Metadaten
Titel
Intestinal epithelial SNAI1 promotes the occurrence of colorectal cancer by enhancing EMT and Wnt/β-catenin signaling
verfasst von
Furong Qing
Junxia Xue
Lina Sui
Qiuxiang Xiao
Tao Xie
Yayun Chen
Junyun Huang
Zhiping Liu
Publikationsdatum
01.01.2024
Verlag
Springer US
Erschienen in
Medical Oncology / Ausgabe 1/2024
Print ISSN: 1357-0560
Elektronische ISSN: 1559-131X
DOI
https://doi.org/10.1007/s12032-023-02253-w

Weitere Artikel der Ausgabe 1/2024

Medical Oncology 1/2024 Zur Ausgabe

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.