Skip to main content
Erschienen in: Brain Structure and Function 2/2021

02.01.2021 | Original Article

Iron distribution in the lentiform nucleus: A post-mortem MRI and histology study

verfasst von: Amaury De Barros, Germain Arribarat, Jean Albert Lotterie, Gaelle Dominguez, Patrick Chaynes, Patrice Péran

Erschienen in: Brain Structure and Function | Ausgabe 2/2021

Einloggen, um Zugang zu erhalten

Abstract

Iron plays an important role in many neurobiological processes, especially in the basal ganglia, the brain structures with the highest concentration. Composed of the pallidum and putamen, the lentiform nucleus plays a key role in the basal ganglia circuitry. With MRI advances, iron-based sequences such as R2* and quantitative susceptibility mapping (QSM) are now available for detecting and quantifying iron in different brain structures. Since their validation using classic iron detection techniques (histology or physical techniques), these sequences have attracted growing clinical attention, especially in the field of extrapyramidal syndromes that particularly affect the basal nuclei. Accurate mapping of iron in these nuclei and their connections is needed to gain a better understanding of this specific anatomy, before considering its involvement in the physiopathological processes. We performed R2* and QSM along with Perls histology, to gain new insights into the distribution of iron in the lentiform nucleus and its surrounding structures, based on four specimens obtained from voluntary donors. We found that iron is preferentially distributed in the anterior part of the globus pallidus externus and the posterior part of the putamen. The lateral wall of the putamen is iron-poor, compared with the lateral medullary lamina and intraputaminal fibers. The relevance of perivascular iron concentration, along with pallido- and putaminofugal iron-rich fibers, is discussed.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
Zurück zum Zitat Barbagallo G, Sierra-Peña M, Nemmi F, Traon AP-L, Meissner WG, Rascol O et al (2016) Multimodal MRI assessment of nigro-striatal pathway in multiple system atrophy and Parkinson disease. Mov Disord 31(3):325–34PubMed Barbagallo G, Sierra-Peña M, Nemmi F, Traon AP-L, Meissner WG, Rascol O et al (2016) Multimodal MRI assessment of nigro-striatal pathway in multiple system atrophy and Parkinson disease. Mov Disord 31(3):325–34PubMed
Zurück zum Zitat Chen L, Cai C, Yang T, Lin J, Cai S, Zhang J et al (2017) Changes in brain iron concentration after exposure to high-altitude hypoxia measured by quantitative susceptibility mapping. Neuroimage 147:488–99PubMed Chen L, Cai C, Yang T, Lin J, Cai S, Zhang J et al (2017) Changes in brain iron concentration after exposure to high-altitude hypoxia measured by quantitative susceptibility mapping. Neuroimage 147:488–99PubMed
Zurück zum Zitat Daugherty AM, Raz N (2016) Accumulation of iron in the putamen predicts its shrinkage in healthy older adults: a multi-occasion longitudinal study. Neuromage 128:11–20 Daugherty AM, Raz N (2016) Accumulation of iron in the putamen predicts its shrinkage in healthy older adults: a multi-occasion longitudinal study. Neuromage 128:11–20
Zurück zum Zitat de Hollander G, Keuken MC, Bazin P-L, Weiss M, Neumann J, Reimann K et al (2014) A gradual increase of iron toward the medial-inferior tip of the subthalamic nucleus. Hum Brain Mapp 35(9):4440–9PubMedPubMedCentral de Hollander G, Keuken MC, Bazin P-L, Weiss M, Neumann J, Reimann K et al (2014) A gradual increase of iron toward the medial-inferior tip of the subthalamic nucleus. Hum Brain Mapp 35(9):4440–9PubMedPubMedCentral
Zurück zum Zitat de Rochefort L, Liu T, Kressler B, Liu J, Spincemaille P, Lebon V et al (2010) Quantitative susceptibility map reconstruction from MR phase data using Bayesian regularization: validation and application to brain imaging. Magn Reson Med 63(1):194–206PubMed de Rochefort L, Liu T, Kressler B, Liu J, Spincemaille P, Lebon V et al (2010) Quantitative susceptibility map reconstruction from MR phase data using Bayesian regularization: validation and application to brain imaging. Magn Reson Med 63(1):194–206PubMed
Zurück zum Zitat Dormont D, Ricciardi KG, Tandé D, Parain K, Menuel C, Galanaud D et al (2004) Is the subthalamic nucleus hypointense on T2-weighted images? A correlation study using MR imaging and stereotactic atlas data. AJNR Am J Neuroradiol 25(9):1516–23PubMedPubMedCentral Dormont D, Ricciardi KG, Tandé D, Parain K, Menuel C, Galanaud D et al (2004) Is the subthalamic nucleus hypointense on T2-weighted images? A correlation study using MR imaging and stereotactic atlas data. AJNR Am J Neuroradiol 25(9):1516–23PubMedPubMedCentral
Zurück zum Zitat Dusek P, Jankovic J, Le W (2012) Iron dysregulation in movement disorders. Neurobiol Dis 46(1):1–18PubMed Dusek P, Jankovic J, Le W (2012) Iron dysregulation in movement disorders. Neurobiol Dis 46(1):1–18PubMed
Zurück zum Zitat Fisher M, French S, Ji P, Kim RC (2010) Cerebral microbleeds in the elderly: a pathological analysis. Stroke 41(12):2782–5PubMedPubMedCentral Fisher M, French S, Ji P, Kim RC (2010) Cerebral microbleeds in the elderly: a pathological analysis. Stroke 41(12):2782–5PubMedPubMedCentral
Zurück zum Zitat Fujii S, Matsusue E, Kinoshita T, Sugihara S, Ohama E, Ogawa T (2007) Hyperintense putaminal rim at 3T reflects fewer ferritin deposits in the lateral marginal area of the putamen. Am J Neuroradiol 28(4):777–81PubMedPubMedCentral Fujii S, Matsusue E, Kinoshita T, Sugihara S, Ohama E, Ogawa T (2007) Hyperintense putaminal rim at 3T reflects fewer ferritin deposits in the lateral marginal area of the putamen. Am J Neuroradiol 28(4):777–81PubMedPubMedCentral
Zurück zum Zitat Gray MT, Woulfe JM (2015) Striatal blood–brain barrier permeability in Parkinson’s disease. J Cereb Blood Flow Metab 35(5):747–50PubMedPubMedCentral Gray MT, Woulfe JM (2015) Striatal blood–brain barrier permeability in Parkinson’s disease. J Cereb Blood Flow Metab 35(5):747–50PubMedPubMedCentral
Zurück zum Zitat Haacke EM, Cheng NYC, House MJ, Liu Q, Neelavalli J, Ogg RJ et al (2005) Imaging iron stores in the brain using magnetic resonance imaging. Magn Reson Imaging 23(1):1–25PubMed Haacke EM, Cheng NYC, House MJ, Liu Q, Neelavalli J, Ogg RJ et al (2005) Imaging iron stores in the brain using magnetic resonance imaging. Magn Reson Imaging 23(1):1–25PubMed
Zurück zum Zitat Haber SN (2016) Corticostriatal circuitry. Dial Clin Neurosci 18(1):15 Haber SN (2016) Corticostriatal circuitry. Dial Clin Neurosci 18(1):15
Zurück zum Zitat Hallgren B, Sourander P (1958) The effect of age on the non-haemin iron in the human brain. J Neurochem 3(1):41–51PubMed Hallgren B, Sourander P (1958) The effect of age on the non-haemin iron in the human brain. J Neurochem 3(1):41–51PubMed
Zurück zum Zitat Hametner S, Endmayr V, Deistung A, Palmrich P, Prihoda M, Haimburger E et al (2018) The influence of brain iron and myelin on magnetic susceptibility and effective transverse relaxation - A biochemical and histological validation study. Neuroimage 179:117–33PubMed Hametner S, Endmayr V, Deistung A, Palmrich P, Prihoda M, Haimburger E et al (2018) The influence of brain iron and myelin on magnetic susceptibility and effective transverse relaxation - A biochemical and histological validation study. Neuroimage 179:117–33PubMed
Zurück zum Zitat Hoch MJ, Bruno MT, Faustin A, Cruz N, Mogilner AY, Crandall L et al (2019) 3T MRI whole-brain microscopy discrimination of subcortical anatomy, part 2: basal forebrain. Am J Neuroradiol 40(7):1095–105PubMedPubMedCentral Hoch MJ, Bruno MT, Faustin A, Cruz N, Mogilner AY, Crandall L et al (2019) 3T MRI whole-brain microscopy discrimination of subcortical anatomy, part 2: basal forebrain. Am J Neuroradiol 40(7):1095–105PubMedPubMedCentral
Zurück zum Zitat Janaway BM, Simpson JE, Hoggard N, Highley JR, Forster G, Drew D et al (2014) Brain haemosiderin in older people: pathological evidence for an ischaemic origin of magnetic resonance imaging (MRI) microbleeds. Neuropathol Appl Neurobiol 40(3):258–69PubMedPubMedCentral Janaway BM, Simpson JE, Hoggard N, Highley JR, Forster G, Drew D et al (2014) Brain haemosiderin in older people: pathological evidence for an ischaemic origin of magnetic resonance imaging (MRI) microbleeds. Neuropathol Appl Neurobiol 40(3):258–69PubMedPubMedCentral
Zurück zum Zitat Kaindlstorfer C, Jellinger KA, Eschlböck S, Stefanova N, Weiss G, Wenning GK (2018) The relevance of iron in the pathogenesis of multiple system atrophy: a viewpoint. J Alzheimers Dis 61(4):1253–73PubMedPubMedCentral Kaindlstorfer C, Jellinger KA, Eschlböck S, Stefanova N, Weiss G, Wenning GK (2018) The relevance of iron in the pathogenesis of multiple system atrophy: a viewpoint. J Alzheimers Dis 61(4):1253–73PubMedPubMedCentral
Zurück zum Zitat Lang AE, Curran T, Provias J, Bergeron C (1994) Striatonigral degeneration: iron deposition in putamen correlates with the slit-like void signal of magnetic resonance imaging. Canadian J Neurol Sci 21(4):311–8 Lang AE, Curran T, Provias J, Bergeron C (1994) Striatonigral degeneration: iron deposition in putamen correlates with the slit-like void signal of magnetic resonance imaging. Canadian J Neurol Sci 21(4):311–8
Zurück zum Zitat Langkammer C, Krebs N, Goessler W, Scheurer E, Ebner F, Yen K et al (2010) Quantitative MR imaging of brain iron: a postmortem validation study. Radiology 257(2):455–62PubMed Langkammer C, Krebs N, Goessler W, Scheurer E, Ebner F, Yen K et al (2010) Quantitative MR imaging of brain iron: a postmortem validation study. Radiology 257(2):455–62PubMed
Zurück zum Zitat Lehéricy S, Ducros M, Van De Moortele P-F, Francois C, Thivard L, Poupon C et al (2004) Diffusion tensor fiber tracking shows distinct corticostriatal circuits in humans. Ann Neurol 55(4):522–9PubMed Lehéricy S, Ducros M, Van De Moortele P-F, Francois C, Thivard L, Poupon C et al (2004) Diffusion tensor fiber tracking shows distinct corticostriatal circuits in humans. Ann Neurol 55(4):522–9PubMed
Zurück zum Zitat Li W, Liu C, Duong TQ, van Zijl PCM, Li X (2017) Susceptibility tensor imaging (STI) of the brain. NMR Biomed 30(4). Li W, Liu C, Duong TQ, van Zijl PCM, Li X (2017) Susceptibility tensor imaging (STI) of the brain. NMR Biomed 30(4).
Zurück zum Zitat Liu J, Liu T, de Rochefort L, Ledoux J, Khalidov I, Chen W et al (2012) Morphology enabled dipole inversion for quantitative susceptibility mapping using structural consistency between the magnitude image and the susceptibility map. Neuroimage 59(3):2560–8PubMed Liu J, Liu T, de Rochefort L, Ledoux J, Khalidov I, Chen W et al (2012) Morphology enabled dipole inversion for quantitative susceptibility mapping using structural consistency between the magnitude image and the susceptibility map. Neuroimage 59(3):2560–8PubMed
Zurück zum Zitat Loureiro JR, Himmelbach M, Ethofer T, Pohmann R, Martin P, Bause J et al (2018) In-vivo quantitative structural imaging of the human midbrain and the superior colliculus at 9.4T. Neuroimage 177:117–28PubMed Loureiro JR, Himmelbach M, Ethofer T, Pohmann R, Martin P, Bause J et al (2018) In-vivo quantitative structural imaging of the human midbrain and the superior colliculus at 9.4T. Neuroimage 177:117–28PubMed
Zurück zum Zitat Martin WRW, Wieler M, Gee M (2008) Midbrain iron content in early Parkinson disease: a potential biomarker of disease status. Neurology 70(16 Pt 2):1411–7PubMed Martin WRW, Wieler M, Gee M (2008) Midbrain iron content in early Parkinson disease: a potential biomarker of disease status. Neurology 70(16 Pt 2):1411–7PubMed
Zurück zum Zitat Matsusue E, Fujii S, Kanasaki Y, Sugihara S, Miyata H, Ohama E et al (2008) Putaminal lesion in multiple system atrophy: postmortem MR-pathological correlations. Neuroradiology 50(7):559–67PubMed Matsusue E, Fujii S, Kanasaki Y, Sugihara S, Miyata H, Ohama E et al (2008) Putaminal lesion in multiple system atrophy: postmortem MR-pathological correlations. Neuroradiology 50(7):559–67PubMed
Zurück zum Zitat Morris CM, Candy JM, Oakley AE, Bloxham CA, Edwardson JA (1992) Histochemical distribution of non-haem iron in the human brain. Acta Anat 144(3):235–57PubMed Morris CM, Candy JM, Oakley AE, Bloxham CA, Edwardson JA (1992) Histochemical distribution of non-haem iron in the human brain. Acta Anat 144(3):235–57PubMed
Zurück zum Zitat Ndayisaba A, Kaindlstorfer C, Wenning GK (2019) Iron in neurodegeneration - cause or consequence? Front Neurosci 13:180PubMedPubMedCentral Ndayisaba A, Kaindlstorfer C, Wenning GK (2019) Iron in neurodegeneration - cause or consequence? Front Neurosci 13:180PubMedPubMedCentral
Zurück zum Zitat Péran P, Hagberg G, Luccichenti G, Cherubini A, Brainovich V, Celsis P et al (2007) Voxel-based analysis of R2* maps in the healthy human brain. J Magn Reson Imaging 26(6):1413–20PubMed Péran P, Hagberg G, Luccichenti G, Cherubini A, Brainovich V, Celsis P et al (2007) Voxel-based analysis of R2* maps in the healthy human brain. J Magn Reson Imaging 26(6):1413–20PubMed
Zurück zum Zitat Péran P, Cherubini A, Luccichenti G, Hagberg G, Démonet J-F, Rascol O et al (2009) Volume and iron content in basal ganglia and thalamus. Hum Brain Mapp 30(8):2667–75PubMedPubMedCentral Péran P, Cherubini A, Luccichenti G, Hagberg G, Démonet J-F, Rascol O et al (2009) Volume and iron content in basal ganglia and thalamus. Hum Brain Mapp 30(8):2667–75PubMedPubMedCentral
Zurück zum Zitat Péran P, Barbagallo G, Nemmi F, Sierra M, Galitzky M, Traon AP-L et al (2018) MRI supervised and unsupervised classification of Parkinson’s disease and multiple system atrophy. Mov Disord 33(4):600–8PubMed Péran P, Barbagallo G, Nemmi F, Sierra M, Galitzky M, Traon AP-L et al (2018) MRI supervised and unsupervised classification of Parkinson’s disease and multiple system atrophy. Mov Disord 33(4):600–8PubMed
Zurück zum Zitat Ribas EC, Yağmurlu K, de Oliveira E, Ribas GC, Rhoton A (2018) Microsurgical anatomy of the central core of the brain. J Neurosurg 129(3):752–69PubMed Ribas EC, Yağmurlu K, de Oliveira E, Ribas GC, Rhoton A (2018) Microsurgical anatomy of the central core of the brain. J Neurosurg 129(3):752–69PubMed
Zurück zum Zitat Rutledge J, Hilal S, Silver A, Defendini R, Fahn S (1987) Study of movement disorders and brain iron by MR. Am J Roentgenol 149(2):365–79 Rutledge J, Hilal S, Silver A, Defendini R, Fahn S (1987) Study of movement disorders and brain iron by MR. Am J Roentgenol 149(2):365–79
Zurück zum Zitat Schneider TM, Deistung A, Biedermann U, Matthies C, Ernestus R-I, Volkmann J et al (2016) Susceptibility sensitive magnetic resonance imaging displays pallidofugal and striatonigral fiber tracts: Operative. Neurosurgery 12(4):330–8 Schneider TM, Deistung A, Biedermann U, Matthies C, Ernestus R-I, Volkmann J et al (2016) Susceptibility sensitive magnetic resonance imaging displays pallidofugal and striatonigral fiber tracts: Operative. Neurosurgery 12(4):330–8
Zurück zum Zitat Schweser F, Deistung A, Lehr BW, Reichenbach JR (2011) Quantitative imaging of intrinsic magnetic tissue properties using MRI signal phase: an approach to in vivo brain iron metabolism? Neuroimage 54(4):2789–807PubMed Schweser F, Deistung A, Lehr BW, Reichenbach JR (2011) Quantitative imaging of intrinsic magnetic tissue properties using MRI signal phase: an approach to in vivo brain iron metabolism? Neuroimage 54(4):2789–807PubMed
Zurück zum Zitat Stockwell BR, Angeli JPF, Bayir H, Bush AI, Conrad M, Dixon S et al (2017) Ferroptosis: a regulated cell death nexus linking metabolism, redox biology, and disease. Cell 171(2):273–85PubMedPubMedCentral Stockwell BR, Angeli JPF, Bayir H, Bush AI, Conrad M, Dixon S et al (2017) Ferroptosis: a regulated cell death nexus linking metabolism, redox biology, and disease. Cell 171(2):273–85PubMedPubMedCentral
Zurück zum Zitat Sun H, Walsh AJ, Lebel RM, Blevins G, Catz I, Lu J-Q et al (2015) Validation of quantitative susceptibility mapping with Perls’ iron staining for subcortical gray matter. Neuroimage 105:486–92PubMed Sun H, Walsh AJ, Lebel RM, Blevins G, Catz I, Lu J-Q et al (2015) Validation of quantitative susceptibility mapping with Perls’ iron staining for subcortical gray matter. Neuroimage 105:486–92PubMed
Zurück zum Zitat Tha KK, Terae S, Tsukahara A, Soma H, Morita R, Yabe I et al (2012) Hyperintense putaminal rim at 1.5 T: prevalence in normal subjects and distinguishing features from multiple system atrophy. BMC Neurol 12:39PubMedPubMedCentral Tha KK, Terae S, Tsukahara A, Soma H, Morita R, Yabe I et al (2012) Hyperintense putaminal rim at 1.5 T: prevalence in normal subjects and distinguishing features from multiple system atrophy. BMC Neurol 12:39PubMedPubMedCentral
Zurück zum Zitat Vymazal J, Brooks RA, Baumgarner C, Tran V, Katz D, Bulte JW et al (1996) The relation between brain iron and NMR relaxation times: an in vitro study. Magn Reson Med 35(1):56–61PubMed Vymazal J, Brooks RA, Baumgarner C, Tran V, Katz D, Bulte JW et al (1996) The relation between brain iron and NMR relaxation times: an in vitro study. Magn Reson Med 35(1):56–61PubMed
Zurück zum Zitat Wallis LI, Paley MNJ, Graham JM, Grünewald RA, Wignall EL, Joy HM et al (2008) MRI assessment of basal ganglia iron deposition in Parkinson’s disease. J Magn Reson Imaging 28(5):1061–7PubMed Wallis LI, Paley MNJ, Graham JM, Grünewald RA, Wignall EL, Joy HM et al (2008) MRI assessment of basal ganglia iron deposition in Parkinson’s disease. J Magn Reson Imaging 28(5):1061–7PubMed
Zurück zum Zitat Walsh AJ, Lebel RM, Eissa A, Blevins G, Catz I, Lu J-Q et al (2013) Multiple sclerosis: validation of MR imaging for quantification and detection of iron. Radiology 267(2):531–42PubMed Walsh AJ, Lebel RM, Eissa A, Blevins G, Catz I, Lu J-Q et al (2013) Multiple sclerosis: validation of MR imaging for quantification and detection of iron. Radiology 267(2):531–42PubMed
Zurück zum Zitat Wang N, Yang H, Li C, Fan G, Luo X (2017) Using “swallow-tail” sign and putaminal hypointensity as biomarkers to distinguish multiple system atrophy from idiopathic Parkinson’s disease: a susceptibility-weighted imaging study. Eur Radiol 27(8):3174–80PubMed Wang N, Yang H, Li C, Fan G, Luo X (2017) Using “swallow-tail” sign and putaminal hypointensity as biomarkers to distinguish multiple system atrophy from idiopathic Parkinson’s disease: a susceptibility-weighted imaging study. Eur Radiol 27(8):3174–80PubMed
Zurück zum Zitat Ward RJ, Zucca FA, Duyn JH, Crichton RR, Zecca L (2014) The role of iron in brain ageing and neurodegenerative disorders. Lancet Neurol 13(10):1045–60PubMedPubMedCentral Ward RJ, Zucca FA, Duyn JH, Crichton RR, Zecca L (2014) The role of iron in brain ageing and neurodegenerative disorders. Lancet Neurol 13(10):1045–60PubMedPubMedCentral
Zurück zum Zitat Watanabe H, Ito M, Fukatsu H, Senda J, Atsuta N, Kaga T et al (2010) Putaminal magnetic resonance imaging features at various magnetic field strengths in multiple system atrophy. Movem Dis 25(12):1916–23 Watanabe H, Ito M, Fukatsu H, Senda J, Atsuta N, Kaga T et al (2010) Putaminal magnetic resonance imaging features at various magnetic field strengths in multiple system atrophy. Movem Dis 25(12):1916–23
Zurück zum Zitat Wolfram-Gabel R, Maillot C (1994) Vascular networks of the nucleus lentiformis. Surg Radiol Anat 16(4):373–7PubMed Wolfram-Gabel R, Maillot C (1994) Vascular networks of the nucleus lentiformis. Surg Radiol Anat 16(4):373–7PubMed
Zurück zum Zitat Wolfram-Gabel R, Maillot C (1995) Arterial vascularization of the lenticular nucleus. J Neuroradiol 22(1):1–11PubMed Wolfram-Gabel R, Maillot C (1995) Arterial vascularization of the lenticular nucleus. J Neuroradiol 22(1):1–11PubMed
Zurück zum Zitat Zheng W, Nichol H, Liu S, Cheng Y-CN, Haacke EM (2013) Measuring iron in the brain using quantitative susceptibility mapping and X-ray fluorescence imaging. Neuroimage 78:68–74PubMed Zheng W, Nichol H, Liu S, Cheng Y-CN, Haacke EM (2013) Measuring iron in the brain using quantitative susceptibility mapping and X-ray fluorescence imaging. Neuroimage 78:68–74PubMed
Metadaten
Titel
Iron distribution in the lentiform nucleus: A post-mortem MRI and histology study
verfasst von
Amaury De Barros
Germain Arribarat
Jean Albert Lotterie
Gaelle Dominguez
Patrick Chaynes
Patrice Péran
Publikationsdatum
02.01.2021
Verlag
Springer Berlin Heidelberg
Erschienen in
Brain Structure and Function / Ausgabe 2/2021
Print ISSN: 1863-2653
Elektronische ISSN: 1863-2661
DOI
https://doi.org/10.1007/s00429-020-02175-7

Weitere Artikel der Ausgabe 2/2021

Brain Structure and Function 2/2021 Zur Ausgabe

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Niedriger diastolischer Blutdruck erhöht Risiko für schwere kardiovaskuläre Komplikationen

25.04.2024 Hypotonie Nachrichten

Wenn unter einer medikamentösen Hochdrucktherapie der diastolische Blutdruck in den Keller geht, steigt das Risiko für schwere kardiovaskuläre Ereignisse: Darauf deutet eine Sekundäranalyse der SPRINT-Studie hin.

Frühe Alzheimertherapie lohnt sich

25.04.2024 AAN-Jahrestagung 2024 Nachrichten

Ist die Tau-Last noch gering, scheint der Vorteil von Lecanemab besonders groß zu sein. Und beginnen Erkrankte verzögert mit der Behandlung, erreichen sie nicht mehr die kognitive Leistung wie bei einem früheren Start. Darauf deuten neue Analysen der Phase-3-Studie Clarity AD.

Viel Bewegung in der Parkinsonforschung

25.04.2024 Parkinson-Krankheit Nachrichten

Neue arznei- und zellbasierte Ansätze, Frühdiagnose mit Bewegungssensoren, Rückenmarkstimulation gegen Gehblockaden – in der Parkinsonforschung tut sich einiges. Auf dem Deutschen Parkinsonkongress ging es auch viel um technische Innovationen.

Demenzkranke durch Antipsychotika vielfach gefährdet

23.04.2024 Demenz Nachrichten

Wenn Demenzkranke aufgrund von Symptomen wie Agitation oder Aggressivität mit Antipsychotika behandelt werden, sind damit offenbar noch mehr Risiken verbunden als bislang angenommen.

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.