Skip to main content
Erschienen in: European Journal of Drug Metabolism and Pharmacokinetics 1/2018

01.02.2018 | Review Article

Is RPMI 2650 a Suitable In Vitro Nasal Model for Drug Transport Studies?

verfasst von: Clément Mercier, Nathalie Perek, Xavier Delavenne

Erschienen in: European Journal of Drug Metabolism and Pharmacokinetics | Ausgabe 1/2018

Einloggen, um Zugang zu erhalten

Abstract

The evaluation of new intranasal medications requires the development of in vitro cell model suitable for high-throughput screening studies. The aim of a pharmacological model is to closely mimic the barrier properties of human nasal mucosa that will influence drug pharmacokinetics. In this context, the human nasal cell line RPMI 2650 has been investigated over these last years. Although the initial studies tended to demonstrate strong physiological correlations between RPMI 2650 cells and nasal mucosa, the variability of experimental designs does not allow a clear comparison of actual data. Thereby, the standardization of cell culture parameters is crucial to obtain a stronger reproducibility and increase the relevance of data. Indeed, RPMI 2650 barrier properties are heavily dependent of cell culture conditions, especially of the physiological air–liquid interface that strengthen the expression of both tight junction proteins and drug transporters. Conversely, cell culture medium and insert composition showed a minor impact on the four key parameters of a nasal barrier. Despite the recent advances in the physiological characterization of RPMI 2650 model, only limited pharmacological data are available concerning the involvement of drug transporters in drug bioavailability. The deployment of standardized bi-directional permeability studies using reference compounds is required to determine the relevance of RPMI 2650 model in the field of drug transport studies.
Literatur
1.
Zurück zum Zitat Illum L. Nasal drug delivery—recent developments and futures prospects. J Control Release. 2012;161(2):254–63.CrossRefPubMed Illum L. Nasal drug delivery—recent developments and futures prospects. J Control Release. 2012;161(2):254–63.CrossRefPubMed
2.
Zurück zum Zitat Ehrhardt C, Laue M, Kim KJ. In vitro models of the alveolar epithelial barrier. In: Ehrhardt C, Kim KJ, editors. Drug absorption studies. Biotechnology: pharmaceutical aspects. VII. Berlin: Springer US; 2008. p. 258–82.CrossRef Ehrhardt C, Laue M, Kim KJ. In vitro models of the alveolar epithelial barrier. In: Ehrhardt C, Kim KJ, editors. Drug absorption studies. Biotechnology: pharmaceutical aspects. VII. Berlin: Springer US; 2008. p. 258–82.CrossRef
3.
Zurück zum Zitat Grassin-Delyle S, Buenestado A, Naline E, Faisy C, Blouquit-Laye S, Couderc LJ, et al. Intranasal drug delivery: an efficient and non-invasive route for systemic administration: focus on opioids. Pharmacol Ther. 2012;134(3):366–79.CrossRefPubMed Grassin-Delyle S, Buenestado A, Naline E, Faisy C, Blouquit-Laye S, Couderc LJ, et al. Intranasal drug delivery: an efficient and non-invasive route for systemic administration: focus on opioids. Pharmacol Ther. 2012;134(3):366–79.CrossRefPubMed
4.
Zurück zum Zitat Turker S, Onur E, Ozer Y. Nasal route and drug delivery systems. Pharm World Sci. 2004;26(3):137–42.CrossRefPubMed Turker S, Onur E, Ozer Y. Nasal route and drug delivery systems. Pharm World Sci. 2004;26(3):137–42.CrossRefPubMed
5.
Zurück zum Zitat Pires A, Fortuna A, Alves G, Falcão A. Intranasal drug delivery: how, why and what for? J Pharm Pharm Sci. 2009;12(3):288–311.CrossRefPubMed Pires A, Fortuna A, Alves G, Falcão A. Intranasal drug delivery: how, why and what for? J Pharm Pharm Sci. 2009;12(3):288–311.CrossRefPubMed
6.
Zurück zum Zitat Zhang D, Luo G, Ding X, Lu C. Preclinical experimental models of drug metabolism and disposition in drug discovery and development. Acta Pharm Sin B. 2012;2(6):549–61.CrossRef Zhang D, Luo G, Ding X, Lu C. Preclinical experimental models of drug metabolism and disposition in drug discovery and development. Acta Pharm Sin B. 2012;2(6):549–61.CrossRef
7.
Zurück zum Zitat Stoner C, Cleton A, Jonhson K, Oh DM, Hallak H, Brodfuehrer J. Integrated oral bioavailability projection using in vitro screening data as a selection tool in drug discovery. Int J Pharm. 2003;269(1):241–9.CrossRef Stoner C, Cleton A, Jonhson K, Oh DM, Hallak H, Brodfuehrer J. Integrated oral bioavailability projection using in vitro screening data as a selection tool in drug discovery. Int J Pharm. 2003;269(1):241–9.CrossRef
8.
Zurück zum Zitat Agu RU, Ugwoke MI. In situ and ex vivo nasal models for preclinical drug development studies. In: Ehrhardt C, Kim KJ, editors. Drug absorption studies. Biotechnology: pharmaceutical aspects. VII. Berlin: Springer US; 2008. p. 112–34.CrossRef Agu RU, Ugwoke MI. In situ and ex vivo nasal models for preclinical drug development studies. In: Ehrhardt C, Kim KJ, editors. Drug absorption studies. Biotechnology: pharmaceutical aspects. VII. Berlin: Springer US; 2008. p. 112–34.CrossRef
9.
Zurück zum Zitat Merkle HP, Ditzinger G, Lang SR, Peter H, Schmidt MC. In vitro cell models to study nasal mucosa permeability and metabolism. Adv Drug Deliv Rev. 1998;29(1–2):51–79.PubMed Merkle HP, Ditzinger G, Lang SR, Peter H, Schmidt MC. In vitro cell models to study nasal mucosa permeability and metabolism. Adv Drug Deliv Rev. 1998;29(1–2):51–79.PubMed
10.
Zurück zum Zitat Dimova S, Brewster ME, Noppe M, Jorissen M, Augustijns P. The use of human nasal in vitro cell systems during drug discovery and development. Toxicol In Vitro. 2005;19(1):107–22.CrossRefPubMed Dimova S, Brewster ME, Noppe M, Jorissen M, Augustijns P. The use of human nasal in vitro cell systems during drug discovery and development. Toxicol In Vitro. 2005;19(1):107–22.CrossRefPubMed
11.
Zurück zum Zitat Kim DD. In vitro cellular models for nasal drug absorption studies. J Pharm Investig. 2010;40(6):321–32.CrossRef Kim DD. In vitro cellular models for nasal drug absorption studies. J Pharm Investig. 2010;40(6):321–32.CrossRef
12.
Zurück zum Zitat Wioland MA, Fleury-Feith J, Corlieu P, Commo F, Monceaux G, Lacau-St-Guily J, et al. CFTR, MDR1, and MRP1 immunolocalization in normal human nasal respiratory mucosa. J Histochem Cytochem. 2000;48(9):1215–22.CrossRefPubMed Wioland MA, Fleury-Feith J, Corlieu P, Commo F, Monceaux G, Lacau-St-Guily J, et al. CFTR, MDR1, and MRP1 immunolocalization in normal human nasal respiratory mucosa. J Histochem Cytochem. 2000;48(9):1215–22.CrossRefPubMed
13.
Zurück zum Zitat Yoo JW, Kim YS, Lee SH, Lee MK, Roh HJ, Jhun BH, et al. Serially passaged human nasal epithelial cell monolayer for in vitro drug transport studies. Pharm Res. 2003;20(10):1690–6.CrossRefPubMed Yoo JW, Kim YS, Lee SH, Lee MK, Roh HJ, Jhun BH, et al. Serially passaged human nasal epithelial cell monolayer for in vitro drug transport studies. Pharm Res. 2003;20(10):1690–6.CrossRefPubMed
14.
Zurück zum Zitat Bai S, Yang T, Abbruscato TJ, Ahsan F. Evaluation of human nasal RPMI 2650 cells grown at an air–liquid interface as a model for nasal drug transport studies. J Pharm Sci. 2008;97(3):1165–78.CrossRefPubMed Bai S, Yang T, Abbruscato TJ, Ahsan F. Evaluation of human nasal RPMI 2650 cells grown at an air–liquid interface as a model for nasal drug transport studies. J Pharm Sci. 2008;97(3):1165–78.CrossRefPubMed
15.
Zurück zum Zitat Moorhead PS. Human tumor cell line with a quasi-diploid karyotype (RPMI 2650). Exp Cell Res. 1965;39:190–6.CrossRefPubMed Moorhead PS. Human tumor cell line with a quasi-diploid karyotype (RPMI 2650). Exp Cell Res. 1965;39:190–6.CrossRefPubMed
16.
Zurück zum Zitat Peter HG. Cell culture sheets to study nasal peptide metabolism: the human nasal RPMI 2650 cell line model. Thesis, Switzerland. 1996. Peter HG. Cell culture sheets to study nasal peptide metabolism: the human nasal RPMI 2650 cell line model. Thesis, Switzerland. 1996.
17.
Zurück zum Zitat de Fraissinette A, Brun R, Felix H, Vonderscher J, Rummelt A. Evaluation of the human cell line RPMI 2650 as an in vitro nasal model. Rhinology. 1995;33(4):194–8.PubMed de Fraissinette A, Brun R, Felix H, Vonderscher J, Rummelt A. Evaluation of the human cell line RPMI 2650 as an in vitro nasal model. Rhinology. 1995;33(4):194–8.PubMed
18.
Zurück zum Zitat Werner U, Kissel T. In-vitro cell culture models of the nasal epithelium: a comparative histochemical investigation of their suitability for drug transport studies. Pharm Res. 1996;13(7):978–88.CrossRefPubMed Werner U, Kissel T. In-vitro cell culture models of the nasal epithelium: a comparative histochemical investigation of their suitability for drug transport studies. Pharm Res. 1996;13(7):978–88.CrossRefPubMed
19.
Zurück zum Zitat Srinivasan B, Kolli AR, Esch MB, Abaci HE, Shuler ML, Hickman JJ. TEER measurement techniques for in vitro barrier model systems. J Lab Autom. 2015;20(2):107–26.CrossRefPubMedPubMedCentral Srinivasan B, Kolli AR, Esch MB, Abaci HE, Shuler ML, Hickman JJ. TEER measurement techniques for in vitro barrier model systems. J Lab Autom. 2015;20(2):107–26.CrossRefPubMedPubMedCentral
20.
Zurück zum Zitat Boucher RC, Yankaskas JR, Cotton CU, Knowles MR, Stutts MJ. Cell culture approaches to the investigation of human airway ion transport. Eur J Respir Dis. 1987;71(153):59–67. Boucher RC, Yankaskas JR, Cotton CU, Knowles MR, Stutts MJ. Cell culture approaches to the investigation of human airway ion transport. Eur J Respir Dis. 1987;71(153):59–67.
21.
Zurück zum Zitat Wengst A, Reichl S. RPMI 2650 epithelial model and three-dimensional reconstructed human nasal mucosa as in vitro models for nasal permeation studies. Eur J Pharm Biopharm. 2010;74(2):290–7.CrossRefPubMed Wengst A, Reichl S. RPMI 2650 epithelial model and three-dimensional reconstructed human nasal mucosa as in vitro models for nasal permeation studies. Eur J Pharm Biopharm. 2010;74(2):290–7.CrossRefPubMed
22.
Zurück zum Zitat Dolberg AM, Reichl S. Expression of P-glycoprotein in excised human nasal mucosa and optimized models of RPMI 2650 cells. Int J Pharm. 2016;508(1–2):22–33.CrossRefPubMed Dolberg AM, Reichl S. Expression of P-glycoprotein in excised human nasal mucosa and optimized models of RPMI 2650 cells. Int J Pharm. 2016;508(1–2):22–33.CrossRefPubMed
23.
Zurück zum Zitat David, F. Transport processes in pharmaceutical systems. Informa Healthcare. In: Biological transport phenomena in the gastrointestinal tract. 1999. David, F. Transport processes in pharmaceutical systems. Informa Healthcare. In: Biological transport phenomena in the gastrointestinal tract. 1999.
24.
Zurück zum Zitat Pezzulo AA, Starner TD, Scheetz TE, Traver GL, Tilley AE, Harvey BG, et al. The air–liquid interface and use of primary cell cultures are important to recapitulate the transcriptional profile of in vivo airway epithelia. Am J Physiol. 2011;300(1):25–31. Pezzulo AA, Starner TD, Scheetz TE, Traver GL, Tilley AE, Harvey BG, et al. The air–liquid interface and use of primary cell cultures are important to recapitulate the transcriptional profile of in vivo airway epithelia. Am J Physiol. 2011;300(1):25–31.
25.
Zurück zum Zitat Kreft ME, Jerman UD, Lasič E, Lanišnik Rižner T, Hevir-Kene L, Peternel L, et al. The characterization of the human nasal epithelial cell line RPMI 2650 under different culture conditions and their optimization for an appropriate in vitro nasal model. Pharm Res. 2015;32(2):665–79.CrossRefPubMed Kreft ME, Jerman UD, Lasič E, Lanišnik Rižner T, Hevir-Kene L, Peternel L, et al. The characterization of the human nasal epithelial cell line RPMI 2650 under different culture conditions and their optimization for an appropriate in vitro nasal model. Pharm Res. 2015;32(2):665–79.CrossRefPubMed
26.
Zurück zum Zitat Reichl S, Becker K. Cultivation of RPMI 2650 cells as an in vitro model for human transmucosal nasal drug absorption studies: optimization of selected culture conditions. J Pharm Pharmacol. 2012;64(11):1621–30.CrossRefPubMed Reichl S, Becker K. Cultivation of RPMI 2650 cells as an in vitro model for human transmucosal nasal drug absorption studies: optimization of selected culture conditions. J Pharm Pharmacol. 2012;64(11):1621–30.CrossRefPubMed
27.
Zurück zum Zitat Gonçalves VSS, Matias AA, Poejo J, Serra AT, Duarte CMM. Application of RPMI 2650 as a cell model to evaluate solid formulations for intranasal delivery of drugs. Int J Pharm. 2016;515(1–2):1–10.CrossRefPubMed Gonçalves VSS, Matias AA, Poejo J, Serra AT, Duarte CMM. Application of RPMI 2650 as a cell model to evaluate solid formulations for intranasal delivery of drugs. Int J Pharm. 2016;515(1–2):1–10.CrossRefPubMed
28.
29.
Zurück zum Zitat Kojima T, Go M, Takano K, Kurose M, Okhuni T, Koizumi J, et al. Regulation of tight junctions in upper airway epithelium. Biomed Res Int. 2013;2013:947072.PubMed Kojima T, Go M, Takano K, Kurose M, Okhuni T, Koizumi J, et al. Regulation of tight junctions in upper airway epithelium. Biomed Res Int. 2013;2013:947072.PubMed
30.
Zurück zum Zitat Gonzales-Mariscal L, Betanzos A, Nava P, Jaramillo BE. Tight junction proteins. Prog Biophys Mol Biol. 2003;81(1):1–44.CrossRef Gonzales-Mariscal L, Betanzos A, Nava P, Jaramillo BE. Tight junction proteins. Prog Biophys Mol Biol. 2003;81(1):1–44.CrossRef
31.
Zurück zum Zitat Anderson JM, Van Itallie CM. Tight junctions and the molecular basis for regulation of paracellular permeability. Am J Physiol. 1995;69(4):467–75. Anderson JM, Van Itallie CM. Tight junctions and the molecular basis for regulation of paracellular permeability. Am J Physiol. 1995;69(4):467–75.
32.
Zurück zum Zitat Hirase T, Staddon JM, Saitou M, Ando-Akatsuka Y, Itoh M, Furuse M, et al. Occludin as a possible determinant of tight junction permeability in endothelial cells. J Cell Sci. 1997;110(14):1603–13.PubMed Hirase T, Staddon JM, Saitou M, Ando-Akatsuka Y, Itoh M, Furuse M, et al. Occludin as a possible determinant of tight junction permeability in endothelial cells. J Cell Sci. 1997;110(14):1603–13.PubMed
33.
Zurück zum Zitat Stevenson BR, Siliciano JD, Mooseker MS, Goodenough DA. Identification of ZO-1: a high molecular weight polypeptide associated with the tight junction (zonula occludens) in a variety of epithelia. J Cell Biol. 1986;103(3):755–66.CrossRefPubMed Stevenson BR, Siliciano JD, Mooseker MS, Goodenough DA. Identification of ZO-1: a high molecular weight polypeptide associated with the tight junction (zonula occludens) in a variety of epithelia. J Cell Biol. 1986;103(3):755–66.CrossRefPubMed
34.
Zurück zum Zitat Ward PD, Tippin TK, Thakker DR. Enhancing paracellular permeability by modulating epithelial tight junctions. Pharm Sci Technol Today. 2000;3(10):346–58.CrossRefPubMed Ward PD, Tippin TK, Thakker DR. Enhancing paracellular permeability by modulating epithelial tight junctions. Pharm Sci Technol Today. 2000;3(10):346–58.CrossRefPubMed
35.
Zurück zum Zitat Hartsock A, Nelson WJ. Adherens and tight junctions: structure, function and connections to the actin cytoskeleton. Biochim Biophys Acta. 2008;1778(3):660–9.CrossRefPubMed Hartsock A, Nelson WJ. Adherens and tight junctions: structure, function and connections to the actin cytoskeleton. Biochim Biophys Acta. 2008;1778(3):660–9.CrossRefPubMed
36.
Zurück zum Zitat Li N, Lewis P, Samuelson D, Neu J. Glutamine regulates Caco-2 cell tight junction proteins. Am J Physiol Gastrointest Liver Physiol. 2004;287(3):726–33.CrossRef Li N, Lewis P, Samuelson D, Neu J. Glutamine regulates Caco-2 cell tight junction proteins. Am J Physiol Gastrointest Liver Physiol. 2004;287(3):726–33.CrossRef
37.
Zurück zum Zitat Wan H, Winton HL, Soeller C, Stewart GA, Thompson PJ, Gruenert DC, et al. Tight junction properties of the immortalized human bronchial epithelial cell lines Calu-3 and 16HBE14o-. Eur Respir J. 2000;15(6):1058–68.CrossRefPubMed Wan H, Winton HL, Soeller C, Stewart GA, Thompson PJ, Gruenert DC, et al. Tight junction properties of the immortalized human bronchial epithelial cell lines Calu-3 and 16HBE14o-. Eur Respir J. 2000;15(6):1058–68.CrossRefPubMed
38.
39.
Zurück zum Zitat Kürti L, Veszelka S, Bocsik A, Ozsvári B, Puskás LG, Kittel A, et al. Retinoic acid and hydrocortisone strengthen the barrier function of human RPMI 2650 cells, a model for nasal epithelial permeability. Cytotechnology. 2013;65(3):395–406.CrossRefPubMed Kürti L, Veszelka S, Bocsik A, Ozsvári B, Puskás LG, Kittel A, et al. Retinoic acid and hydrocortisone strengthen the barrier function of human RPMI 2650 cells, a model for nasal epithelial permeability. Cytotechnology. 2013;65(3):395–406.CrossRefPubMed
40.
Zurück zum Zitat Eigenmann D, Xue G, Kim KS, Moses AV, Hamburger M, Oufir M. Comparative study of four immortalized human brain capillary endothelial cell lines, hCMEC/D3, hBMEC, TY10, and BB19, and optimization of culture conditions, for an in vitro blood–brain barrier model for drug permeability studies. Fluids Barriers CNS. 2013;10(1):33.CrossRefPubMedPubMedCentral Eigenmann D, Xue G, Kim KS, Moses AV, Hamburger M, Oufir M. Comparative study of four immortalized human brain capillary endothelial cell lines, hCMEC/D3, hBMEC, TY10, and BB19, and optimization of culture conditions, for an in vitro blood–brain barrier model for drug permeability studies. Fluids Barriers CNS. 2013;10(1):33.CrossRefPubMedPubMedCentral
41.
Zurück zum Zitat Kürti L, Veszelka S, Bocsik A, Dung NT, Ozsvári B, Puskás LG, et al. The effect of sucrose esters on a culture model of the nasal barrier. Toxicol In Vitro. 2012;26(3):445–54.CrossRefPubMed Kürti L, Veszelka S, Bocsik A, Dung NT, Ozsvári B, Puskás LG, et al. The effect of sucrose esters on a culture model of the nasal barrier. Toxicol In Vitro. 2012;26(3):445–54.CrossRefPubMed
42.
Zurück zum Zitat Bosquillon C. Drug transporters in the lung—do they play a role in the pharmaceutics of inhaled drugs? J Pharm Sci. 2010;99(5):2240–55.CrossRefPubMed Bosquillon C. Drug transporters in the lung—do they play a role in the pharmaceutics of inhaled drugs? J Pharm Sci. 2010;99(5):2240–55.CrossRefPubMed
43.
44.
Zurück zum Zitat Anand U, Parikh A, Ugwu MC, Agu RU. Drug transporters in the nasal epithelium: an overview of strategies in targeted drug delivery. Future Med Chem. 2014;6(12):1381–97.CrossRefPubMed Anand U, Parikh A, Ugwu MC, Agu RU. Drug transporters in the nasal epithelium: an overview of strategies in targeted drug delivery. Future Med Chem. 2014;6(12):1381–97.CrossRefPubMed
45.
Zurück zum Zitat Al-Ghabeish M, Scheetz T, Assem M, Donovan MD. Microarray determination of the expression of drug transporters in humans and animal species used for the investigation of nasal absorption. Mol Pharm. 2015;12(8):2742–54.CrossRefPubMedPubMedCentral Al-Ghabeish M, Scheetz T, Assem M, Donovan MD. Microarray determination of the expression of drug transporters in humans and animal species used for the investigation of nasal absorption. Mol Pharm. 2015;12(8):2742–54.CrossRefPubMedPubMedCentral
46.
Zurück zum Zitat Pozzoli M, Ong HX, Morgan L, Sukkar M, Traini D, Young PM, et al. Application of RPMI 2650 nasal cell model to a 3D printed apparatus for the testing of drug deposition and permeation of nasal products. Eur J Pharm Biopharm. 2016;107:223–33.CrossRefPubMed Pozzoli M, Ong HX, Morgan L, Sukkar M, Traini D, Young PM, et al. Application of RPMI 2650 nasal cell model to a 3D printed apparatus for the testing of drug deposition and permeation of nasal products. Eur J Pharm Biopharm. 2016;107:223–33.CrossRefPubMed
47.
Zurück zum Zitat Dolberg AM, Reichl S. Activity of multidrug resistance-associated proteins 1–5 (MRP1–5) in the RPMI 2650 cell line and explants of human nasal turbinate. Mol Pharm. 2017;14(5):1577–90.CrossRefPubMed Dolberg AM, Reichl S. Activity of multidrug resistance-associated proteins 1–5 (MRP1–5) in the RPMI 2650 cell line and explants of human nasal turbinate. Mol Pharm. 2017;14(5):1577–90.CrossRefPubMed
48.
Zurück zum Zitat Li L, Ni R, Shao Y, Mao S. Carrageenan and its application in drug delivery. Carbohydr Polym. 2014;103:1–11.CrossRefPubMed Li L, Ni R, Shao Y, Mao S. Carrageenan and its application in drug delivery. Carbohydr Polym. 2014;103:1–11.CrossRefPubMed
49.
Zurück zum Zitat Djupesland PG. Nasal drug delivery devices: characteristics and performance in a clinical perspective—a review. Drug Deliv Transl Res. 2013;3(1):42–62.CrossRefPubMed Djupesland PG. Nasal drug delivery devices: characteristics and performance in a clinical perspective—a review. Drug Deliv Transl Res. 2013;3(1):42–62.CrossRefPubMed
50.
Zurück zum Zitat Thirawong N, Thongborisute J, Takeuchi H, Sriamornsak P. Improved intestinal absorption of calcitonin by mucoadhesive delivery of novel pectin-liposome nanocomplexes. J Control Release. 2008;125(3):236–45.CrossRefPubMed Thirawong N, Thongborisute J, Takeuchi H, Sriamornsak P. Improved intestinal absorption of calcitonin by mucoadhesive delivery of novel pectin-liposome nanocomplexes. J Control Release. 2008;125(3):236–45.CrossRefPubMed
51.
Zurück zum Zitat Arora P, Sharma S, Garg S. Permeability issues in nasal drug delivery. Drug Discov Today. 2002;7(18):967–75.CrossRefPubMed Arora P, Sharma S, Garg S. Permeability issues in nasal drug delivery. Drug Discov Today. 2002;7(18):967–75.CrossRefPubMed
52.
Zurück zum Zitat Hubatsch I, Ragnarsson EGE, Artursson P. Determination of drug permeability and prediction of drug absorption in Caco-2 monolayers. Nat Protoc. 2007;2(9):2111–9.CrossRefPubMed Hubatsch I, Ragnarsson EGE, Artursson P. Determination of drug permeability and prediction of drug absorption in Caco-2 monolayers. Nat Protoc. 2007;2(9):2111–9.CrossRefPubMed
Metadaten
Titel
Is RPMI 2650 a Suitable In Vitro Nasal Model for Drug Transport Studies?
verfasst von
Clément Mercier
Nathalie Perek
Xavier Delavenne
Publikationsdatum
01.02.2018
Verlag
Springer International Publishing
Erschienen in
European Journal of Drug Metabolism and Pharmacokinetics / Ausgabe 1/2018
Print ISSN: 0378-7966
Elektronische ISSN: 2107-0180
DOI
https://doi.org/10.1007/s13318-017-0426-x

Weitere Artikel der Ausgabe 1/2018

European Journal of Drug Metabolism and Pharmacokinetics 1/2018 Zur Ausgabe