Skip to main content
Erschienen in: Clinical Neuroradiology 4/2021

Open Access 26.01.2021 | Original Article

SVM-Based Normal Pressure Hydrocephalus Detection

verfasst von: Alexander Rau, Suam Kim, Shan Yang, Marco Reisert, Elias Kellner, Ikram Eda Duman, Bram Stieltjes, Marc Hohenhaus, Jürgen Beck, Horst Urbach, Karl Egger

Erschienen in: Clinical Neuroradiology | Ausgabe 4/2021

download
DOWNLOAD
print
DRUCKEN
insite
SUCHEN

Abstract

Background and Purpose

As magnetic resonance imaging (MRI) signs of normal pressure hydrocephalus (NPH) may precede clinical symptoms we sought to evaluate an algorithm that automatically detects this pattern.

Methods

A support vector machine (SVM) was trained in 30 NPH patients treated with ventriculoperitoneal shunts and 30 healthy controls. For comparison, four neuroradiologists visually assessed sagittal MPRAGE images and graded them as no NPH pattern, possible NPH pattern, or definite NPH pattern.

Results

Human accuracy to visually detect a NPH was between 0.85 and 0.97. Interobserver agreement was substantial (κ = 0.656). Accuracy of the SVM algorithm was 0.93 and AUROC 0.99. Among 272 prespecified regions, gray matter and CSF volumes of both caudate, the right parietal operculum, the left basal forebrain, and the 4th ventricle showed the highest discriminative power to separate a NPH and a no NPH pattern.

Conclusion

A NPH pattern can be reliably detected using a support vector machine (SVM). Its role in the work-up of asymptomatic patients or neurodegenerative disease has to be evaluated.
Abkürzungen
CSF
Cerebrospinal fluid
DESH
Disproportionately enlarged subarachnoid space hydrocephalus
GM
Gray matter
HC
Healthy controls
NPH
Normal pressure hydrocephalus
SVM
Support vector machine
THC
Tight high convexity

Introduction

Normal pressure hydrocephalus (NPH) is a brain disorder in which excess cerebrospinal fluid (CSF) accumulates in the subarachnoid and ventricular spaces. It is defined as increased CSF volume without continuous elevation of the intracranial pressure, whereas the complete pathomechanism is still unclear [1]. A resulting ventricular enlargement can disrupt and damage surrounding brain tissue, leading to gait disturbance, urinary incontinence and dementia, a constellation known as Hakim triad [2]. The NPH has an overall prevalence of 10.2–31.4/100,000, with an increase to 5900/100,000 in the population of patients older than 80 years [1] and is therefore of high health care relevance.
In some cases, NPH is caused by other brain disorders such as a tumor, head injury, hemorrhage, infection or inflammation. Yet in most cases, the cause of excess fluid remains unknown. Studies indicate that the development of NPH underlies a prolonged process since radiographic findings show volumetric changes 3 or more years before the onset of clinical symptoms [3].
Despite ongoing efforts, neither the pathophysiology of NPH nor the mechanics of the improvement after standard treatment with surgical CSF shunting are completely understood. The diagnosis of NPH is dependent on several clinical and radiological factors and is complicated by a variable degree of symptom presentation as well as neurodegenerative comorbidities [4]. Given the elusiveness of the disease, successful treatment with clinical improvement after shunting can be considered a reliable confirmation of the diagnosis, although 20–40% of CSF shunted patients do not significantly benefit [5].
Imaging used for the diagnosis of neurodegenerative diseases serves two functions: it should reveal treatable causes and contribute to the etiological differentiation of primary dementia disorders [6]. Treatable diseases such as tumor and subdural hematoma are underlying causes in less than 5% of patients with neurodegenerative symptoms, while nonocclusive hydrocephalus (including NPH) is more commonly found [7, 8].
In imaging, the most reliable sign for detecting NPH is a disproportional enlargement of the ventricles and the Sylvian fissure (disproportionately enlarged subarachnoid space hydrocephalus, DESH) in comparison to the constricted CSF spaces in the high convexities of the brain [9]. While ventriculomegaly is commonly found in studies as a sensitive but nonspecific NPH sign, the tight high convexity (THC) is highly specific [10]. Another parameter used in clinical routine is the callosal angle, which is decreased in patients with NPH [11]. In a recent study, the classification of THC using an automated machine learning approach showed an excellent performance with an AUROC of up to 0.99 (false negative ≈2%, false positive ≈5%) [12]. This high AUROC was achieved by selecting the most discriminate single regions, which are the left and right posterior callosomarginal fissures.
The aim of this study was to implement a machine learning tool that automatically identifies NPH-typical MRI features (NPH pattern) on routinely acquired MRI sequences.

Methods

Patients: presurgical MRI scans of 30 NPH patients, who had been treated with a ventriculoperitoneal shunt were retrospectively compared to an age and gender-matched group of 30 healthy controls (HC). Surgery had been performed between 2010 and 2017, and patients re-evaluated several times after shunt implantation thereafter. We screened our neurosurgical database retrospectively for patients first time receiving a CSF shunt due to a NPH between 2010 and 2017. As a second step, we included those having undergone 3D T1-weighted MRI scans.
Readings: two senior (26 and 19 years of experience) and two junior neuroradiologists (4 and 2 years of experience) independently assessed the presence of a NPH pattern on a 3D sagittal magnetization prepared rapid acquisition gradient recalled echo (MP-RAGE) sequence with isotropic voxels (1 × 1 × 1 mm3). They were asked to assess imaging features, such as the DESH sign, THC and small callosal angle and to finally grade them on a 3-point scale (0 = no NPH pattern, 1 = possible NPH pattern, 2 = definite NPH pattern). Anonymized imaging data of patients and controls were shown in a randomized order. In addition, MRI reports were retrospectively reviewed whether NPH features were described or the condition was dismissed, e.g. as unspecific ventriculomegaly.
Machine learning: for NPH identification, a linear support vector machine (SVM) was employed [13]. A SVM is a supervised machine learning tool in which a single case is grouped to one of two categories (here: NPH pattern—no NPH pattern). Groups of 30 NPH patients and 30 HC each were taken to train the algorithm, making it a non-probabilistic binary linear classifier. The NPH patients and HC are thus mapped as points in a multidimensional space, so that both groups are separated by a clear gap that is as wide as possible. New cases are then mapped into that same space and predicted to belong to a category of “NPH pattern” or “no NPH pattern”. We used T1-weighted MP-RAGE scans with features being constructed based on SPM (Statistical Parametric Mapping) 12 segmentation and normalization procedures [14, 15]. Gray matter (c1-map) and CSF (c3-map) segmentations were warped into the MNI (Montreal Neurological Institute) space (using modulation of gray value by the Jacobian of the warp) and smoothed by full width half max 3 × 3 × 3 mm, similar to what is done for usual voxel-based morphometry analyses [16, 17]. The volume of gray matter (GM) and CSF of 272 regions defined in a probabilistic brain atlas (http://​www.​neuromorphometri​cs.​com/​) were extracted as a direct input into the SVM (MATLAB 2018a, standard parameter setting). Fivefold cross-validation was performed. The SVM results are given as a prediction score from 0 to 1. An example for an analysis is displayed in Fig. 1.
Statistical analysis: SVM performance was compared to human ratings in terms of correctly predicting NPH cases. Standard metrics for binary classification such as accuracy, sensitivity, specificity and negative prediction value were calculated. A receiver operating characteristic (ROC) analysis displayed sensitivity and specificity of SVM in identifying NPH patients. Interobserver agreement was assessed by Fleiss’ κ [18].

Results

A total of 30 patients were included in the NPH group and 30 HC served as control group. Clinical characteristics are displayed in Table 1.
Table 1
Patient characteristics
 
Patients (n = 30)
Healthy controls (n = 30)
Age (years)
75.8 (range 67–86)
72.9 (range 65–84)*
Sex (male)
20 (66.7%)
20 (66.7%)**
Clinical presentation
Gait disturbance
30 (100%)
Cognitive decline
22 (73.3%)
Urine incontinence
18 (60%)
Full Hakim triad
14 (46.7%)
Gait disturbance only
2 (6.7%)
Follow-up
No benefit after shunting
6 (of n = 28) (21.4%)
Population characteristics for the dataset used in this study. Summaries are given as count (percent)
Groups were not different in terms of age *(p = 0.11) and sex **(p = 1)
Patients were clinically re-evaluated directly after and 3 months after surgery (mean 57 days). One patient was lost in follow-up and another patient died after surgery (after initial NPH symptom reduction) due to acute respiratory distress syndrome. After shunting, 20 patients (of 28 patients evaluated in follow-up) showed a marked improvement of NPH symptoms. In two patients, improvement was unclear, six patients did not benefit.
Human readings are displayed in Table 2. Junior raters assigned a “no NPH” pattern in three and six NPH patients, and senior raters in one and two patients, respectively. An example of a “probable NPH” pattern not identified by the junior raters is given in Fig. 2. Interobserver reliability was substantial with a κ-value of 0.656 (p < 0.001).
Table 2
Individual ratings of the human readers
 
Rater 1 (Senior)
Rater 2 (Senior)
Rater 3 (Junior)
Rater 4 (Junior)
“No NPH pattern”
2 (6.7%)
1 (3.3%)
6 (20%)
3 (10%)
“Possible NPH”
6 (20%)
6 (20%)
5 (16.7%)
7 (23.3%)
“Definite NPH”
22 (73.3%)
23 (77.7%)
19 (63.3%)
20 (66.7%)
Healthy controls
No NPH pattern
27 (90%)
No NPH pattern
27 (90%)
No NPH pattern
30 (100%)
No NPH pattern
29 (97%)
Possible NPH
3 (10%)
Possible NPH
3 (10%)
Possible NPH
1 (3%)
Total amount (percentage)
NPH normal pressure hydrocephalus
SVM performance: with a prediction score of 0.42, acceptable performance was achieved with one false negative and three false positive results. Human readings and SVM results are compared in Table 3. In the one false negative NPH case (prediction score of 0.37), a “no NPH pattern” was observed by all human readers. This patient had presented with gait disturbance and dementia and improved upon shunt implantation. The ROC (Fig. 3) shows the SVM reliably identified all NPH patients with an AUROC of 0.98.
Table 3
Statistics
Possible and definite “NPH pattern”
Rater 1 (Senior)
Rater 2 (Senior)
Rater 3 (Junior)
Rater 4 (Junior)
SVM
Accuracy
0.92
0.93
0.9
0.93
0.93
Sensitivity
0.93
0.96
0.83
0.91
0.90
Specificity
0.90
0.91
1.0
0.96
0.96
NPV
0.93
0.97
0.8
0.9
0.90
Performance of human reading and SVM in detection of NPH patients
NPH normal pressure hydrocephalus, SVM support vector machine, NPV negative predictive value
With respect to the discriminative power of the 272 regions defined in the probabilistic brain atlas, the following 5 regions served best to separate NPH and healthy controls: right caudate, right parietal operculum, left basal forebrain, left caudate and 4th ventricle (Fig. 4).

Discussion

A NPH pattern can be reliably detected by a SVM algorithm processing 3D T1-weighted datasets which are routinely acquired in many of our patients with neurological complaints.
The NPH patients in our cohort had typical clinical symptoms and ages, and a reasonable number were shunt responders. Although more males than females were treated, we consider our cohort as a typical NPH cohort [5, 19, 20].
In almost all NPH patients, even junior neuroradiologists correctly identified a definite NPH pattern. Of note is that the readers in this study were trained to identify a NPH pattern and knew patients had received a CSF shunt due to NPH. Nevertheless, in only 19 of the 30 NPH patients the NPH pattern had been described in the initial MRI reports. Here, an SVM-aided diagnosis may significantly change clinical management. Considering the accuracy of 0.93 and the AUROC of 0.98, SVM is suited for clinical practice. Given the high prevalence of NPH in old patients, one may presume an increase of NPH pattern reports. As the radiological features may precede clinical symptoms the automatic detection during the asymptomatic stage could help to prevent dementia and associated costs in these patients [3, 21]. Other groups have already focused on automated NPH detection. Unspecific ventricular enlargement was successfully detected in computed tomography (CT) imaging [22] and machine learning was used to determine most discriminate regions in patients who had been identified by radiologists as having a NPH pattern [12]. In contrast, we compared the performance of an SVM against human readings in terms of how reliably NPH patients can be identified in MRI and surpassed the accuracy of others who differentiated NPH, vascular cognitive disease and HC using sulcal patterns [23] or a 3D convolutional ladder network in the differentiation of NPH, Alzheimer’s dementia and HC [24]. Zhang et al. described a similar approach on CT imaging with a comparable group (27 NPH patients and 34 HC) and reached acceptable sensitivity, too [25]. A strength of this approach is that it does not focus on a single region but uses the overall pattern of GM and CSF spaces. The SVM showed both caudate, the right parietal operculum, the left basal forebrain, and the 4th ventricle as most discriminative of 272 regions to separate a NPH and a no NPH pattern. That caudate and the parietal operculum have altered CSF volumes sounds reasonable. The CSF volume changes of the (left) basal forebrain, however, likely also occur to the atypical configuration of the CSF spaces.
Concerning false positives, two HC were considered to have a definite NPH pattern by both senior raters and the SVM. This number matches the estimated prevalence of a NPH pattern in this age group [3, 21].
Another goal of imaging is to identify possible shunt responders. The SVM prediction score could not differentiate between responders and non-responders. Prediction of shunt responsiveness is difficult as it depends on multiple factors, such as evolution of clinical symptoms, duration since symptom onset, and likely requires a larger study group as retrospective data were not detailed enough [6]; however, it has already been shown that individual NPH features, such as the callosal angle or THC correlate with the outcome [26, 27] so that futile shunting and its complications could be prevented.
Despite the low number of patients and the retrospective data collection this single-center proof of concept study shows that NPH patients can be automatically detected with a high accuracy similar to human ratings. This detection is helpful as a NPH pattern often interferes with voxel-based morphometry to detect region-specific atrophy [28]; however, use needs to be confirmed by a larger and more structured data assessment. In this context, the comparison of the SVM prediction score with a recently published visual imaging score (iNPH Radscale) would be worthwhile [29]. In the iNPH Radscale, eight features such as the Evans index, narrow sulci, Sylvian fissures, focally enlarged sulci, widths of temporal horns, callosal angle, and periventricular hypodensities are visually assessed and converted into points from 0 to 12. Excluding white matter hypodensities the former features are likely to be “considered” by the SVM approach as it processes GM and CSF probability maps in 272 regions.

Conclusion

Considering the high prevalence of normal pressure hydrocephalus (NPH) in old patients and rising numbers of MRI scans in this group, one can presume an increased incidence of a NPH pattern. Since the NPH pattern may precede clinical symptoms, automatic detection during a presymptomatic stage could be a promising tool for an early diagnosis. Trained machines such as the presented support vector machine (SVM) might simplify diagnosis with no apparent loss of reliability compared to human performance.

Compliance with ethical guidelines

Conflict of interest

A. Rau, S. Kim, S. Yang, M. Reisert, E. Kellner, I.E. Duman, B. Stieltjes, M. Hohenhaus, J. Beck, H. Urbach and K. Egger declare that they have no competing interests.

Ethical standards

All procedures performed in the studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards. Informed consent: As this was a retrospective study informed consent was waived.
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​.

Unsere Produktempfehlungen

e.Med Interdisziplinär

Kombi-Abonnement

Jetzt e.Med zum Sonderpreis bestellen!

Für Ihren Erfolg in Klinik und Praxis - Die beste Hilfe in Ihrem Arbeitsalltag

Mit e.Med Interdisziplinär erhalten Sie Zugang zu allen CME-Fortbildungen und Fachzeitschriften auf SpringerMedizin.de.

Jetzt bestellen und 100 € sparen!

e.Med Neurologie & Psychiatrie

Kombi-Abonnement

Mit e.Med Neurologie & Psychiatrie erhalten Sie Zugang zu CME-Fortbildungen der Fachgebiete, den Premium-Inhalten der dazugehörigen Fachzeitschriften, inklusive einer gedruckten Zeitschrift Ihrer Wahl.

e.Med Neurologie

Kombi-Abonnement

Mit e.Med Neurologie erhalten Sie Zugang zu CME-Fortbildungen des Fachgebietes, den Premium-Inhalten der neurologischen Fachzeitschriften, inklusive einer gedruckten Neurologie-Zeitschrift Ihrer Wahl.

Weitere Produktempfehlungen anzeigen
Literatur
1.
Zurück zum Zitat Jaraj D, Rabiei K, Marlow T, Jensen C, Skoog I, Wikkelsø C. Prevalence of idiopathic normal-pressure hydrocephalus. Neurology. 2014;82:1449–54.CrossRef Jaraj D, Rabiei K, Marlow T, Jensen C, Skoog I, Wikkelsø C. Prevalence of idiopathic normal-pressure hydrocephalus. Neurology. 2014;82:1449–54.CrossRef
2.
Zurück zum Zitat Hakim S, Adams RD. The special clinical problem of symptomatic hydrocephalus with normal cerebrospinal fluid pressure. Observations on cerebrospinal fluid hydrodynamics. J Neurol Sci. 1965;2:307–27.CrossRef Hakim S, Adams RD. The special clinical problem of symptomatic hydrocephalus with normal cerebrospinal fluid pressure. Observations on cerebrospinal fluid hydrodynamics. J Neurol Sci. 1965;2:307–27.CrossRef
3.
Zurück zum Zitat Engel DC, Adib SD, Schuhmann MU, Brendle C. Paradigm-shift: radiological changes in the asymptomatic iNPH-patient to be: an observational study. Fluids Barriers CNS. 2018;15:5.CrossRef Engel DC, Adib SD, Schuhmann MU, Brendle C. Paradigm-shift: radiological changes in the asymptomatic iNPH-patient to be: an observational study. Fluids Barriers CNS. 2018;15:5.CrossRef
4.
Zurück zum Zitat Shprecher D, Schwalb J, Kurlan R. Normal pressure hydrocephalus: diagnosis and treatment. Curr Neurol Neurosci Rep. 2008;8:371–6.CrossRef Shprecher D, Schwalb J, Kurlan R. Normal pressure hydrocephalus: diagnosis and treatment. Curr Neurol Neurosci Rep. 2008;8:371–6.CrossRef
5.
Zurück zum Zitat Williams MA, Malm J. Diagnosis and treatment of idiopathic normal pressure hydrocephalus. Continuum. 2016;22:579–99.PubMedPubMedCentral Williams MA, Malm J. Diagnosis and treatment of idiopathic normal pressure hydrocephalus. Continuum. 2016;22:579–99.PubMedPubMedCentral
6.
Zurück zum Zitat Paulus W, Krauss J. S1-Leitlinie Normaldruckhydrozephalus. In: Deutsche Gesellschaft für Neurologie, editor. Leitlinien für Diagnostik und Therapie in der Neurologie. 2018. www.dgn.org/leitlinien (01.09.2020). Paulus W, Krauss J. S1-Leitlinie Normaldruckhydrozephalus. In: Deutsche Gesellschaft für Neurologie, editor. Leitlinien für Diagnostik und Therapie in der Neurologie. 2018. www.​dgn.​org/​leitlinien (01.09.2020).
7.
Zurück zum Zitat Gifford DR, Holloway RG, Vickrey BG. Systematic review of clinical prediction rules for neuroimaging in the evaluation of dementia. Arch Intern Med. 2000;160:2855–62.CrossRef Gifford DR, Holloway RG, Vickrey BG. Systematic review of clinical prediction rules for neuroimaging in the evaluation of dementia. Arch Intern Med. 2000;160:2855–62.CrossRef
8.
Zurück zum Zitat Hejl A, Høgh P, Waldemar G. Potentially reversible conditions in 1000 consecutive memory clinic patients. J Neurol Neurosurg Psychiatry. 2002;73:390–4.CrossRef Hejl A, Høgh P, Waldemar G. Potentially reversible conditions in 1000 consecutive memory clinic patients. J Neurol Neurosurg Psychiatry. 2002;73:390–4.CrossRef
9.
Zurück zum Zitat Hashimoto M, Ishikawa M, Mori E, Kuwana N. Study of INPH on neurological improvement (SINPHONI). Diagnosis of idiopathic normal pressure hydrocephalus is supported by MRI-based scheme: a prospective cohort study. Cerebrospinal Fluid Res. 2010;7:18.CrossRef Hashimoto M, Ishikawa M, Mori E, Kuwana N. Study of INPH on neurological improvement (SINPHONI). Diagnosis of idiopathic normal pressure hydrocephalus is supported by MRI-based scheme: a prospective cohort study. Cerebrospinal Fluid Res. 2010;7:18.CrossRef
10.
Zurück zum Zitat Ishii K, Kawaguchi T, Shimada K, Ohkawa S, Miyamoto N, Kanda T, Uemura T, Yoshikawa T, Mori E. Voxel-based analysis of gray matter and CSF space in idiopathic normal pressure hydrocephalus. Dement Geriatr Cogn Disord. 2008;25:329–35.CrossRef Ishii K, Kawaguchi T, Shimada K, Ohkawa S, Miyamoto N, Kanda T, Uemura T, Yoshikawa T, Mori E. Voxel-based analysis of gray matter and CSF space in idiopathic normal pressure hydrocephalus. Dement Geriatr Cogn Disord. 2008;25:329–35.CrossRef
11.
Zurück zum Zitat Ishii K, Kanda T, Harada A, Miyamoto N, Kawaguchi T, Shimada K, Ohkawa S, Uemura T, Yoshikawa T, Mori E. Clinical impact of the callosal angle in the diagnosis of idiopathic normal pressure hydrocephalus. Eur Radiol. 2008;18:2678–83.CrossRef Ishii K, Kanda T, Harada A, Miyamoto N, Kawaguchi T, Shimada K, Ohkawa S, Uemura T, Yoshikawa T, Mori E. Clinical impact of the callosal angle in the diagnosis of idiopathic normal pressure hydrocephalus. Eur Radiol. 2008;18:2678–83.CrossRef
12.
Zurück zum Zitat Gunter NB, Schwarz CG, Graff-Radford J, Gunter JL, Jones DT, Graff-Radford NR, Petersen RC, Knopman DS, Jack CR Jr. Automated detection of imaging features of disproportionately enlarged subarachnoid space hydrocephalus using machine learning methods. Neuroimage Clin. 2019;21:101605.CrossRef Gunter NB, Schwarz CG, Graff-Radford J, Gunter JL, Jones DT, Graff-Radford NR, Petersen RC, Knopman DS, Jack CR Jr. Automated detection of imaging features of disproportionately enlarged subarachnoid space hydrocephalus using machine learning methods. Neuroimage Clin. 2019;21:101605.CrossRef
13.
Zurück zum Zitat Noble WS. What is a support vector machine? Nat Biotechnol. 2006;24:1565–7.CrossRef Noble WS. What is a support vector machine? Nat Biotechnol. 2006;24:1565–7.CrossRef
14.
Zurück zum Zitat Ishii K, Soma T, Shimada K, Oda H, Terashima A, Kawasaki R. Automatic volumetry of the cerebrospinal fluid space in idiopathic normal pressure hydrocephalus. Dement Geriatr Cogn Dis Extra. 2013;3:489–96.CrossRef Ishii K, Soma T, Shimada K, Oda H, Terashima A, Kawasaki R. Automatic volumetry of the cerebrospinal fluid space in idiopathic normal pressure hydrocephalus. Dement Geriatr Cogn Dis Extra. 2013;3:489–96.CrossRef
15.
Zurück zum Zitat Serulle Y, Rusinek H, Kirov II, Milch H, Fieremans E, Baxter AB, McMenamy J, Jain R, Wisoff J, Golomb J, Gonen O, George AE. Differentiating shunt-responsive normal pressure hydrocephalus from Alzheimer disease and normal aging: pilot study using automated MRI brain tissue segmentation. J Neurol. 2014;261:1994–2002.CrossRef Serulle Y, Rusinek H, Kirov II, Milch H, Fieremans E, Baxter AB, McMenamy J, Jain R, Wisoff J, Golomb J, Gonen O, George AE. Differentiating shunt-responsive normal pressure hydrocephalus from Alzheimer disease and normal aging: pilot study using automated MRI brain tissue segmentation. J Neurol. 2014;261:1994–2002.CrossRef
16.
Zurück zum Zitat Yamashita F, Sasaki M, Takahashi S, Matsuda H, Kudo K, Narumi S, Terayama Y, Asada T. Detection of changes in cerebrospinal fluid space in idiopathic normal pressure hydrocephalus using voxel-based morphometry. Neuroradiology. 2010;52:381–6.CrossRef Yamashita F, Sasaki M, Takahashi S, Matsuda H, Kudo K, Narumi S, Terayama Y, Asada T. Detection of changes in cerebrospinal fluid space in idiopathic normal pressure hydrocephalus using voxel-based morphometry. Neuroradiology. 2010;52:381–6.CrossRef
17.
Zurück zum Zitat Klöppel S, Yang S, Kellner E, Reisert M, Heimbach B, Urbach H, Linn J, Weidauer S, Andres T, Bröse M, Lahr J, Lützen N, Meyer PT, Peter J, Abdulkadir A, Hellwig S, Egger K; Alzheimer’s Disease Neuroimaging Initiative. Voxel-wise deviations from healthy aging for the detection of region-specific atrophy. Neuroimage Clin. 2018;20:851–60.CrossRef Klöppel S, Yang S, Kellner E, Reisert M, Heimbach B, Urbach H, Linn J, Weidauer S, Andres T, Bröse M, Lahr J, Lützen N, Meyer PT, Peter J, Abdulkadir A, Hellwig S, Egger K; Alzheimer’s Disease Neuroimaging Initiative. Voxel-wise deviations from healthy aging for the detection of region-specific atrophy. Neuroimage Clin. 2018;20:851–60.CrossRef
18.
Zurück zum Zitat Fleiss JL. The measurement of interrater agreement. In: Statistical methods for rates and proportions. 2nd ed. New York: John Wiley & Sons; 1981. pp. 212–36. Fleiss JL. The measurement of interrater agreement. In: Statistical methods for rates and proportions. 2nd ed. New York: John Wiley & Sons; 1981. pp. 212–36.
19.
Zurück zum Zitat Relkin N, Marmarou A, Klinge P, Bergsneider M, Black PM. Diagnosing idiopathic normal-pressure hydrocephalus. Neurosurgery. 2005;57(3 Suppl):S4-16; discussion ii–v.CrossRef Relkin N, Marmarou A, Klinge P, Bergsneider M, Black PM. Diagnosing idiopathic normal-pressure hydrocephalus. Neurosurgery. 2005;57(3 Suppl):S4-16; discussion ii–v.CrossRef
20.
Zurück zum Zitat Jahn K, Zwergal K. Normaldruckhydrozephalus. In: Diener HC, Gerloff C, Dieterich M, editors. Therapie und Verlauf neurologischer Erkrankungen. Stuttgart: Kohlhammer; 2017. Jahn K, Zwergal K. Normaldruckhydrozephalus. In: Diener HC, Gerloff C, Dieterich M, editors. Therapie und Verlauf neurologischer Erkrankungen. Stuttgart: Kohlhammer; 2017.
21.
Zurück zum Zitat Siraj S. An overview of normal pressure hydrocephalus and its importance: how much do we really know? J Am Med Dir Assoc. 2011;12:19–21.CrossRef Siraj S. An overview of normal pressure hydrocephalus and its importance: how much do we really know? J Am Med Dir Assoc. 2011;12:19–21.CrossRef
22.
Zurück zum Zitat Duan W, Zhang J, Zhang L, Lin Z, Chen Y, Hao X, Wang Y, Zhang H. Evaluation of an artificial intelligent hydrocephalus diagnosis model based on transfer learning. Medicine (Baltimore). 2020;99:e21229.CrossRef Duan W, Zhang J, Zhang L, Lin Z, Chen Y, Hao X, Wang Y, Zhang H. Evaluation of an artificial intelligent hydrocephalus diagnosis model based on transfer learning. Medicine (Baltimore). 2020;99:e21229.CrossRef
23.
Zurück zum Zitat Kuchcinski G, Jacquiez C, Baroncini M, Machuron F, Béhal H, Dumont J, Lopes R, Delmaire C, Lebouvier T, Bottlaender M, Bordet R, Defebvre L, Pruvo JP, Leclerc X, Hodel J. Idiopathic Normal-Pressure Hydrocephalus: Diagnostic Accuracy of Automated Sulcal Morphometry in Patients With Ventriculomegaly. Neurosurgery. 2019;85:E747–55.CrossRef Kuchcinski G, Jacquiez C, Baroncini M, Machuron F, Béhal H, Dumont J, Lopes R, Delmaire C, Lebouvier T, Bottlaender M, Bordet R, Defebvre L, Pruvo JP, Leclerc X, Hodel J. Idiopathic Normal-Pressure Hydrocephalus: Diagnostic Accuracy of Automated Sulcal Morphometry in Patients With Ventriculomegaly. Neurosurgery. 2019;85:E747–55.CrossRef
24.
Zurück zum Zitat Irie R, Otsuka Y, Hagiwara A, Kamagata K, Kamiya K, Suzuki M, Wada A, Maekawa T, Fujita S, Kato S, Nakajima M, Miyajima M, Motoi Y, Abe O, Aoki S. A Novel Deep Learning Approach with a 3D Convolutional Ladder Network for Differential Diagnosis of Idiopathic Normal Pressure Hydrocephalus and Alzheimer’s Disease. Magn Reson Med Sci. 2020;19:351–8.CrossRefPubMedPubMedCentral Irie R, Otsuka Y, Hagiwara A, Kamagata K, Kamiya K, Suzuki M, Wada A, Maekawa T, Fujita S, Kato S, Nakajima M, Miyajima M, Motoi Y, Abe O, Aoki S. A Novel Deep Learning Approach with a 3D Convolutional Ladder Network for Differential Diagnosis of Idiopathic Normal Pressure Hydrocephalus and Alzheimer’s Disease. Magn Reson Med Sci. 2020;19:351–8.CrossRefPubMedPubMedCentral
25.
Zurück zum Zitat Zhang A, Kao P‑Y, Sahyouni R, Shelat A, Chen J, Manjunath BS. Automated segmentation of CT scans for normal pressure hydrocephalus. arXiv:1901.09088. 2019. Zhang A, Kao P‑Y, Sahyouni R, Shelat A, Chen J, Manjunath BS. Automated segmentation of CT scans for normal pressure hydrocephalus. arXiv:1901.09088. 2019.
26.
Zurück zum Zitat Narita W, Nishio Y, Baba T, Iizuka O, Ishihara T, Matsuda M, Iwasaki M, Tominaga T, Mori E. High-Convexity Tightness Predicts the Shunt Response in Idiopathic Normal Pressure Hydrocephalus. AJNR Am J Neuroradiol. 2016;37:1831–7.CrossRef Narita W, Nishio Y, Baba T, Iizuka O, Ishihara T, Matsuda M, Iwasaki M, Tominaga T, Mori E. High-Convexity Tightness Predicts the Shunt Response in Idiopathic Normal Pressure Hydrocephalus. AJNR Am J Neuroradiol. 2016;37:1831–7.CrossRef
27.
Zurück zum Zitat Virhammar J, Laurell K, Cesarini KG, Larsson EM. The callosal angle measured on MRI as a predictor of outcome in idiopathic normal-pressure hydrocephalus. J Neurosurg. 2014;120:178–84.CrossRef Virhammar J, Laurell K, Cesarini KG, Larsson EM. The callosal angle measured on MRI as a predictor of outcome in idiopathic normal-pressure hydrocephalus. J Neurosurg. 2014;120:178–84.CrossRef
28.
Zurück zum Zitat Urbach H, Egger K. MRI in neurodegenerative diseases. Fortschr Neurol Psychiatr. 2020;88:266–84.CrossRef Urbach H, Egger K. MRI in neurodegenerative diseases. Fortschr Neurol Psychiatr. 2020;88:266–84.CrossRef
29.
Zurück zum Zitat Kockum K, Lilja-Lund O, Larsson EM, Rosell M, Söderström L, Virhammar J, Laurell K. The idiopathic normal-pressure hydrocephalus Radscale: a radiological scale for structured evaluation. Eur J Neurol. 2018;25:569–76.CrossRef Kockum K, Lilja-Lund O, Larsson EM, Rosell M, Söderström L, Virhammar J, Laurell K. The idiopathic normal-pressure hydrocephalus Radscale: a radiological scale for structured evaluation. Eur J Neurol. 2018;25:569–76.CrossRef
Metadaten
Titel
SVM-Based Normal Pressure Hydrocephalus Detection
verfasst von
Alexander Rau
Suam Kim
Shan Yang
Marco Reisert
Elias Kellner
Ikram Eda Duman
Bram Stieltjes
Marc Hohenhaus
Jürgen Beck
Horst Urbach
Karl Egger
Publikationsdatum
26.01.2021
Verlag
Springer Berlin Heidelberg
Erschienen in
Clinical Neuroradiology / Ausgabe 4/2021
Print ISSN: 1869-1439
Elektronische ISSN: 1869-1447
DOI
https://doi.org/10.1007/s00062-020-00993-0

Weitere Artikel der Ausgabe 4/2021

Clinical Neuroradiology 4/2021 Zur Ausgabe

Mammakarzinom: Brustdichte beeinflusst rezidivfreies Überleben

26.05.2024 Mammakarzinom Nachrichten

Frauen, die zum Zeitpunkt der Brustkrebsdiagnose eine hohe mammografische Brustdichte aufweisen, haben ein erhöhtes Risiko für ein baldiges Rezidiv, legen neue Daten nahe.

„Übersichtlicher Wegweiser“: Lauterbachs umstrittener Klinik-Atlas ist online

17.05.2024 Klinik aktuell Nachrichten

Sie sei „ethisch geboten“, meint Gesundheitsminister Karl Lauterbach: mehr Transparenz über die Qualität von Klinikbehandlungen. Um sie abzubilden, lässt er gegen den Widerstand vieler Länder einen virtuellen Klinik-Atlas freischalten.

Klinikreform soll zehntausende Menschenleben retten

15.05.2024 Klinik aktuell Nachrichten

Gesundheitsminister Lauterbach hat die vom Bundeskabinett beschlossene Klinikreform verteidigt. Kritik an den Plänen kommt vom Marburger Bund. Und in den Ländern wird über den Gang zum Vermittlungsausschuss spekuliert.

Darf man die Behandlung eines Neonazis ablehnen?

08.05.2024 Gesellschaft Nachrichten

In einer Leseranfrage in der Zeitschrift Journal of the American Academy of Dermatology möchte ein anonymer Dermatologe bzw. eine anonyme Dermatologin wissen, ob er oder sie einen Patienten behandeln muss, der eine rassistische Tätowierung trägt.

Update Radiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.