Skip to main content
Erschienen in: Diabetologia 9/2015

01.09.2015 | Review

The hitchhiker’s guide to PGC-1α isoform structure and biological functions

verfasst von: Vicente Martínez-Redondo, Amanda T. Pettersson, Jorge L. Ruas

Erschienen in: Diabetologia | Ausgabe 9/2015

Einloggen, um Zugang zu erhalten

Abstract

Proteins of the peroxisome proliferator-activated receptor γ (PPARγ) coactivator 1 (PGC-1) family of transcriptional coactivators coordinate physiological adaptations in many tissues, usually in response to demands for higher nutrient and energy supply. Of the founding members of the family, PGC-1α (also known as PPARGC1A) is the most highly regulated gene, using multiple promoters and alternative splicing to produce a growing number of coactivator variants. PGC-1α promoters are selectively active in distinct tissues in response to specific stimuli. To date, more than ten novel PGC-1α isoforms have been reported to be expressed from a novel promoter (PGC-1α-b, PGC-1α-c), to undergo alternative splicing (NT-PGC-1α) or both (PGC-1α2, PGC-1α3, PGC-1α4). The resulting proteins display differential regulation and tissue distribution and, most importantly, exert specific biological functions. In this review we discuss the structural and functional characteristics of the novel PGC-1α isoforms, aiming to provide an integrative view of this constantly expanding system of transcriptional coactivators.
Literatur
1.
Zurück zum Zitat Puigserver P, Wu Z, Park CW, Graves R, Wright M, Spiegelman BM (1998) A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis. Cell 92:829–839PubMedCrossRef Puigserver P, Wu Z, Park CW, Graves R, Wright M, Spiegelman BM (1998) A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis. Cell 92:829–839PubMedCrossRef
2.
3.
Zurück zum Zitat Villena JA (2015) New insights into PGC-1 coactivators: redefining their role in the regulation of mitochondrial function and beyond. FEBS J 282:647–672PubMedCrossRef Villena JA (2015) New insights into PGC-1 coactivators: redefining their role in the regulation of mitochondrial function and beyond. FEBS J 282:647–672PubMedCrossRef
6.
Zurück zum Zitat Lin J, Puigserver P, Donovan J, Tarr P, Spiegelman BM (2002) Peroxisome proliferator-activated receptor gamma coactivator 1β (PGC-1β), a novel PGC-1-related transcription coactivator associated with host cell factor. J Biol Chem 277:1645–1648PubMedCrossRef Lin J, Puigserver P, Donovan J, Tarr P, Spiegelman BM (2002) Peroxisome proliferator-activated receptor gamma coactivator 1β (PGC-1β), a novel PGC-1-related transcription coactivator associated with host cell factor. J Biol Chem 277:1645–1648PubMedCrossRef
7.
Zurück zum Zitat Andersson U, Scarpulla RC (2001) Pgc-1-related coactivator, a novel, serum-inducible coactivator of nuclear respiratory factor 1-dependent transcription in mammalian cells. Mol Cell Biol 21:3738–3749PubMedCentralPubMedCrossRef Andersson U, Scarpulla RC (2001) Pgc-1-related coactivator, a novel, serum-inducible coactivator of nuclear respiratory factor 1-dependent transcription in mammalian cells. Mol Cell Biol 21:3738–3749PubMedCentralPubMedCrossRef
8.
Zurück zum Zitat Lin J, Handschin C, Spiegelman BM (2005) Metabolic control through the PGC-1 family of transcription coactivators. Cell Metab 1:361–370PubMedCrossRef Lin J, Handschin C, Spiegelman BM (2005) Metabolic control through the PGC-1 family of transcription coactivators. Cell Metab 1:361–370PubMedCrossRef
9.
Zurück zum Zitat Wallberg AE, Yamamura S, Malik S, Spiegelman BM, Roeder RG (2003) Coordination of p300-mediated chromatin remodeling and TRAP/mediator function through coactivator PGC-1α. Mol Cell 12:1137–1149PubMedCrossRef Wallberg AE, Yamamura S, Malik S, Spiegelman BM, Roeder RG (2003) Coordination of p300-mediated chromatin remodeling and TRAP/mediator function through coactivator PGC-1α. Mol Cell 12:1137–1149PubMedCrossRef
10.
Zurück zum Zitat Li H, Bingham PM (1991) Arginine/serine-rich domains of the su(w a) and tra RNA processing regulators target proteins to a subnuclear compartment implicated in splicing. Cell 67:335–342PubMedCrossRef Li H, Bingham PM (1991) Arginine/serine-rich domains of the su(w a) and tra RNA processing regulators target proteins to a subnuclear compartment implicated in splicing. Cell 67:335–342PubMedCrossRef
11.
Zurück zum Zitat Monsalve M, Wu Z, Adelmant G, Puigserver P, Fan M, Spiegelman BM (2000) Direct coupling of transcription and mRNA processing through the thermogenic coactivator PGC-1. Mol Cell 6:307–316PubMedCrossRef Monsalve M, Wu Z, Adelmant G, Puigserver P, Fan M, Spiegelman BM (2000) Direct coupling of transcription and mRNA processing through the thermogenic coactivator PGC-1. Mol Cell 6:307–316PubMedCrossRef
12.
Zurück zum Zitat Wu H, Kanatous SB, Thurmond FA et al (2002) Regulation of mitochondrial biogenesis in skeletal muscle by CaMK. Science 296:349–352PubMedCrossRef Wu H, Kanatous SB, Thurmond FA et al (2002) Regulation of mitochondrial biogenesis in skeletal muscle by CaMK. Science 296:349–352PubMedCrossRef
13.
Zurück zum Zitat Handschin C, Rhee J, Lin J, Tarr PT, Spiegelman BM (2003) An autoregulatory loop controls peroxisome proliferator-activated receptor γ coactivator 1α expression in muscle. Proc Natl Acad Sci 100:7111–7116PubMedCentralPubMedCrossRef Handschin C, Rhee J, Lin J, Tarr PT, Spiegelman BM (2003) An autoregulatory loop controls peroxisome proliferator-activated receptor γ coactivator 1α expression in muscle. Proc Natl Acad Sci 100:7111–7116PubMedCentralPubMedCrossRef
14.
Zurück zum Zitat Yoon JC, Puigserver P, Chen G et al (2001) Control of hepatic gluconeogenesis through the transcriptional coactivator PGC-1. Nature 413:131–138PubMedCrossRef Yoon JC, Puigserver P, Chen G et al (2001) Control of hepatic gluconeogenesis through the transcriptional coactivator PGC-1. Nature 413:131–138PubMedCrossRef
15.
Zurück zum Zitat Suwa M, Nakano H, Kumagai S (2003) Effects of chronic AICAR treatment on fiber composition, enzyme activity, UCP3, and PGC-1 in rat muscles. J Appl Physiol 95:960–968PubMedCrossRef Suwa M, Nakano H, Kumagai S (2003) Effects of chronic AICAR treatment on fiber composition, enzyme activity, UCP3, and PGC-1 in rat muscles. J Appl Physiol 95:960–968PubMedCrossRef
16.
Zurück zum Zitat Cedar H, Bergman Y (2009) Linking DNA methylation and histone modification: patterns and paradigms. Nat Rev Genet 10:295–304PubMedCrossRef Cedar H, Bergman Y (2009) Linking DNA methylation and histone modification: patterns and paradigms. Nat Rev Genet 10:295–304PubMedCrossRef
17.
Zurück zum Zitat Barres R, Yan J, Egan B et al (2012) Acute exercise remodels promoter methylation in human skeletal muscle. Cell Metab 15:405–411PubMedCrossRef Barres R, Yan J, Egan B et al (2012) Acute exercise remodels promoter methylation in human skeletal muscle. Cell Metab 15:405–411PubMedCrossRef
18.
Zurück zum Zitat Ling C, del Guerra S, Lupi R et al (2008) Epigenetic regulation of PPARGC1A in human type 2 diabetic islets and effect on insulin secretion. Diabetologia 51:615–622PubMedCentralPubMedCrossRef Ling C, del Guerra S, Lupi R et al (2008) Epigenetic regulation of PPARGC1A in human type 2 diabetic islets and effect on insulin secretion. Diabetologia 51:615–622PubMedCentralPubMedCrossRef
19.
Zurück zum Zitat Barres R, Kirchner H, Rasmussen M et al (2013) Weight loss after gastric bypass surgery in human obesity remodels promoter methylation. Cell Rep 3:1020–1027PubMedCrossRef Barres R, Kirchner H, Rasmussen M et al (2013) Weight loss after gastric bypass surgery in human obesity remodels promoter methylation. Cell Rep 3:1020–1027PubMedCrossRef
20.
Zurück zum Zitat Fan M, Rhee J, St-Pierre J et al (2004) Suppression of mitochondrial respiration through recruitment of p160 myb binding protein to PGC-1α: modulation by p38 MAPK. Genes Dev 18:278–289PubMedCentralPubMedCrossRef Fan M, Rhee J, St-Pierre J et al (2004) Suppression of mitochondrial respiration through recruitment of p160 myb binding protein to PGC-1α: modulation by p38 MAPK. Genes Dev 18:278–289PubMedCentralPubMedCrossRef
21.
Zurück zum Zitat Li X, Monks B, Ge Q, Birnbaum MJ (2007) Akt/PKB regulates hepatic metabolism by directly inhibiting PGC-1α transcription coactivator. Nature 447:1012–1016PubMedCrossRef Li X, Monks B, Ge Q, Birnbaum MJ (2007) Akt/PKB regulates hepatic metabolism by directly inhibiting PGC-1α transcription coactivator. Nature 447:1012–1016PubMedCrossRef
22.
Zurück zum Zitat Lustig Y, Ruas JL, Estall JL et al (2011) Separation of the gluconeogenic and mitochondrial functions of PGC-1α through S6 kinase. Genes Dev 25:1232–1244PubMedCentralPubMedCrossRef Lustig Y, Ruas JL, Estall JL et al (2011) Separation of the gluconeogenic and mitochondrial functions of PGC-1α through S6 kinase. Genes Dev 25:1232–1244PubMedCentralPubMedCrossRef
23.
Zurück zum Zitat Jager S, Handschin C, St-Pierre J, Spiegelman BM (2007) AMP-activated protein kinase (AMPK) action in skeletal muscle via direct phosphorylation of PGC-1alpha. Proc Natl Acad Sci U S A 104:12017–12022PubMedCentralPubMedCrossRef Jager S, Handschin C, St-Pierre J, Spiegelman BM (2007) AMP-activated protein kinase (AMPK) action in skeletal muscle via direct phosphorylation of PGC-1alpha. Proc Natl Acad Sci U S A 104:12017–12022PubMedCentralPubMedCrossRef
24.
Zurück zum Zitat Olson BL, Hock MB, Ekholm-Reed S et al (2008) SCFCdc4 acts antagonistically to the PGC-1alpha transcriptional coactivator by targeting it for ubiquitin-mediated proteolysis. Genes Dev 22:252–264PubMedCentralPubMedCrossRef Olson BL, Hock MB, Ekholm-Reed S et al (2008) SCFCdc4 acts antagonistically to the PGC-1alpha transcriptional coactivator by targeting it for ubiquitin-mediated proteolysis. Genes Dev 22:252–264PubMedCentralPubMedCrossRef
25.
Zurück zum Zitat Lerin C, Rodgers JT, Kalume DE, Kim SH, Pandey A, Puigserver P (2006) GCN5 acetyltransferase complex controls glucose metabolism through transcriptional repression of PGC-1α. Cell Metab 3:429–438PubMedCrossRef Lerin C, Rodgers JT, Kalume DE, Kim SH, Pandey A, Puigserver P (2006) GCN5 acetyltransferase complex controls glucose metabolism through transcriptional repression of PGC-1α. Cell Metab 3:429–438PubMedCrossRef
26.
Zurück zum Zitat Gerhart-Hines Z, Rodgers JT, Bare O et al (2007) Metabolic control of muscle mitochondrial function and fatty acid oxidation through SIRT1/PGC-1α. EMBO J 26:1913–1923PubMedCentralPubMedCrossRef Gerhart-Hines Z, Rodgers JT, Bare O et al (2007) Metabolic control of muscle mitochondrial function and fatty acid oxidation through SIRT1/PGC-1α. EMBO J 26:1913–1923PubMedCentralPubMedCrossRef
27.
Zurück zum Zitat Canto C, Gerhart-Hines Z, Feige JN et al (2009) AMPK regulates energy expenditure by modulating NAD+ metabolism and SIRT1 activity. Nature 458:1056–1060PubMedCentralPubMedCrossRef Canto C, Gerhart-Hines Z, Feige JN et al (2009) AMPK regulates energy expenditure by modulating NAD+ metabolism and SIRT1 activity. Nature 458:1056–1060PubMedCentralPubMedCrossRef
28.
Zurück zum Zitat Wei P, Pan D, Mao C, Wang YX (2012) RNF34 is a cold-regulated E3 ubiquitin ligase for PGC-1α and modulates brown fat cell metabolism. Mol Cell Biol 32:266–275PubMedCentralPubMedCrossRef Wei P, Pan D, Mao C, Wang YX (2012) RNF34 is a cold-regulated E3 ubiquitin ligase for PGC-1α and modulates brown fat cell metabolism. Mol Cell Biol 32:266–275PubMedCentralPubMedCrossRef
29.
Zurück zum Zitat Trausch-Azar JS, Abed M, Orian A, Schwartz AL (2015) Isoform-specific SCFFbw7 ubiquitination mediates differential regulation of PGC-1α. J Cell Physiol 230:842–852PubMedCrossRef Trausch-Azar JS, Abed M, Orian A, Schwartz AL (2015) Isoform-specific SCFFbw7 ubiquitination mediates differential regulation of PGC-1α. J Cell Physiol 230:842–852PubMedCrossRef
30.
Zurück zum Zitat Kakuma T, Wang ZW, Pan W, Unger RH, Zhou YT (2000) Role of leptin in peroxisome proliferator-activated receptor gamma coactivator-1 expression. Endocrinology 141:4576–4582PubMed Kakuma T, Wang ZW, Pan W, Unger RH, Zhou YT (2000) Role of leptin in peroxisome proliferator-activated receptor gamma coactivator-1 expression. Endocrinology 141:4576–4582PubMed
31.
Zurück zum Zitat Baar K, Wende AR, Jones TE et al (2002) Adaptations of skeletal muscle to exercise: rapid increase in the transcriptional coactivator PGC-1. FASEB J 16:1879–1886PubMedCrossRef Baar K, Wende AR, Jones TE et al (2002) Adaptations of skeletal muscle to exercise: rapid increase in the transcriptional coactivator PGC-1. FASEB J 16:1879–1886PubMedCrossRef
32.
Zurück zum Zitat Miura S, Kai Y, Kamei Y, Ezaki O (2008) Isoform-specific increases in murine skeletal muscle peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) mRNA in response to β2-adrenergic receptor activation and exercise. Endocrinology 149:4527–4533PubMedCrossRef Miura S, Kai Y, Kamei Y, Ezaki O (2008) Isoform-specific increases in murine skeletal muscle peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) mRNA in response to β2-adrenergic receptor activation and exercise. Endocrinology 149:4527–4533PubMedCrossRef
33.
Zurück zum Zitat Chinsomboon J, Ruas J, Gupta RK et al (2009) The transcriptional coactivator PGC-1α mediates exercise-induced angiogenesis in skeletal muscle. Proc Natl Acad Sci 106:21401–21406PubMedCentralPubMedCrossRef Chinsomboon J, Ruas J, Gupta RK et al (2009) The transcriptional coactivator PGC-1α mediates exercise-induced angiogenesis in skeletal muscle. Proc Natl Acad Sci 106:21401–21406PubMedCentralPubMedCrossRef
34.
Zurück zum Zitat Yoshioka T, Inagaki K, Noguchi T et al (2009) Identification and characterization of an alternative promoter of the human PGC-1α gene. Biochem Biophys Res Commun 381:537–543PubMedCrossRef Yoshioka T, Inagaki K, Noguchi T et al (2009) Identification and characterization of an alternative promoter of the human PGC-1α gene. Biochem Biophys Res Commun 381:537–543PubMedCrossRef
35.
Zurück zum Zitat Norrbom J, Sällstedt EK, Fischer H, Sundberg CJ, Rundqvist H, Gustafsson T (2011) Alternative splice variant PGC-1α-b is strongly induced by exercise in human skeletal muscle. Am J Physiol Endocrinol Metab 301:E1092–E1098PubMedCrossRef Norrbom J, Sällstedt EK, Fischer H, Sundberg CJ, Rundqvist H, Gustafsson T (2011) Alternative splice variant PGC-1α-b is strongly induced by exercise in human skeletal muscle. Am J Physiol Endocrinol Metab 301:E1092–E1098PubMedCrossRef
36.
Zurück zum Zitat Ruas JL, White JP, Rao RR et al (2012) A PGC-1α isoform induced by resistance training regulates skeletal muscle hypertrophy. Cell 151:1319–1331PubMedCentralPubMedCrossRef Ruas JL, White JP, Rao RR et al (2012) A PGC-1α isoform induced by resistance training regulates skeletal muscle hypertrophy. Cell 151:1319–1331PubMedCentralPubMedCrossRef
37.
Zurück zum Zitat Nader GA, von Walden F, Liu C et al (2014) Resistance exercise training modulates acute gene expression during human skeletal muscle hypertrophy. J Appl Physiol (1985) 116:693–702CrossRef Nader GA, von Walden F, Liu C et al (2014) Resistance exercise training modulates acute gene expression during human skeletal muscle hypertrophy. J Appl Physiol (1985) 116:693–702CrossRef
38.
Zurück zum Zitat Tadaishi M, Miura S, Kai Y, Kano Y, Oishi Y, Ezaki O (2011) Skeletal muscle-specific expression of PGC-1α-b, an exercise-responsive isoform, increases exercise capacity and peak oxygen uptake. PLoS One 6:e28290PubMedCentralPubMedCrossRef Tadaishi M, Miura S, Kai Y, Kano Y, Oishi Y, Ezaki O (2011) Skeletal muscle-specific expression of PGC-1α-b, an exercise-responsive isoform, increases exercise capacity and peak oxygen uptake. PLoS One 6:e28290PubMedCentralPubMedCrossRef
39.
Zurück zum Zitat Kok BP, Dyck JR, Harris TE, Brindley DN (2013) Differential regulation of the expressions of the PGC-1α splice variants, lipins, and PPARα in heart compared to liver. J Lipid Res 54:1662–1677PubMedCentralPubMedCrossRef Kok BP, Dyck JR, Harris TE, Brindley DN (2013) Differential regulation of the expressions of the PGC-1α splice variants, lipins, and PPARα in heart compared to liver. J Lipid Res 54:1662–1677PubMedCentralPubMedCrossRef
40.
Zurück zum Zitat Felder TK, Soyal SM, Oberkofler H et al (2011) Characterization of novel peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) isoform in human liver. J Biol Chem 286:42923–42936PubMedCentralPubMedCrossRef Felder TK, Soyal SM, Oberkofler H et al (2011) Characterization of novel peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) isoform in human liver. J Biol Chem 286:42923–42936PubMedCentralPubMedCrossRef
41.
Zurück zum Zitat Soyal SM, Felder TK, Auer S et al (2012) A greatly extended PPARGC1A genomic locus encodes several new brain-specific isoforms and influences Huntington disease age of onset. Hum Mol Genet 21:3461–3473PubMedCrossRef Soyal SM, Felder TK, Auer S et al (2012) A greatly extended PPARGC1A genomic locus encodes several new brain-specific isoforms and influences Huntington disease age of onset. Hum Mol Genet 21:3461–3473PubMedCrossRef
42.
Zurück zum Zitat Cui L, Jeong H, Borovecki F, Parkhurst CN, Tanese N, Krainc D (2006) Transcriptional repression of PGC-1α by mutant huntingtin leads to mitochondrial dysfunction and neurodegeneration. Cell 127:59–69PubMedCrossRef Cui L, Jeong H, Borovecki F, Parkhurst CN, Tanese N, Krainc D (2006) Transcriptional repression of PGC-1α by mutant huntingtin leads to mitochondrial dysfunction and neurodegeneration. Cell 127:59–69PubMedCrossRef
43.
Zurück zum Zitat Weydt P, Pineda VV, Torrence AE et al (2006) Thermoregulatory and metabolic defects in Huntington’s disease transgenic mice implicate PGC-1α in Huntington’s disease neurodegeneration. Cell Metab 4:349–362PubMedCrossRef Weydt P, Pineda VV, Torrence AE et al (2006) Thermoregulatory and metabolic defects in Huntington’s disease transgenic mice implicate PGC-1α in Huntington’s disease neurodegeneration. Cell Metab 4:349–362PubMedCrossRef
44.
45.
Zurück zum Zitat Zhang Y, Huypens P, Adamson AW et al (2009) Alternative mRNA splicing produces a novel biologically active short isoform of PGC-1α. J Biol Chem 284:32813–32826PubMedCentralPubMedCrossRef Zhang Y, Huypens P, Adamson AW et al (2009) Alternative mRNA splicing produces a novel biologically active short isoform of PGC-1α. J Biol Chem 284:32813–32826PubMedCentralPubMedCrossRef
46.
Zurück zum Zitat Chang JS, Fernand V, Zhang Y et al (2012) NT-PGC-1α protein is sufficient to link β3-adrenergic receptor activation to transcriptional and physiological components of adaptive thermogenesis. J Biol Chem 287:9100–9111PubMedCentralPubMedCrossRef Chang JS, Fernand V, Zhang Y et al (2012) NT-PGC-1α protein is sufficient to link β3-adrenergic receptor activation to transcriptional and physiological components of adaptive thermogenesis. J Biol Chem 287:9100–9111PubMedCentralPubMedCrossRef
47.
Zurück zum Zitat Wen X, Wu J, Chang JS et al (2014) Effect of exercise intensity on isoform-specific expressions of NT-PGC-1 α mRNA in mouse skeletal muscle. Biomed Res Int 2014:402175PubMedCentralPubMed Wen X, Wu J, Chang JS et al (2014) Effect of exercise intensity on isoform-specific expressions of NT-PGC-1 α mRNA in mouse skeletal muscle. Biomed Res Int 2014:402175PubMedCentralPubMed
48.
Zurück zum Zitat Wu Z, Puigserver P, Andersson U et al (1999) Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1. Cell 98:115–124PubMedCrossRef Wu Z, Puigserver P, Andersson U et al (1999) Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1. Cell 98:115–124PubMedCrossRef
49.
Zurück zum Zitat Jun HJ, Gettys TW, Chang JS (2012) Transcriptional activity of PGC-1α and NT-PGC-1α Is differentially regulated by Twist-1 in brown fat metabolism. PPAR Res 2012:320454PubMedCentralPubMedCrossRef Jun HJ, Gettys TW, Chang JS (2012) Transcriptional activity of PGC-1α and NT-PGC-1α Is differentially regulated by Twist-1 in brown fat metabolism. PPAR Res 2012:320454PubMedCentralPubMedCrossRef
50.
Zurück zum Zitat Pan D, Fujimoto M, Lopes A, Wang YX (2009) Twist-1 is a PPARδ-inducible, negative-feedback regulator of PGC-1α in brown fat metabolism. Cell 137:73–86PubMedCentralPubMedCrossRef Pan D, Fujimoto M, Lopes A, Wang YX (2009) Twist-1 is a PPARδ-inducible, negative-feedback regulator of PGC-1α in brown fat metabolism. Cell 137:73–86PubMedCentralPubMedCrossRef
51.
Zurück zum Zitat Thom R, Rowe GC, Jang C, Safdar A, Arany Z (2014) Hypoxic induction of vascular endothelial growth factor (VEGF) and angiogenesis in muscle by truncated peroxisome proliferator-activated receptor gamma coactivator (PGC)-1α. J Biol Chem 289:8810–8817PubMedCentralPubMedCrossRef Thom R, Rowe GC, Jang C, Safdar A, Arany Z (2014) Hypoxic induction of vascular endothelial growth factor (VEGF) and angiogenesis in muscle by truncated peroxisome proliferator-activated receptor gamma coactivator (PGC)-1α. J Biol Chem 289:8810–8817PubMedCentralPubMedCrossRef
52.
Zurück zum Zitat Bostrom P, Wu J, Jedrychowski MP et al (2012) A PGC1-α-dependent myokine that drives brown-fat-like development of white fat and thermogenesis. Nature 481:463–468PubMedCentralPubMedCrossRef Bostrom P, Wu J, Jedrychowski MP et al (2012) A PGC1-α-dependent myokine that drives brown-fat-like development of white fat and thermogenesis. Nature 481:463–468PubMedCentralPubMedCrossRef
53.
Zurück zum Zitat Roberts LD, Bostrom P, O’Sullivan JF et al (2014) β-Aminoisobutyric acid induces browning of white fat and hepatic beta-oxidation and is inversely correlated with cardiometabolic risk factors. Cell Metab 19:96–108PubMedCentralPubMedCrossRef Roberts LD, Bostrom P, O’Sullivan JF et al (2014) β-Aminoisobutyric acid induces browning of white fat and hepatic beta-oxidation and is inversely correlated with cardiometabolic risk factors. Cell Metab 19:96–108PubMedCentralPubMedCrossRef
54.
Zurück zum Zitat Shan T, Liang X, Bi P, Kuang S (2013) Myostatin knockout drives browning of white adipose tissue through activating the AMPK-PGC1α-Fndc5 pathway in muscle. FASEB J 27:1981–1989PubMedCentralPubMedCrossRef Shan T, Liang X, Bi P, Kuang S (2013) Myostatin knockout drives browning of white adipose tissue through activating the AMPK-PGC1α-Fndc5 pathway in muscle. FASEB J 27:1981–1989PubMedCentralPubMedCrossRef
55.
Zurück zum Zitat Rao RR, Long JZ, White JP et al (2014) Meteorin-like is a hormone that regulates immune-adipose interactions to increase beige fat thermogenesis. Cell 157:1279–1291PubMedCentralPubMedCrossRef Rao RR, Long JZ, White JP et al (2014) Meteorin-like is a hormone that regulates immune-adipose interactions to increase beige fat thermogenesis. Cell 157:1279–1291PubMedCentralPubMedCrossRef
56.
Zurück zum Zitat Agudelo LZ, Femenia T, Orhan F et al (2014) Skeletal muscle PGC-1α1 modulates kynurenine metabolism and mediates resilience to stress-induced depression. Cell 159:33–45PubMedCrossRef Agudelo LZ, Femenia T, Orhan F et al (2014) Skeletal muscle PGC-1α1 modulates kynurenine metabolism and mediates resilience to stress-induced depression. Cell 159:33–45PubMedCrossRef
57.
Zurück zum Zitat Tadaishi M, Miura S, Kai Y et al (2011) Effect of exercise intensity and AICAR on isoform-specific expressions of murine skeletal muscle PGC-1α mRNA: a role of β2-adrenergic receptor activation. Am J Physiol Endocrinol Metab 300:E341–E349PubMedCrossRef Tadaishi M, Miura S, Kai Y et al (2011) Effect of exercise intensity and AICAR on isoform-specific expressions of murine skeletal muscle PGC-1α mRNA: a role of β2-adrenergic receptor activation. Am J Physiol Endocrinol Metab 300:E341–E349PubMedCrossRef
58.
Zurück zum Zitat White JP, Wrann CD, Rao RR et al (2014) G protein-coupled receptor 56 regulates mechanical overload-induced muscle hypertrophy. Proc Natl Acad Sci U S A 111:15756–15761PubMedCentralPubMedCrossRef White JP, Wrann CD, Rao RR et al (2014) G protein-coupled receptor 56 regulates mechanical overload-induced muscle hypertrophy. Proc Natl Acad Sci U S A 111:15756–15761PubMedCentralPubMedCrossRef
59.
Zurück zum Zitat Kim SH, Asaka M, Higashida K, Takahashi Y, Holloszy JO, Han DH (2013) β-Adrenergic stimulation does not activate p38 MAP kinase or induce PGC-1α in skeletal muscle. Am J Physiol Endocrinol Metab 304:E844–E852PubMedCentralPubMedCrossRef Kim SH, Asaka M, Higashida K, Takahashi Y, Holloszy JO, Han DH (2013) β-Adrenergic stimulation does not activate p38 MAP kinase or induce PGC-1α in skeletal muscle. Am J Physiol Endocrinol Metab 304:E844–E852PubMedCentralPubMedCrossRef
60.
Zurück zum Zitat Ydfors M, Fischer H, Mascher H, Blomstrand E, Norrbom J, Gustafsson T (2013) The truncated splice variants, NT-PGC-1α and PGC-1α4, increase with both endurance and resistance exercise in human skeletal muscle. Physiol Rep 1:e00140PubMedCentralPubMedCrossRef Ydfors M, Fischer H, Mascher H, Blomstrand E, Norrbom J, Gustafsson T (2013) The truncated splice variants, NT-PGC-1α and PGC-1α4, increase with both endurance and resistance exercise in human skeletal muscle. Physiol Rep 1:e00140PubMedCentralPubMedCrossRef
61.
Zurück zum Zitat Lundberg TR, Fernandez-Gonzalo R, Norrbom J, Fischer H, Tesch PA, Gustafsson T (2014) Truncated splice variant PGC-1α4 is not associated with exercise-induced human muscle hypertrophy. Acta Physiol (Oxf) 212:142–151CrossRef Lundberg TR, Fernandez-Gonzalo R, Norrbom J, Fischer H, Tesch PA, Gustafsson T (2014) Truncated splice variant PGC-1α4 is not associated with exercise-induced human muscle hypertrophy. Acta Physiol (Oxf) 212:142–151CrossRef
62.
Zurück zum Zitat Hanson AM, Stodieck LS, Cannon CM, Simske SJ, Ferguson VL (2010) Seven days of muscle re-loading and voluntary wheel running following hindlimb suspension in mice restores running performance, muscle morphology and metrics of fatigue but not muscle strength. J Muscle Res Cell Motil 31:141–153PubMedCrossRef Hanson AM, Stodieck LS, Cannon CM, Simske SJ, Ferguson VL (2010) Seven days of muscle re-loading and voluntary wheel running following hindlimb suspension in mice restores running performance, muscle morphology and metrics of fatigue but not muscle strength. J Muscle Res Cell Motil 31:141–153PubMedCrossRef
63.
Zurück zum Zitat Perez-Schindler J, Summermatter S, Santos G, Zorzato F, Handschin C (2013) The transcriptional coactivator PGC-1α is dispensable for chronic overload-induced skeletal muscle hypertrophy and metabolic remodeling. Proc Natl Acad Sci U S A 110:20314–20319PubMedCentralPubMedCrossRef Perez-Schindler J, Summermatter S, Santos G, Zorzato F, Handschin C (2013) The transcriptional coactivator PGC-1α is dispensable for chronic overload-induced skeletal muscle hypertrophy and metabolic remodeling. Proc Natl Acad Sci U S A 110:20314–20319PubMedCentralPubMedCrossRef
Metadaten
Titel
The hitchhiker’s guide to PGC-1α isoform structure and biological functions
verfasst von
Vicente Martínez-Redondo
Amanda T. Pettersson
Jorge L. Ruas
Publikationsdatum
01.09.2015
Verlag
Springer Berlin Heidelberg
Erschienen in
Diabetologia / Ausgabe 9/2015
Print ISSN: 0012-186X
Elektronische ISSN: 1432-0428
DOI
https://doi.org/10.1007/s00125-015-3671-z

Weitere Artikel der Ausgabe 9/2015

Diabetologia 9/2015 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Erhebliches Risiko für Kehlkopfkrebs bei mäßiger Dysplasie

29.05.2024 Larynxkarzinom Nachrichten

Fast ein Viertel der Personen mit mäßig dysplastischen Stimmlippenläsionen entwickelt einen Kehlkopftumor. Solche Personen benötigen daher eine besonders enge ärztliche Überwachung.

Nach Herzinfarkt mit Typ-1-Diabetes schlechtere Karten als mit Typ 2?

29.05.2024 Herzinfarkt Nachrichten

Bei Menschen mit Typ-2-Diabetes sind die Chancen, einen Myokardinfarkt zu überleben, in den letzten 15 Jahren deutlich gestiegen – nicht jedoch bei Betroffenen mit Typ 1.

15% bedauern gewählte Blasenkrebs-Therapie

29.05.2024 Urothelkarzinom Nachrichten

Ob Patienten und Patientinnen mit neu diagnostiziertem Blasenkrebs ein Jahr später Bedauern über die Therapieentscheidung empfinden, wird einer Studie aus England zufolge von der Radikalität und dem Erfolg des Eingriffs beeinflusst.

Costims – das nächste heiße Ding in der Krebstherapie?

28.05.2024 Onkologische Immuntherapie Nachrichten

„Kalte“ Tumoren werden heiß – CD28-kostimulatorische Antikörper sollen dies ermöglichen. Am besten könnten diese in Kombination mit BiTEs und Checkpointhemmern wirken. Erste klinische Studien laufen bereits.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.