Skip to main content
Erschienen in: Diabetologia 10/2018

22.08.2018 | Review

SGLT2 inhibitors and mechanisms of cardiovascular benefit: a state-of-the-art review

verfasst von: Subodh Verma, John J. V. McMurray

Erschienen in: Diabetologia | Ausgabe 10/2018

Einloggen, um Zugang zu erhalten

Abstract

Sodium–glucose cotransporter (SGLT)2 inhibitors have been demonstrated to reduce cardiovascular events, particularly heart failure, in cardiovascular outcome trials. Here, we review the proposed mechanistic underpinnings of this benefit. Specifically, we focus on the role of SGLT2 inhibitors in optimising ventricular loading conditions through their effect on diuresis and natriuresis, in addition to reducing afterload and improving vascular structure and function. Further insights into the role of SGLT2 inhibition in myocardial metabolism and substrate utilisation are outlined. Finally, we discuss two emerging themes: how SGLT2 inhibitors may regulate Na+/H+ exchange at the level of the heart and kidney and how they may modulate adipokine production. The mechanistic discussion is placed in the context of completed and ongoing trials of SGLT2 inhibitors in the prevention and treatment of heart failure in individuals with and without diabetes.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Neal B, Perkovic V, Mahaffey KW et al (2017) Canagliflozin and cardiovascular and renal events in type 2 diabetes. N Engl J Med 377:644–657CrossRefPubMed Neal B, Perkovic V, Mahaffey KW et al (2017) Canagliflozin and cardiovascular and renal events in type 2 diabetes. N Engl J Med 377:644–657CrossRefPubMed
2.
Zurück zum Zitat Zinman B, Wanner C, Lachin JM et al (2015) Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N Engl J Med 373:2117–2128CrossRefPubMed Zinman B, Wanner C, Lachin JM et al (2015) Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N Engl J Med 373:2117–2128CrossRefPubMed
3.
Zurück zum Zitat Verma S, Mazer CD, Fitchett D et al (2018) Empagliflozin reduces cardiovascular events, mortality and renal events in participants with type 2 diabetes after coronary artery bypass graft surgery: subanalysis of the EMPA-REG OUTCOME® randomised trial. Diabetologia 61:1712–1723 Verma S, Mazer CD, Fitchett D et al (2018) Empagliflozin reduces cardiovascular events, mortality and renal events in participants with type 2 diabetes after coronary artery bypass graft surgery: subanalysis of the EMPA-REG OUTCOME® randomised trial. Diabetologia 61:1712–1723
4.
Zurück zum Zitat Fitchett D, Butler J, van de Borne P et al (2018) Effects of empagliflozin on risk for cardiovascular death and heart failure hospitalization across the spectrum of heart failure risk in the EMPA-REG OUTCOME® trial. Eur Heart J 39:363–370CrossRefPubMed Fitchett D, Butler J, van de Borne P et al (2018) Effects of empagliflozin on risk for cardiovascular death and heart failure hospitalization across the spectrum of heart failure risk in the EMPA-REG OUTCOME® trial. Eur Heart J 39:363–370CrossRefPubMed
5.
Zurück zum Zitat Fitchett D, Zinman B, Wanner C et al (2016) Heart failure outcomes with empagliflozin in patients with type 2 diabetes at high cardiovascular risk: results of the EMPA-REG OUTCOME® trial. Eur Heart J 37:1526–1534CrossRefPubMedPubMedCentral Fitchett D, Zinman B, Wanner C et al (2016) Heart failure outcomes with empagliflozin in patients with type 2 diabetes at high cardiovascular risk: results of the EMPA-REG OUTCOME® trial. Eur Heart J 37:1526–1534CrossRefPubMedPubMedCentral
7.
Zurück zum Zitat Verma S, McMurray JJV, Cherney DZI (2017) The metabolodiuretic promise of sodium-dependent glucose cotransporter 2 inhibition: the search for the sweet spot in heart failure. JAMA Cardiol 2:939–940CrossRefPubMed Verma S, McMurray JJV, Cherney DZI (2017) The metabolodiuretic promise of sodium-dependent glucose cotransporter 2 inhibition: the search for the sweet spot in heart failure. JAMA Cardiol 2:939–940CrossRefPubMed
8.
Zurück zum Zitat Jorsal A, Wiggers H, McMurray JJV (2018) Heart failure: epidemiology, pathophysiology, and management of heart failure in diabetes mellitus. Endocrinol Metab Clin N Am 47:117–135CrossRef Jorsal A, Wiggers H, McMurray JJV (2018) Heart failure: epidemiology, pathophysiology, and management of heart failure in diabetes mellitus. Endocrinol Metab Clin N Am 47:117–135CrossRef
9.
Zurück zum Zitat McMurray JJ, Gerstein HC, Holman RR, Pfeffer MA (2014) Heart failure: a cardiovascular outcome in diabetes that can no longer be ignored. Lancet Diabetes Endocrinol 2:843–851CrossRefPubMed McMurray JJ, Gerstein HC, Holman RR, Pfeffer MA (2014) Heart failure: a cardiovascular outcome in diabetes that can no longer be ignored. Lancet Diabetes Endocrinol 2:843–851CrossRefPubMed
10.
Zurück zum Zitat Seferovic PM, Petrie MC, Filippatos GS et al (2018) Type 2 diabetes mellitus and heart failure: a position statement from the Heart Failure Association of the European Society of Cardiology. Eur J Heart Fail. https://doi.org/10.1002/ejhf.1170 Seferovic PM, Petrie MC, Filippatos GS et al (2018) Type 2 diabetes mellitus and heart failure: a position statement from the Heart Failure Association of the European Society of Cardiology. Eur J Heart Fail. https://​doi.​org/​10.​1002/​ejhf.​1170
11.
Zurück zum Zitat Greene SJ, Vaduganathan M, Khan MS et al (2018) Prevalent and incident heart failure in cardiovascular outcome trials of patients with type 2 diabetes. J Am Coll Cardiol 71:1379–1390CrossRefPubMed Greene SJ, Vaduganathan M, Khan MS et al (2018) Prevalent and incident heart failure in cardiovascular outcome trials of patients with type 2 diabetes. J Am Coll Cardiol 71:1379–1390CrossRefPubMed
12.
Zurück zum Zitat Jia G, Hill MA, Sowers JR (2018) Diabetic cardiomyopathy: an update of mechanisms contributing to this clinical entity. Circ Res 122:624–638CrossRefPubMed Jia G, Hill MA, Sowers JR (2018) Diabetic cardiomyopathy: an update of mechanisms contributing to this clinical entity. Circ Res 122:624–638CrossRefPubMed
13.
Zurück zum Zitat Seferovic PM, Paulus WJ (2015) Clinical diabetic cardiomyopathy: a two-faced disease with restrictive and dilated phenotypes. Eur Heart J 36:1718–1727CrossRefPubMed Seferovic PM, Paulus WJ (2015) Clinical diabetic cardiomyopathy: a two-faced disease with restrictive and dilated phenotypes. Eur Heart J 36:1718–1727CrossRefPubMed
14.
Zurück zum Zitat Farkouh ME, Verma S (2018) Prevention of heart failure with SGLT2 inhibition: insights from CVD-REAL. J Am Coll Cardiol (in press) Farkouh ME, Verma S (2018) Prevention of heart failure with SGLT2 inhibition: insights from CVD-REAL. J Am Coll Cardiol (in press)
15.
Zurück zum Zitat Swoboda PP, McDiarmid AK, Erhayiem B et al (2017) Diabetes mellitus, microalbuminuria, and subclinical cardiac disease: identification and monitoring of individuals at risk of heart failure. J Am Heart Assoc 6:e005539CrossRefPubMedPubMedCentral Swoboda PP, McDiarmid AK, Erhayiem B et al (2017) Diabetes mellitus, microalbuminuria, and subclinical cardiac disease: identification and monitoring of individuals at risk of heart failure. J Am Heart Assoc 6:e005539CrossRefPubMedPubMedCentral
16.
Zurück zum Zitat Kosiborod M, Cavender MA, Fu AZ et al (2017) Lower risk of heart failure and death in patients initiated on sodium-glucose cotransporter-2 inhibitors versus other glucose-lowering drugs: the CVD-REAL study (comparative effectiveness of cardiovascular outcomes in new users of sodium-glucose cotransporter-2 inhibitors). Circulation 136:249–259CrossRefPubMedPubMedCentral Kosiborod M, Cavender MA, Fu AZ et al (2017) Lower risk of heart failure and death in patients initiated on sodium-glucose cotransporter-2 inhibitors versus other glucose-lowering drugs: the CVD-REAL study (comparative effectiveness of cardiovascular outcomes in new users of sodium-glucose cotransporter-2 inhibitors). Circulation 136:249–259CrossRefPubMedPubMedCentral
17.
Zurück zum Zitat Mahaffey KW, Neal B, Perkovic V et al (2018) Canagliflozin for primary and secondary prevention of cardiovascular events: results from the CANVAS Program (Canagliflozin Cardiovascular Assessment Study). Circulation 137:323–334CrossRefPubMedPubMedCentral Mahaffey KW, Neal B, Perkovic V et al (2018) Canagliflozin for primary and secondary prevention of cardiovascular events: results from the CANVAS Program (Canagliflozin Cardiovascular Assessment Study). Circulation 137:323–334CrossRefPubMedPubMedCentral
19.
Zurück zum Zitat Boonman-de Winter LJ, Rutten FH, Cramer MJ et al (2012) High prevalence of previously unknown heart failure and left ventricular dysfunction in patients with type 2 diabetes. Diabetologia 55:2154–2162CrossRefPubMedPubMedCentral Boonman-de Winter LJ, Rutten FH, Cramer MJ et al (2012) High prevalence of previously unknown heart failure and left ventricular dysfunction in patients with type 2 diabetes. Diabetologia 55:2154–2162CrossRefPubMedPubMedCentral
20.
Zurück zum Zitat Sattar N, McLaren J, Kristensen SL, Preiss D, McMurray JJ (2016) SGLT2 inhibition and cardiovascular events: why did EMPA-REG Outcomes surprise and what were the likely mechanisms? Diabetologia 59:1333–1339CrossRefPubMedPubMedCentral Sattar N, McLaren J, Kristensen SL, Preiss D, McMurray JJ (2016) SGLT2 inhibition and cardiovascular events: why did EMPA-REG Outcomes surprise and what were the likely mechanisms? Diabetologia 59:1333–1339CrossRefPubMedPubMedCentral
21.
Zurück zum Zitat Lytvyn Y, Bjornstad P, Udell JA, Lovshin JA, Cherney DZI (2017) Sodium glucose cotransporter-2 inhibition in heart failure: potential mechanisms, clinical applications, and summary of clinical trials. Circulation 136:1643–1658CrossRefPubMed Lytvyn Y, Bjornstad P, Udell JA, Lovshin JA, Cherney DZI (2017) Sodium glucose cotransporter-2 inhibition in heart failure: potential mechanisms, clinical applications, and summary of clinical trials. Circulation 136:1643–1658CrossRefPubMed
22.
Zurück zum Zitat Fitchett D, McKnight J, Lee J et al (2017) Empagliflozin (EMPA) reduces heart failure irrespective of control of blood pressure (BP), low density lipoprotein cholesterol (LDL-C), and HbA1c. Diabetes 66:A312–A313 Abstract Fitchett D, McKnight J, Lee J et al (2017) Empagliflozin (EMPA) reduces heart failure irrespective of control of blood pressure (BP), low density lipoprotein cholesterol (LDL-C), and HbA1c. Diabetes 66:A312–A313 Abstract
23.
Zurück zum Zitat Wanner C, Lachin JM, Inzucchi SE et al (2018) Empagliflozin and clinical outcomes in patients with type 2 diabetes mellitus, established cardiovascular disease, and chronic kidney disease. Circulation 137:119–129CrossRefPubMed Wanner C, Lachin JM, Inzucchi SE et al (2018) Empagliflozin and clinical outcomes in patients with type 2 diabetes mellitus, established cardiovascular disease, and chronic kidney disease. Circulation 137:119–129CrossRefPubMed
24.
Zurück zum Zitat Al-Jobori H, Daniele G, Cersosimo E et al (2017) Empagliflozin and kinetics of renal glucose transport in healthy individuals and individuals with type 2 diabetes. Diabetes 66:1999–2006CrossRefPubMed Al-Jobori H, Daniele G, Cersosimo E et al (2017) Empagliflozin and kinetics of renal glucose transport in healthy individuals and individuals with type 2 diabetes. Diabetes 66:1999–2006CrossRefPubMed
25.
Zurück zum Zitat Heise T, Seewaldt-Becker E, Macha S et al (2013) Safety, tolerability, pharmacokinetics and pharmacodynamics following 4 weeksʼ treatment with empagliflozin once daily in patients with type 2 diabetes. Diabetes Obes Metab 15:613–621CrossRefPubMed Heise T, Seewaldt-Becker E, Macha S et al (2013) Safety, tolerability, pharmacokinetics and pharmacodynamics following 4 weeksʼ treatment with empagliflozin once daily in patients with type 2 diabetes. Diabetes Obes Metab 15:613–621CrossRefPubMed
26.
Zurück zum Zitat Seman L, Macha S, Nehmiz G et al (2013) Empagliflozin (BI 10773), a potent and selective sglt2 inhibitor, induces dose-dependent glucosuria in healthy subjects. Clin Pharmacol Drug Dev 2:152–161CrossRefPubMed Seman L, Macha S, Nehmiz G et al (2013) Empagliflozin (BI 10773), a potent and selective sglt2 inhibitor, induces dose-dependent glucosuria in healthy subjects. Clin Pharmacol Drug Dev 2:152–161CrossRefPubMed
27.
Zurück zum Zitat Byrne NJ, Parajuli N, Levasseur JL et al (2017) Empagliflozin prevents worsening of cardiac function in an experimental model of pressure overload-induced heart failure. JACC: Basic Translational Sci 1:347–354 Byrne NJ, Parajuli N, Levasseur JL et al (2017) Empagliflozin prevents worsening of cardiac function in an experimental model of pressure overload-induced heart failure. JACC: Basic Translational Sci 1:347–354
28.
Zurück zum Zitat Shi X, Verma S, Yun J et al (2017) Effect of empagliflozin on cardiac biomarkers in a zebrafish model of heart failure: clues to the EMPA-REG OUTCOME trial? Mol Cell Biochem 433:97–102CrossRefPubMed Shi X, Verma S, Yun J et al (2017) Effect of empagliflozin on cardiac biomarkers in a zebrafish model of heart failure: clues to the EMPA-REG OUTCOME trial? Mol Cell Biochem 433:97–102CrossRefPubMed
29.
Zurück zum Zitat Butler J, Hamo CE, Filippatos G et al (2017) The potential role and rationale for treatment of heart failure with sodium-glucose co-transporter 2 inhibitors. Eur J Heart Fail 19:1390–1400CrossRefPubMed Butler J, Hamo CE, Filippatos G et al (2017) The potential role and rationale for treatment of heart failure with sodium-glucose co-transporter 2 inhibitors. Eur J Heart Fail 19:1390–1400CrossRefPubMed
30.
Zurück zum Zitat Karg MV, Bosch A, Kannenkeril D et al (2018) SGLT-2-inhibition with dapagliflozin reduces tissue sodium content: a randomised controlled trial. Cardiovasc Diabetol 17:5CrossRefPubMedPubMedCentral Karg MV, Bosch A, Kannenkeril D et al (2018) SGLT-2-inhibition with dapagliflozin reduces tissue sodium content: a randomised controlled trial. Cardiovasc Diabetol 17:5CrossRefPubMedPubMedCentral
31.
Zurück zum Zitat Inzucchi SE, Zinman B, Fitchett D et al (2018) How does empagliflozin reduce cardiovascular mortality? Insights from a mediation analysis of the EMPA-REG OUTCOME trial. Diabetes Care 41:356–363CrossRefPubMed Inzucchi SE, Zinman B, Fitchett D et al (2018) How does empagliflozin reduce cardiovascular mortality? Insights from a mediation analysis of the EMPA-REG OUTCOME trial. Diabetes Care 41:356–363CrossRefPubMed
32.
Zurück zum Zitat Lambers Heerspink HJ, de Zeeuw D, Wie L, Leslie B, List J (2013) Dapagliflozin a glucose-regulating drug with diuretic properties in subjects with type 2 diabetes. Diabetes Obes Metab 15:853–862CrossRefPubMed Lambers Heerspink HJ, de Zeeuw D, Wie L, Leslie B, List J (2013) Dapagliflozin a glucose-regulating drug with diuretic properties in subjects with type 2 diabetes. Diabetes Obes Metab 15:853–862CrossRefPubMed
33.
Zurück zum Zitat Hallow KM, Helmlinger G, Greasley PJ, McMurray JJV, Boulton DW (2018) Why do SGLT2 inhibitors reduce heart failure hospitalization? A differential volume regulation hypothesis. Diabetes Obes Metab 20:479–487CrossRefPubMed Hallow KM, Helmlinger G, Greasley PJ, McMurray JJV, Boulton DW (2018) Why do SGLT2 inhibitors reduce heart failure hospitalization? A differential volume regulation hypothesis. Diabetes Obes Metab 20:479–487CrossRefPubMed
34.
Zurück zum Zitat Wilcox CS, Shen W, Boulton DW, Leslie BR, Griffen SC (2018) Interaction between the sodium-glucose-linked transporter 2 inhibitor dapagliflozin and the loop diuretic bumetanide in normal human subjects. J Am Heart Assoc 7:e007046CrossRefPubMedPubMedCentral Wilcox CS, Shen W, Boulton DW, Leslie BR, Griffen SC (2018) Interaction between the sodium-glucose-linked transporter 2 inhibitor dapagliflozin and the loop diuretic bumetanide in normal human subjects. J Am Heart Assoc 7:e007046CrossRefPubMedPubMedCentral
35.
Zurück zum Zitat Striepe K, Jumar A, Ott C et al (2017) Effects of the selective sodium-glucose cotransporter 2 inhibitor empagliflozin on vascular function and central hemodynamics in patients with type 2 diabetes mellitus. Circulation 136:1167–1169CrossRefPubMed Striepe K, Jumar A, Ott C et al (2017) Effects of the selective sodium-glucose cotransporter 2 inhibitor empagliflozin on vascular function and central hemodynamics in patients with type 2 diabetes mellitus. Circulation 136:1167–1169CrossRefPubMed
36.
Zurück zum Zitat Chilton R, Tikkanen I, Cannon CP et al (2015) Effects of empagliflozin on blood pressure and markers of arterial stiffness and vascular resistance in patients with type 2 diabetes. Diabetes Obes Metab 17:1180–1193CrossRefPubMedPubMedCentral Chilton R, Tikkanen I, Cannon CP et al (2015) Effects of empagliflozin on blood pressure and markers of arterial stiffness and vascular resistance in patients with type 2 diabetes. Diabetes Obes Metab 17:1180–1193CrossRefPubMedPubMedCentral
37.
Zurück zum Zitat Li H, Shin SE, Seo MS et al (2018) The anti-diabetic drug dapagliflozin induces vasodilation via activation of PKG and Kv channels. Life Sci 197:46–55CrossRefPubMed Li H, Shin SE, Seo MS et al (2018) The anti-diabetic drug dapagliflozin induces vasodilation via activation of PKG and Kv channels. Life Sci 197:46–55CrossRefPubMed
38.
Zurück zum Zitat Solini A, Giannini L, Seghieri M et al (2017) Dapagliflozin acutely improves endothelial dysfunction, reduces aortic stiffness and renal resistive index in type 2 diabetic patients: a pilot study. Cardiovasc Diabetol 16:138CrossRefPubMedPubMedCentral Solini A, Giannini L, Seghieri M et al (2017) Dapagliflozin acutely improves endothelial dysfunction, reduces aortic stiffness and renal resistive index in type 2 diabetic patients: a pilot study. Cardiovasc Diabetol 16:138CrossRefPubMedPubMedCentral
39.
Zurück zum Zitat Ferrannini E, Mark M, Mayoux E (2016) CV protection in the EMPA-REG OUTCOME Trial: a “Thrifty Substrate” hypothesis. Diabetes Care 39:1108–1114CrossRefPubMed Ferrannini E, Mark M, Mayoux E (2016) CV protection in the EMPA-REG OUTCOME Trial: a “Thrifty Substrate” hypothesis. Diabetes Care 39:1108–1114CrossRefPubMed
40.
Zurück zum Zitat Lopaschuk GD, Verma S (2016) Empagliflozin’s fuel hypothesis: not so soon. Cell Metab 24:200–202CrossRefPubMed Lopaschuk GD, Verma S (2016) Empagliflozin’s fuel hypothesis: not so soon. Cell Metab 24:200–202CrossRefPubMed
41.
Zurück zum Zitat Lopaschuk GD, Ussher JR, Folmes CD, Jaswal JS, Stanley WC (2010) Myocardial fatty acid metabolism in health and disease. Physiol Rev 90:207–258CrossRefPubMed Lopaschuk GD, Ussher JR, Folmes CD, Jaswal JS, Stanley WC (2010) Myocardial fatty acid metabolism in health and disease. Physiol Rev 90:207–258CrossRefPubMed
42.
Zurück zum Zitat Mizuno Y, Harada E, Nakagawa H et al (2017) The diabetic heart utilizes ketone bodies as an energy source. Metabolism 77:65–72CrossRefPubMed Mizuno Y, Harada E, Nakagawa H et al (2017) The diabetic heart utilizes ketone bodies as an energy source. Metabolism 77:65–72CrossRefPubMed
43.
Zurück zum Zitat Gormsen LC, Svart M, Thomsen HH et al (2017) Ketone body infusion with 3-hydroxybutyrate reduces myocardial glucose uptake and increases blood flow in humans: a positron emission tomography study. J Am Heart Assoc 6:e005066CrossRefPubMedPubMedCentral Gormsen LC, Svart M, Thomsen HH et al (2017) Ketone body infusion with 3-hydroxybutyrate reduces myocardial glucose uptake and increases blood flow in humans: a positron emission tomography study. J Am Heart Assoc 6:e005066CrossRefPubMedPubMedCentral
44.
Zurück zum Zitat Santos-Gallego CG, Ibanez JAR, San Antonio R et al (2018) Empagliflozin induces a myocardial metabolic shift from glucose consumption to ketone metabolism that mitigates adverse cardiac remodeling and improves myocardial contractility. J Am Coll Cardiol 71:A674 AbstractCrossRef Santos-Gallego CG, Ibanez JAR, San Antonio R et al (2018) Empagliflozin induces a myocardial metabolic shift from glucose consumption to ketone metabolism that mitigates adverse cardiac remodeling and improves myocardial contractility. J Am Coll Cardiol 71:A674 AbstractCrossRef
45.
Zurück zum Zitat Kappel BA, Lehrke M, Schutt K et al (2017) Effect of empagliflozin on the metabolic signature of patients with type 2 diabetes mellitus and cardiovascular disease. Circulation 136:969–972CrossRefPubMed Kappel BA, Lehrke M, Schutt K et al (2017) Effect of empagliflozin on the metabolic signature of patients with type 2 diabetes mellitus and cardiovascular disease. Circulation 136:969–972CrossRefPubMed
46.
Zurück zum Zitat Packer M, Anker SD, Butler J, Filippatos G, Zannad F (2017) Effects of sodium-glucose cotransporter 2 inhibitors for the treatment of patients with heart failure: proposal of a novel mechanism of action. JAMA Cardiol 2:1025–1029CrossRefPubMed Packer M, Anker SD, Butler J, Filippatos G, Zannad F (2017) Effects of sodium-glucose cotransporter 2 inhibitors for the treatment of patients with heart failure: proposal of a novel mechanism of action. JAMA Cardiol 2:1025–1029CrossRefPubMed
47.
Zurück zum Zitat Uthman L, Baartscheer A, Bleijlevens B et al (2018) Class effects of SGLT2 inhibitors in mouse cardiomyocytes and hearts: inhibition of Na+/H+ exchanger, lowering of cytosolic Na+ and vasodilation. Diabetologia 61:722–726CrossRefPubMed Uthman L, Baartscheer A, Bleijlevens B et al (2018) Class effects of SGLT2 inhibitors in mouse cardiomyocytes and hearts: inhibition of Na+/H+ exchanger, lowering of cytosolic Na+ and vasodilation. Diabetologia 61:722–726CrossRefPubMed
48.
Zurück zum Zitat Baartscheer A, Schumacher CA, Wust RC et al (2017) Empagliflozin decreases myocardial cytoplasmic Na+ through inhibition of the cardiac Na+/H+ exchanger in rats and rabbits. Diabetologia 60:568–573CrossRefPubMed Baartscheer A, Schumacher CA, Wust RC et al (2017) Empagliflozin decreases myocardial cytoplasmic Na+ through inhibition of the cardiac Na+/H+ exchanger in rats and rabbits. Diabetologia 60:568–573CrossRefPubMed
49.
Zurück zum Zitat Gallo LA, Wright EM, Vallon V (2015) Probing SGLT2 as a therapeutic target for diabetes: basic physiology and consequences. Diab Vasc Dis Res 12:78–89CrossRefPubMedPubMedCentral Gallo LA, Wright EM, Vallon V (2015) Probing SGLT2 as a therapeutic target for diabetes: basic physiology and consequences. Diab Vasc Dis Res 12:78–89CrossRefPubMedPubMedCentral
50.
Zurück zum Zitat Fedak PW, Verma S, Weisel RD, Li RK (2005) Cardiac remodeling and failure from molecules to man (part II). Cardiovasc Pathol 14:49–60CrossRefPubMed Fedak PW, Verma S, Weisel RD, Li RK (2005) Cardiac remodeling and failure from molecules to man (part II). Cardiovasc Pathol 14:49–60CrossRefPubMed
51.
Zurück zum Zitat Lee TM, Chang NC, Lin SZ (2017) Dapagliflozin, a selective SGLT2 inhibitor, attenuated cardiac fibrosis by regulating the macrophage polarization via STAT3 signaling in infarcted rat hearts. Free Radic Biol Med 104:298–310CrossRefPubMed Lee TM, Chang NC, Lin SZ (2017) Dapagliflozin, a selective SGLT2 inhibitor, attenuated cardiac fibrosis by regulating the macrophage polarization via STAT3 signaling in infarcted rat hearts. Free Radic Biol Med 104:298–310CrossRefPubMed
52.
Zurück zum Zitat Kang S, Verma S, Teng G et al (2017) Direct effects of empagliflozin on extracellular matrix remodeling in human cardiac fibroblasts: novel translational clues to EMPA-REG Outcome. Can J Cardiol 33:S169 AbstractCrossRef Kang S, Verma S, Teng G et al (2017) Direct effects of empagliflozin on extracellular matrix remodeling in human cardiac fibroblasts: novel translational clues to EMPA-REG Outcome. Can J Cardiol 33:S169 AbstractCrossRef
53.
Zurück zum Zitat Lau DC, Dhillon B, Yan H, Szmitko PE, Verma S (2005) Adipokines: molecular links between obesity and atherosclerosis. Am J Physiol Heart Circ Physiol 288:H2031–H2041CrossRefPubMed Lau DC, Dhillon B, Yan H, Szmitko PE, Verma S (2005) Adipokines: molecular links between obesity and atherosclerosis. Am J Physiol Heart Circ Physiol 288:H2031–H2041CrossRefPubMed
54.
Zurück zum Zitat Patel VB, Shah S, Verma S, Oudit GY (2017) Epicardial adipose tissue as a metabolic transducer: role in heart failure and coronary artery disease. Heart Fail Rev 22:889–902CrossRefPubMed Patel VB, Shah S, Verma S, Oudit GY (2017) Epicardial adipose tissue as a metabolic transducer: role in heart failure and coronary artery disease. Heart Fail Rev 22:889–902CrossRefPubMed
55.
57.
58.
Zurück zum Zitat Verma S, Garg A, Yan AT et al (2016) Effect of empagliflozin on left ventricular mass and diastolic function in individuals with diabetes: an important clue to the EMPA-REG OUTCOME trial? Diabetes Care 39:e212–e213CrossRefPubMed Verma S, Garg A, Yan AT et al (2016) Effect of empagliflozin on left ventricular mass and diastolic function in individuals with diabetes: an important clue to the EMPA-REG OUTCOME trial? Diabetes Care 39:e212–e213CrossRefPubMed
59.
Zurück zum Zitat Singh JS, Fathi A, Vickneson K et al (2016) Research into the effect of SGLT2 inhibition on left ventricular remodelling in patients with heart failure and diabetes mellitus (REFORM) trial rationale and design. Cardiovasc Diabetol 15:97CrossRefPubMedPubMedCentral Singh JS, Fathi A, Vickneson K et al (2016) Research into the effect of SGLT2 inhibition on left ventricular remodelling in patients with heart failure and diabetes mellitus (REFORM) trial rationale and design. Cardiovasc Diabetol 15:97CrossRefPubMedPubMedCentral
60.
Zurück zum Zitat Januzzi JL Jr, Butler J, Jarolim P et al (2017) Effects of canagliflozin on cardiovascular biomarkers in older adults with type 2 diabetes. J Am Coll Cardiol 70:704–712CrossRefPubMed Januzzi JL Jr, Butler J, Jarolim P et al (2017) Effects of canagliflozin on cardiovascular biomarkers in older adults with type 2 diabetes. J Am Coll Cardiol 70:704–712CrossRefPubMed
61.
Zurück zum Zitat Inzucchi SE, Iliev H, Pfarr E, Zinman B (2018) Empagliflozin and assessment of lower-limb amputations in the EMPA-REG OUTCOME trial. Diabetes Care 41:e4–e5CrossRefPubMed Inzucchi SE, Iliev H, Pfarr E, Zinman B (2018) Empagliflozin and assessment of lower-limb amputations in the EMPA-REG OUTCOME trial. Diabetes Care 41:e4–e5CrossRefPubMed
62.
Zurück zum Zitat Verma S, Mazer CD, Al-Omran M et al (2018) Cardiovascular outcomes and safety of empagliflozin in patients with type 2 diabetes mellitus and peripheral artery disease: a subanalysis of EMPA-REG OUTCOME. Circulation 137:405–407CrossRefPubMed Verma S, Mazer CD, Al-Omran M et al (2018) Cardiovascular outcomes and safety of empagliflozin in patients with type 2 diabetes mellitus and peripheral artery disease: a subanalysis of EMPA-REG OUTCOME. Circulation 137:405–407CrossRefPubMed
63.
Zurück zum Zitat Sherman SE, Bell GI, Teoh H et al (2018) Canagliflozin improves the recovery of blood flow in an experimental model of severe limb ischemia. JACC Basic Translational Sci 3:327–329CrossRef Sherman SE, Bell GI, Teoh H et al (2018) Canagliflozin improves the recovery of blood flow in an experimental model of severe limb ischemia. JACC Basic Translational Sci 3:327–329CrossRef
64.
Zurück zum Zitat Verma S, Bhatt DL, Bain SC et al (2018) Effects of liraglutide on cardiovascular events in patients with type 2 diabetes and polyvascular disease: results of the LEADER trial. Circulation 137:2179–2183CrossRefPubMed Verma S, Bhatt DL, Bain SC et al (2018) Effects of liraglutide on cardiovascular events in patients with type 2 diabetes and polyvascular disease: results of the LEADER trial. Circulation 137:2179–2183CrossRefPubMed
65.
Zurück zum Zitat Wiviott SD, Raz I, Bonaca MP et al (2018) The design and rationale for the dapagliflozin effect on cardiovascular events (DECLARE) – TIMI 58 Trial. Am Heart J 200:83–89CrossRefPubMed Wiviott SD, Raz I, Bonaca MP et al (2018) The design and rationale for the dapagliflozin effect on cardiovascular events (DECLARE) – TIMI 58 Trial. Am Heart J 200:83–89CrossRefPubMed
66.
Zurück zum Zitat Jardine MJ, Mahaffey KW, Neal B et al (2017) The Canagliflozin and Renal Endpoints in Diabetes with Established Nephropathy Clinical Evaluation (CREDENCE) Study rationale, design, and baseline characteristics. Am J Nephrol 46:462–472CrossRefPubMedPubMedCentral Jardine MJ, Mahaffey KW, Neal B et al (2017) The Canagliflozin and Renal Endpoints in Diabetes with Established Nephropathy Clinical Evaluation (CREDENCE) Study rationale, design, and baseline characteristics. Am J Nephrol 46:462–472CrossRefPubMedPubMedCentral
Metadaten
Titel
SGLT2 inhibitors and mechanisms of cardiovascular benefit: a state-of-the-art review
verfasst von
Subodh Verma
John J. V. McMurray
Publikationsdatum
22.08.2018
Verlag
Springer Berlin Heidelberg
Erschienen in
Diabetologia / Ausgabe 10/2018
Print ISSN: 0012-186X
Elektronische ISSN: 1432-0428
DOI
https://doi.org/10.1007/s00125-018-4670-7

Weitere Artikel der Ausgabe 10/2018

Diabetologia 10/2018 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

„Überwältigende“ Evidenz für Tripeltherapie beim metastasierten Prostata-Ca.

22.05.2024 Prostatakarzinom Nachrichten

Patienten mit metastasiertem hormonsensitivem Prostatakarzinom sollten nicht mehr mit einer alleinigen Androgendeprivationstherapie (ADT) behandelt werden, mahnt ein US-Team nach Sichtung der aktuellen Datenlage. Mit einer Tripeltherapie haben die Betroffenen offenbar die besten Überlebenschancen.

So sicher sind Tattoos: Neue Daten zur Risikobewertung

22.05.2024 Melanom Nachrichten

Das größte medizinische Problem bei Tattoos bleiben allergische Reaktionen. Melanome werden dadurch offensichtlich nicht gefördert, die Farbpigmente könnten aber andere Tumoren begünstigen.

CAR-M-Zellen: Warten auf das große Fressen

22.05.2024 Onkologische Immuntherapie Nachrichten

Auch myeloide Immunzellen lassen sich mit chimären Antigenrezeptoren gegen Tumoren ausstatten. Solche CAR-Fresszell-Therapien werden jetzt für solide Tumoren entwickelt. Künftig soll dieser Prozess nicht mehr ex vivo, sondern per mRNA im Körper der Betroffenen erfolgen.

Frühzeitige HbA1c-Kontrolle macht sich lebenslang bemerkbar

22.05.2024 Typ-2-Diabetes Nachrichten

Menschen mit Typ-2-Diabetes von Anfang an intensiv BZ-senkend zu behandeln, wirkt sich positiv auf Komplikationen und Mortalität aus – und das offenbar lebenslang, wie eine weitere Nachfolgeuntersuchung der UKPD-Studie nahelegt.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.