Skip to main content
Erschienen in: Calcified Tissue International 3/2015

01.09.2015 | Review

The Role of Water Compartments in the Material Properties of Cortical Bone

verfasst von: Mathilde Granke, Mark D. Does, Jeffry S. Nyman

Erschienen in: Calcified Tissue International | Ausgabe 3/2015

Einloggen, um Zugang zu erhalten

Abstract

Comprising ~20 % of the volume, water is a key determinant of the mechanical behavior of cortical bone. It essentially exists in two general compartments: within pores and bound to the matrix. The amount of pore water—residing in the vascular-lacunar-canalicular space—primarily reflects intracortical porosity (i.e., open spaces within the matrix largely due to Haversian canals and resorption sites) and as such is inversely proportional to most mechanical properties of bone. Movement of water according to pressure gradients generated during dynamic loading likely confers hydraulic stiffening to the bone as well. Nonetheless, bound water is a primary contributor to the mechanical behavior of bone in that it is responsible for giving collagen the ability to confer ductility or plasticity to bone (i.e., allows deformation to continue once permanent damage begins to form in the matrix) and decreases with age along with fracture resistance. Thus, dehydration by air-drying or by solvents with less hydrogen bonding capacity causes bone to become brittle, but interestingly, it also increases stiffness and strength across the hierarchical levels of organization. Despite the importance of matrix hydration to fracture resistance, little is known about why bound water decreases with age in hydrated human bone. Using 1H nuclear magnetic resonance (NMR), both bound and pore water concentrations in bone can be measured ex vivo because the proton relaxation times differ between the two water compartments, giving rise to two distinct signals. There are also emerging techniques to measure bound and pore water in vivo with magnetic resonance imaging (MRI). The NMR/MRI-derived bound water concentration is positively correlated with both the strength and toughness of hydrated bone and may become a useful clinical marker of fracture risk.
Literatur
1.
Zurück zum Zitat Currey JD (1989) Biomechanics of mineralized skeletons. In: Carter JG (ed) Skeletal biomineralization: patterns, processes and evolutionary trends. American Geophysical Union, Washington, D.C., pp 11–25 Currey JD (1989) Biomechanics of mineralized skeletons. In: Carter JG (ed) Skeletal biomineralization: patterns, processes and evolutionary trends. American Geophysical Union, Washington, D.C., pp 11–25
2.
Zurück zum Zitat Mueller KH, Trias A, Ray RD (1996) Bone density and composition. Age-related and pathological changes in water and mineral content. J Bone Joint Surg Am 48:140–148 Mueller KH, Trias A, Ray RD (1996) Bone density and composition. Age-related and pathological changes in water and mineral content. J Bone Joint Surg Am 48:140–148
3.
Zurück zum Zitat Robinson RA (1979) Bone tissue: composition and function. Johns Hopkins Med J 145:10–24PubMed Robinson RA (1979) Bone tissue: composition and function. Johns Hopkins Med J 145:10–24PubMed
4.
Zurück zum Zitat Dong P, Haupert S, Hesse B, Langer M, Gouttenoire PJ, Bousson V, Peyrin F (2014) 3D osteocyte lacunar morphometric properties and distributions in human femoral cortical bone using synchrotron radiation micro-CT images. Bone 60:172–185PubMed Dong P, Haupert S, Hesse B, Langer M, Gouttenoire PJ, Bousson V, Peyrin F (2014) 3D osteocyte lacunar morphometric properties and distributions in human femoral cortical bone using synchrotron radiation micro-CT images. Bone 60:172–185PubMed
5.
Zurück zum Zitat Robinson RA (1975) Physicochemical structure of bone. Clin Orthop Relat Res 112:263–315PubMed Robinson RA (1975) Physicochemical structure of bone. Clin Orthop Relat Res 112:263–315PubMed
6.
Zurück zum Zitat Wang Y, Von Euw S, Fernandes FM, Cassaignon S, Selmane M, Laurent G, Pehau-Arnaudet G, Coelho C, Bonhomme-Coury L, Giraud-Guille MM, Babonneau F, Azais T, Nassif N (2013) Water-mediated structuring of bone apatite. Nat Mater 12:1144–1153PubMed Wang Y, Von Euw S, Fernandes FM, Cassaignon S, Selmane M, Laurent G, Pehau-Arnaudet G, Coelho C, Bonhomme-Coury L, Giraud-Guille MM, Babonneau F, Azais T, Nassif N (2013) Water-mediated structuring of bone apatite. Nat Mater 12:1144–1153PubMed
7.
Zurück zum Zitat Marino AA, Becker RO, Bachman CH (1967) Dielectric determination of bound water of bone. Phys Med Biol 12:367–378PubMed Marino AA, Becker RO, Bachman CH (1967) Dielectric determination of bound water of bone. Phys Med Biol 12:367–378PubMed
8.
Zurück zum Zitat Maeda H, Fukada E (1982) Effect of water on piezoelectric, dielectric, and elastic properties of bone. Biopolymers 21:2055–2068PubMed Maeda H, Fukada E (1982) Effect of water on piezoelectric, dielectric, and elastic properties of bone. Biopolymers 21:2055–2068PubMed
9.
Zurück zum Zitat Robinson W (1931) Free and bound water determinations by the heat of fusion of ice method. J Biol Chem 92:699–709 Robinson W (1931) Free and bound water determinations by the heat of fusion of ice method. J Biol Chem 92:699–709
10.
Zurück zum Zitat Nomura S, Hiltner A, Lando JB, Baer E (1977) Interaction of water with native collagen. Biopolymers 16:231–246PubMed Nomura S, Hiltner A, Lando JB, Baer E (1977) Interaction of water with native collagen. Biopolymers 16:231–246PubMed
11.
Zurück zum Zitat Pineri MH, Escoubes M, Roche G (1978) Water-collagen interactions: calorimetric and mechanical experiments. Biopolymers 17:2799–2815PubMed Pineri MH, Escoubes M, Roche G (1978) Water-collagen interactions: calorimetric and mechanical experiments. Biopolymers 17:2799–2815PubMed
12.
Zurück zum Zitat Armeniades CD, Kuriyama I, Roe JM, Baer E (1967) Mechanical behavior of poly(ethyleoe terephthalate) at cryogenic temperatures. J Macromol Sci Part B 1:777–791 Armeniades CD, Kuriyama I, Roe JM, Baer E (1967) Mechanical behavior of poly(ethyleoe terephthalate) at cryogenic temperatures. J Macromol Sci Part B 1:777–791
13.
Zurück zum Zitat Fraser RD, MacRae TP, Suzuki E (1979) Chain conformation in the collagen molecule. J Mol Biol 129:463–481PubMed Fraser RD, MacRae TP, Suzuki E (1979) Chain conformation in the collagen molecule. J Mol Biol 129:463–481PubMed
14.
Zurück zum Zitat Okuyama K, Okuyama K, Arnott S, Takayanagi M, Kakudo M (1981) Crystal and molecular structure of a collagen-like polypeptide (Pro-Pro-Gly)10. J Mol Biol 152:427–443PubMed Okuyama K, Okuyama K, Arnott S, Takayanagi M, Kakudo M (1981) Crystal and molecular structure of a collagen-like polypeptide (Pro-Pro-Gly)10. J Mol Biol 152:427–443PubMed
15.
Zurück zum Zitat Lazarev YA, Grishkovsky BA, Khromova TB, Lazareva AV, Grechishko VS (1992) Bound water in the collagen-like triple-helical structure. Biopolymers 32:189–195PubMed Lazarev YA, Grishkovsky BA, Khromova TB, Lazareva AV, Grechishko VS (1992) Bound water in the collagen-like triple-helical structure. Biopolymers 32:189–195PubMed
16.
Zurück zum Zitat Brodsky B, Persikov AV (2005) Molecular structure of the collagen triple helix. Adv Protein Chem 70:301–339PubMed Brodsky B, Persikov AV (2005) Molecular structure of the collagen triple helix. Adv Protein Chem 70:301–339PubMed
17.
Zurück zum Zitat Bella J, Brodsky B, Berman HM (1995) Hydration structure of a collagen peptide. Structure 3:893–906PubMed Bella J, Brodsky B, Berman HM (1995) Hydration structure of a collagen peptide. Structure 3:893–906PubMed
18.
Zurück zum Zitat Lees S (1981) A mixed packing model for bone collagen. Calcif Tissue Int 33:591–602PubMed Lees S (1981) A mixed packing model for bone collagen. Calcif Tissue Int 33:591–602PubMed
19.
Zurück zum Zitat Wilson EE, Awonusi A, Morris MD, Kohn DH, Tecklenburg MM, Beck LW (2005) Highly ordered interstitial water observed in bone by nuclear magnetic resonance. J Bone Miner Res 20:625–634PubMed Wilson EE, Awonusi A, Morris MD, Kohn DH, Tecklenburg MM, Beck LW (2005) Highly ordered interstitial water observed in bone by nuclear magnetic resonance. J Bone Miner Res 20:625–634PubMed
20.
Zurück zum Zitat Timmins PA, Wall JC (1977) Bone water. Calcif Tissue Res 23:1–5PubMed Timmins PA, Wall JC (1977) Bone water. Calcif Tissue Res 23:1–5PubMed
21.
Zurück zum Zitat Mkukuma LD, Skakle JM, Gibson IR, Imrie CT, Aspden RM, Hukins DW (2004) Effect of the proportion of organic material in bone on thermal decomposition of bone mineral: an investigation of a variety of bones from different species using thermogravimetric analysis coupled to mass spectrometry, high-temperature X-ray diffraction, and Fourier transform infrared spectroscopy. Calcif Tissue Int 75:321–328PubMed Mkukuma LD, Skakle JM, Gibson IR, Imrie CT, Aspden RM, Hukins DW (2004) Effect of the proportion of organic material in bone on thermal decomposition of bone mineral: an investigation of a variety of bones from different species using thermogravimetric analysis coupled to mass spectrometry, high-temperature X-ray diffraction, and Fourier transform infrared spectroscopy. Calcif Tissue Int 75:321–328PubMed
22.
Zurück zum Zitat Mkukuma LD, Imrie CT, Skakle JM, Hukins DW, Aspden RM (2005) Thermal stability and structure of cancellous bone mineral from the femoral head of patients with osteoarthritis or osteoporosis. Ann Rheum Dis 64:222–225PubMedCentralPubMed Mkukuma LD, Imrie CT, Skakle JM, Hukins DW, Aspden RM (2005) Thermal stability and structure of cancellous bone mineral from the femoral head of patients with osteoarthritis or osteoporosis. Ann Rheum Dis 64:222–225PubMedCentralPubMed
23.
Zurück zum Zitat Neuman WF, Neuman MW (1953) The nature of the mineral phase of bone. Chem Rev 53:1–45 Neuman WF, Neuman MW (1953) The nature of the mineral phase of bone. Chem Rev 53:1–45
24.
Zurück zum Zitat Casciani FS (1971) Identification of hydrate water in enamel, dentine, cementum and bone. In: Fearnhead RW, Stack MV (eds) Tooth Enamel II: its composition, properties and fundamental structure. John Wright & Sons Ltd, Bristol, pp 14–23 Casciani FS (1971) Identification of hydrate water in enamel, dentine, cementum and bone. In: Fearnhead RW, Stack MV (eds) Tooth Enamel II: its composition, properties and fundamental structure. John Wright & Sons Ltd, Bristol, pp 14–23
25.
Zurück zum Zitat Cho G, Wu Y, Ackerman JL (2003) Detection of hydroxyl ions in bone mineral by solid-state NMR spectroscopy. Science 300:1123–1127PubMed Cho G, Wu Y, Ackerman JL (2003) Detection of hydroxyl ions in bone mineral by solid-state NMR spectroscopy. Science 300:1123–1127PubMed
26.
Zurück zum Zitat Rai RK, Sinha N (2011) Dehydration-induced structural changes in the collagen-hydroxyapatite interface in bone by high-resolution solid-state NMR spectroscopy. J Phys Chem C 115:14219–14227 Rai RK, Sinha N (2011) Dehydration-induced structural changes in the collagen-hydroxyapatite interface in bone by high-resolution solid-state NMR spectroscopy. J Phys Chem C 115:14219–14227
27.
Zurück zum Zitat Yoder C, Pasteris J, Worcester K, Schermerhorn D, Sternlieb M, Goldenberg J, Wilt Z (2012) Dehydration and rehydration of carbonated fluor- and hydroxylapatite. Minerals 2:100–117 Yoder C, Pasteris J, Worcester K, Schermerhorn D, Sternlieb M, Goldenberg J, Wilt Z (2012) Dehydration and rehydration of carbonated fluor- and hydroxylapatite. Minerals 2:100–117
28.
Zurück zum Zitat Davies E, Muller KH, Wong WC, Pickard CJ, Reid DG, Skepper JN, Duer MJ (2014) Citrate bridges between mineral platelets in bone. Proc Natl Acad Sci USA 111:E1354–E1363PubMedCentralPubMed Davies E, Muller KH, Wong WC, Pickard CJ, Reid DG, Skepper JN, Duer MJ (2014) Citrate bridges between mineral platelets in bone. Proc Natl Acad Sci USA 111:E1354–E1363PubMedCentralPubMed
29.
Zurück zum Zitat Faingold A, Cohen SR, Shahar R, Weiner S, Rapoport L, Wagner HD (2014) The effect of hydration on mechanical anisotropy, topography and fibril organization of the osteonal lamellae. J Biomech 47:367–372PubMed Faingold A, Cohen SR, Shahar R, Weiner S, Rapoport L, Wagner HD (2014) The effect of hydration on mechanical anisotropy, topography and fibril organization of the osteonal lamellae. J Biomech 47:367–372PubMed
30.
Zurück zum Zitat Wenger MP, Bozec L, Horton MA, Mesquida P (2007) Mechanical properties of collagen fibrils. Biophys J 93:1255–1263PubMedCentralPubMed Wenger MP, Bozec L, Horton MA, Mesquida P (2007) Mechanical properties of collagen fibrils. Biophys J 93:1255–1263PubMedCentralPubMed
31.
Zurück zum Zitat Gautieri A, Vesentini S, Redaelli A, Buehler MJ (2011) Hierarchical structure and nanomechanics of collagen microfibrils from the atomistic scale up. Nano Lett 11:757–766PubMed Gautieri A, Vesentini S, Redaelli A, Buehler MJ (2011) Hierarchical structure and nanomechanics of collagen microfibrils from the atomistic scale up. Nano Lett 11:757–766PubMed
32.
Zurück zum Zitat Wess TJ, Orgel JP (2000) Changes in collagen structure: drying, dehydrothermal treatment and relation to long term deterioration. Thermochim Acta 365:119–128 Wess TJ, Orgel JP (2000) Changes in collagen structure: drying, dehydrothermal treatment and relation to long term deterioration. Thermochim Acta 365:119–128
33.
Zurück zum Zitat Feng L, Chittenden M, Schirer J, Dickinson M, Jasiuk I (2012) Mechanical properties of porcine femoral cortical bone measured by nanoindentation. J Biomech 45:1775–1782PubMed Feng L, Chittenden M, Schirer J, Dickinson M, Jasiuk I (2012) Mechanical properties of porcine femoral cortical bone measured by nanoindentation. J Biomech 45:1775–1782PubMed
34.
Zurück zum Zitat Guidoni G, Swain M, Jager I (2010) Nanoindentation of wet and dry compact bone: Influence of environment and indenter tip geometry on the indentation modulus. Philos Mag 90:553–565 Guidoni G, Swain M, Jager I (2010) Nanoindentation of wet and dry compact bone: Influence of environment and indenter tip geometry on the indentation modulus. Philos Mag 90:553–565
35.
Zurück zum Zitat Hengsberger S, Kulik A, Zysset P (2002) Nanoindentation discriminates the elastic properties of individual human bone lamellae under dry and physiological conditions. Bone 30:178–184PubMed Hengsberger S, Kulik A, Zysset P (2002) Nanoindentation discriminates the elastic properties of individual human bone lamellae under dry and physiological conditions. Bone 30:178–184PubMed
36.
Zurück zum Zitat Rodriguez-Florez N, Oyen ML, Shefelbine SJ (2013) Insight into differences in nanoindentation properties of bone. J Mech Behav Biomed Mater 18:90–99PubMed Rodriguez-Florez N, Oyen ML, Shefelbine SJ (2013) Insight into differences in nanoindentation properties of bone. J Mech Behav Biomed Mater 18:90–99PubMed
37.
Zurück zum Zitat Rho JY, Pharr GM (1999) Effects of drying on the mechanical properties of bovine femur measured by nanoindentation. J Mater Sci Mater Med 10:485–488PubMed Rho JY, Pharr GM (1999) Effects of drying on the mechanical properties of bovine femur measured by nanoindentation. J Mater Sci Mater Med 10:485–488PubMed
38.
Zurück zum Zitat Lee KL, Baldassarri M, Gupta N, Pinisetty D, Janal MN, Tovar N, Coelho PG (2012) Nanomechanical characterization of canine femur bone for strain rate sensitivity in the quasistatic range under dry versus wet conditions. Int J Biomater 2012:415230PubMedCentralPubMed Lee KL, Baldassarri M, Gupta N, Pinisetty D, Janal MN, Tovar N, Coelho PG (2012) Nanomechanical characterization of canine femur bone for strain rate sensitivity in the quasistatic range under dry versus wet conditions. Int J Biomater 2012:415230PubMedCentralPubMed
39.
Zurück zum Zitat Seto J, Gupta HS, Zaslansky P, Wagner HD, Fratzl P (2008) Tough lessons from bone: extreme mechanical anisotropy at the mesoscale. Adv Funct Mater 18:1905–1911 Seto J, Gupta HS, Zaslansky P, Wagner HD, Fratzl P (2008) Tough lessons from bone: extreme mechanical anisotropy at the mesoscale. Adv Funct Mater 18:1905–1911
40.
Zurück zum Zitat Spiesz EM, Roschger P, Zysset PK (2012) Elastic anisotropy of uniaxial mineralized collagen fibers measured using two-directional indentation. Effects of hydration state and indentation depth. J Mech Behav Biomed Mater 12:20–28PubMedCentralPubMed Spiesz EM, Roschger P, Zysset PK (2012) Elastic anisotropy of uniaxial mineralized collagen fibers measured using two-directional indentation. Effects of hydration state and indentation depth. J Mech Behav Biomed Mater 12:20–28PubMedCentralPubMed
41.
Zurück zum Zitat Wolfram U, Wilke HJ, Zysset PK (2010) Rehydration of vertebral trabecular bone: influences on its anisotropy, its stiffness and the indentation work with a view to age, gender and vertebral level. Bone 46:348–354PubMed Wolfram U, Wilke HJ, Zysset PK (2010) Rehydration of vertebral trabecular bone: influences on its anisotropy, its stiffness and the indentation work with a view to age, gender and vertebral level. Bone 46:348–354PubMed
42.
Zurück zum Zitat Pathak S, Swadener JG, Kalidindi SR, Courtland HW, Jepsen KJ, Goldman HM (2011) Measuring the dynamic mechanical response of hydrated mouse bone by nanoindentation. J Mech Behav Biomed Mater 4:34–43PubMedCentralPubMed Pathak S, Swadener JG, Kalidindi SR, Courtland HW, Jepsen KJ, Goldman HM (2011) Measuring the dynamic mechanical response of hydrated mouse bone by nanoindentation. J Mech Behav Biomed Mater 4:34–43PubMedCentralPubMed
43.
Zurück zum Zitat Nicolella DP, Ni Q, Chan KS (2011) Non-destructive characterization of microdamage in cortical bone using low field pulsed NMR. J Mech Behav Biomed Mater 4:383–391PubMedCentralPubMed Nicolella DP, Ni Q, Chan KS (2011) Non-destructive characterization of microdamage in cortical bone using low field pulsed NMR. J Mech Behav Biomed Mater 4:383–391PubMedCentralPubMed
44.
Zurück zum Zitat Evans FG, Lebow M (1951) Regional differences in some of the physical properties of the human femur. J Appl Physiol 3:563–572PubMed Evans FG, Lebow M (1951) Regional differences in some of the physical properties of the human femur. J Appl Physiol 3:563–572PubMed
45.
Zurück zum Zitat Yin L, Venkatesan S, Webb D, Kalyanasundaram S, Qin QH (2012) 2D and 3D mapping of microindentations in hydrated and dehydrated cortical bones using confocal laser scanning microscopy. J Mater Sci 47:4432–4438 Yin L, Venkatesan S, Webb D, Kalyanasundaram S, Qin QH (2012) 2D and 3D mapping of microindentations in hydrated and dehydrated cortical bones using confocal laser scanning microscopy. J Mater Sci 47:4432–4438
46.
Zurück zum Zitat Dempster WT, Richard TL (1952) Compact bone as a non-isotropic material. Am J Anat 91:331–362PubMed Dempster WT, Richard TL (1952) Compact bone as a non-isotropic material. Am J Anat 91:331–362PubMed
48.
Zurück zum Zitat Nyman JS, Roy A, Shen X, Acuna RL, Tyler JH, Wang X (2006) The influence of water removal on the strength and toughness of cortical bone. J Biomech 39:931–938PubMedCentralPubMed Nyman JS, Roy A, Shen X, Acuna RL, Tyler JH, Wang X (2006) The influence of water removal on the strength and toughness of cortical bone. J Biomech 39:931–938PubMedCentralPubMed
49.
Zurück zum Zitat Broz JJ, Simske SJ, Greenberg AR, Luttges MW (1993) Effects of rehydration state on the flexural properties of whole mouse long bones. J Biomech Eng 115:447–449PubMed Broz JJ, Simske SJ, Greenberg AR, Luttges MW (1993) Effects of rehydration state on the flexural properties of whole mouse long bones. J Biomech Eng 115:447–449PubMed
50.
Zurück zum Zitat Nyman JS, Gorochow LE, Adam Horch R, Uppuganti S, Zein-Sabatto A, Manhard MK, Does MD (2013) Partial removal of pore and loosely bound water by low-energy drying decreases cortical bone toughness in young and old donors. J Mech Behav Biomed Mater 22:136–145PubMedCentralPubMed Nyman JS, Gorochow LE, Adam Horch R, Uppuganti S, Zein-Sabatto A, Manhard MK, Does MD (2013) Partial removal of pore and loosely bound water by low-energy drying decreases cortical bone toughness in young and old donors. J Mech Behav Biomed Mater 22:136–145PubMedCentralPubMed
51.
Zurück zum Zitat Yan J, Daga A, Kumar R, Mecholsky JJ (2008) Fracture toughness and work of fracture of hydrated, dehydrated, and ashed bovine bone. J Biomech 41:1929–1936PubMed Yan J, Daga A, Kumar R, Mecholsky JJ (2008) Fracture toughness and work of fracture of hydrated, dehydrated, and ashed bovine bone. J Biomech 41:1929–1936PubMed
52.
Zurück zum Zitat Melvin JW, Evans FG (1973) Crack propagation in bone. In: Biomechanics Symposium ASME, New York, pp. 87–88 Melvin JW, Evans FG (1973) Crack propagation in bone. In: Biomechanics Symposium ASME, New York, pp. 87–88
53.
Zurück zum Zitat Kikugawa H, Yasui Y, Tomatsu T (2000) Effect of strain rate on the fracture toughness of cortical bone. J Soc Mater Sci Jpn 49:327–333 Kikugawa H, Yasui Y, Tomatsu T (2000) Effect of strain rate on the fracture toughness of cortical bone. J Soc Mater Sci Jpn 49:327–333
54.
Zurück zum Zitat Kahler B, Swain MV, Moule A (2003) Fracture-toughening mechanisms responsible for differences in work to fracture of hydrated and dehydrated dentine. J Biomech 36:229–237PubMed Kahler B, Swain MV, Moule A (2003) Fracture-toughening mechanisms responsible for differences in work to fracture of hydrated and dehydrated dentine. J Biomech 36:229–237PubMed
55.
Zurück zum Zitat Wegst UG, Bai H, Saiz E, Tomsia AP, Ritchie RO (2015) Bioinspired structural materials. Nat Mater 14:23–36PubMed Wegst UG, Bai H, Saiz E, Tomsia AP, Ritchie RO (2015) Bioinspired structural materials. Nat Mater 14:23–36PubMed
56.
Zurück zum Zitat Yamashita J, Li X, Furman BR, Rawls HR, Wang X, Agrawal CM (2002) Collagen and bone viscoelasticity: a dynamic mechanical analysis. J Biomed Mater Res 63:31–36PubMed Yamashita J, Li X, Furman BR, Rawls HR, Wang X, Agrawal CM (2002) Collagen and bone viscoelasticity: a dynamic mechanical analysis. J Biomed Mater Res 63:31–36PubMed
57.
Zurück zum Zitat Garner E, Lakes R, Lee T, Swan C, Brand R (2000) Viscoelastic dissipation in compact bone: implications for stress-induced fluid flow in bone. J Biomech Eng 122:166–172PubMed Garner E, Lakes R, Lee T, Swan C, Brand R (2000) Viscoelastic dissipation in compact bone: implications for stress-induced fluid flow in bone. J Biomech Eng 122:166–172PubMed
58.
Zurück zum Zitat Sasaki N, Enyo A (1995) Viscoelastic properties of bone as a function of water content. J Biomech 28:809–815PubMed Sasaki N, Enyo A (1995) Viscoelastic properties of bone as a function of water content. J Biomech 28:809–815PubMed
59.
Zurück zum Zitat Liebschner MA, Keller TS (2005) Hydraulic strengthening affects the stiffness and strength of cortical bone. Ann Biomed Eng 33:26–38PubMed Liebschner MA, Keller TS (2005) Hydraulic strengthening affects the stiffness and strength of cortical bone. Ann Biomed Eng 33:26–38PubMed
60.
Zurück zum Zitat Eberhardsteiner L, Hellmich C, Scheiner S (2014) Layered water in crystal interfaces as source for bone viscoelasticity: arguments from a multiscale approach. Comput Methods Biomech Biomed Eng 17:48–63 Eberhardsteiner L, Hellmich C, Scheiner S (2014) Layered water in crystal interfaces as source for bone viscoelasticity: arguments from a multiscale approach. Comput Methods Biomech Biomed Eng 17:48–63
61.
Zurück zum Zitat Nalla RK, Kinney JH, Tomsia AP, Ritchie RO (2006) Role of alcohol in the fracture resistance of teeth. J Dent Res 85:1022–1026PubMedCentralPubMed Nalla RK, Kinney JH, Tomsia AP, Ritchie RO (2006) Role of alcohol in the fracture resistance of teeth. J Dent Res 85:1022–1026PubMedCentralPubMed
62.
Zurück zum Zitat Maciel KT, Carvalho RM, Ringle RD, Preston CD, Russell CM, Pashley DH (1996) The effects of acetone, ethanol, HEMA, and air on the stiffness of human decalcified dentin matrix. J Dent Res 75:1851–1858PubMed Maciel KT, Carvalho RM, Ringle RD, Preston CD, Russell CM, Pashley DH (1996) The effects of acetone, ethanol, HEMA, and air on the stiffness of human decalcified dentin matrix. J Dent Res 75:1851–1858PubMed
63.
Zurück zum Zitat Smith NW, Ekwaro-Osire S, Khandaker M, Hashemi J (2010) Influence of storage duration on retention of original fracture toughness. Exp Mech 51:697–705 Smith NW, Ekwaro-Osire S, Khandaker M, Hashemi J (2010) Influence of storage duration on retention of original fracture toughness. Exp Mech 51:697–705
64.
Zurück zum Zitat Lucksanasombool P, Higgs WA, Higgs RJ, Swain MV (2001) Fracture toughness of bovine bone: influence of orientation and storage media. Biomaterials 22:3127–3132PubMed Lucksanasombool P, Higgs WA, Higgs RJ, Swain MV (2001) Fracture toughness of bovine bone: influence of orientation and storage media. Biomaterials 22:3127–3132PubMed
65.
Zurück zum Zitat Nalla RK, Balooch M, Ager JW 3rd, Kruzic JJ, Kinney JH, Ritchie RO (2005) Effects of polar solvents on the fracture resistance of dentin: role of water hydration. Acta Biomater 1:31–43PubMed Nalla RK, Balooch M, Ager JW 3rd, Kruzic JJ, Kinney JH, Ritchie RO (2005) Effects of polar solvents on the fracture resistance of dentin: role of water hydration. Acta Biomater 1:31–43PubMed
66.
Zurück zum Zitat Bembey AK, Oyen ML, Bushby AJ, Boyde A (2006) Viscoelastic properties of bone as a function of hydration state determined by nanoindentation. Philos Mag 86:5691–5703 Bembey AK, Oyen ML, Bushby AJ, Boyde A (2006) Viscoelastic properties of bone as a function of hydration state determined by nanoindentation. Philos Mag 86:5691–5703
67.
Zurück zum Zitat Bushby AJ, Ferguson VL, Boyde A (2004) Nanoindentation of bone: comparison of specimens tested in liquid and embedded in polymethylmethacrylate. J Mater Res 19:249–259 Bushby AJ, Ferguson VL, Boyde A (2004) Nanoindentation of bone: comparison of specimens tested in liquid and embedded in polymethylmethacrylate. J Mater Res 19:249–259
68.
Zurück zum Zitat Dall’Ara E, Ohman C, Baleani M, Viceconti M (2007) The effect of tissue condition and applied load on Vickers hardness of human trabecular bone. J Biomech 40:3267–3270PubMed Dall’Ara E, Ohman C, Baleani M, Viceconti M (2007) The effect of tissue condition and applied load on Vickers hardness of human trabecular bone. J Biomech 40:3267–3270PubMed
69.
Zurück zum Zitat Pashley DH, Agee KA, Nakajima M, Tay FR, Carvalho RM, Terada RS, Harmon FJ, Lee WK, Rueggeberg FA (2001) Solvent-induced dimensional changes in EDTA-demineralized dentin matrix. J Biomed Mater Res 56:273–281PubMed Pashley DH, Agee KA, Nakajima M, Tay FR, Carvalho RM, Terada RS, Harmon FJ, Lee WK, Rueggeberg FA (2001) Solvent-induced dimensional changes in EDTA-demineralized dentin matrix. J Biomed Mater Res 56:273–281PubMed
70.
Zurück zum Zitat Streeter I, de Leeuw NH (2011) A molecular dynamics study of the interprotein interactions in collagen fibrils. Soft Matter 7:3373–3382PubMedCentralPubMed Streeter I, de Leeuw NH (2011) A molecular dynamics study of the interprotein interactions in collagen fibrils. Soft Matter 7:3373–3382PubMedCentralPubMed
71.
Zurück zum Zitat Pashley DH, Agee KA, Carvalho RM, Lee KW, Tay FR, Callison TE (2003) Effects of water and water-free polar solvents on the tensile properties of demineralized dentin. Dent Mater 19:347–352PubMed Pashley DH, Agee KA, Carvalho RM, Lee KW, Tay FR, Callison TE (2003) Effects of water and water-free polar solvents on the tensile properties of demineralized dentin. Dent Mater 19:347–352PubMed
72.
Zurück zum Zitat Samuel J, Sinha D, Zhao JC, Wang X (2014) Water residing in small ultrastructural spaces plays a critical role in the mechanical behavior of bone. Bone 59:199–206PubMed Samuel J, Sinha D, Zhao JC, Wang X (2014) Water residing in small ultrastructural spaces plays a critical role in the mechanical behavior of bone. Bone 59:199–206PubMed
73.
Zurück zum Zitat Unger S, Blauth M, Schmoelz W (2010) Effects of three different preservation methods on the mechanical properties of human and bovine cortical bone. Bone 47:1048–1053PubMed Unger S, Blauth M, Schmoelz W (2010) Effects of three different preservation methods on the mechanical properties of human and bovine cortical bone. Bone 47:1048–1053PubMed
74.
Zurück zum Zitat Borthakur A, Reddy R, Wehrli FW (1998) NMR studies of exchangeable hydrogen in bone. In: Proceedings of the 6th annual meeting of ISMRM, Sydney, Australia, p 1804 Borthakur A, Reddy R, Wehrli FW (1998) NMR studies of exchangeable hydrogen in bone. In: Proceedings of the 6th annual meeting of ISMRM, Sydney, Australia, p 1804
75.
Zurück zum Zitat Fernandez-Seara MA, Wehrli SL, Takahashi M, Wehrli FW (2004) Water content measured by proton-deuteron exchange NMR predicts bone mineral density and mechanical properties. J Bone Miner Res 19:289–296PubMed Fernandez-Seara MA, Wehrli SL, Takahashi M, Wehrli FW (2004) Water content measured by proton-deuteron exchange NMR predicts bone mineral density and mechanical properties. J Bone Miner Res 19:289–296PubMed
76.
Zurück zum Zitat Fantazzini P, Brown RJ, Borgia GC (2003) Bone tissue and porous media: common features and differences studied by NMR relaxation. Magn Reson Imaging 21:227–234PubMed Fantazzini P, Brown RJ, Borgia GC (2003) Bone tissue and porous media: common features and differences studied by NMR relaxation. Magn Reson Imaging 21:227–234PubMed
77.
Zurück zum Zitat Wang XD, Ni QW (2003) Determination of cortical bone porosity and pore size distribution using a low field pulsed NMR approach. J Orthop Res 21:312–319PubMed Wang XD, Ni QW (2003) Determination of cortical bone porosity and pore size distribution using a low field pulsed NMR approach. J Orthop Res 21:312–319PubMed
78.
Zurück zum Zitat Ni QW, King JD, Wang XD (2004) The characterization of human compact bone structure changes by low-field nuclear magnetic resonance. Meas Sci Technol 15:58–66 Ni QW, King JD, Wang XD (2004) The characterization of human compact bone structure changes by low-field nuclear magnetic resonance. Meas Sci Technol 15:58–66
79.
Zurück zum Zitat Ni QW, Nyman JS, Wang XD, De Los Santos A, Nicolella DP (2007) Assessment of water distribution changes in human cortical bone by nuclear magnetic resonance. Meas Sci Technol 18:715–723 Ni QW, Nyman JS, Wang XD, De Los Santos A, Nicolella DP (2007) Assessment of water distribution changes in human cortical bone by nuclear magnetic resonance. Meas Sci Technol 18:715–723
80.
Zurück zum Zitat Nyman JS, Ni Q, Nicolella DP, Wang X (2008) Measurements of mobile and bound water by nuclear magnetic resonance correlate with mechanical properties of bone. Bone 42:193–199PubMedCentralPubMed Nyman JS, Ni Q, Nicolella DP, Wang X (2008) Measurements of mobile and bound water by nuclear magnetic resonance correlate with mechanical properties of bone. Bone 42:193–199PubMedCentralPubMed
81.
Zurück zum Zitat Horch RA, Nyman JS, Gochberg DF, Dortch RD, Does MD (2010) Characterization of 1H NMR signal in human cortical bone for magnetic resonance imaging. Magn Reson Med 64:680–687PubMedCentralPubMed Horch RA, Nyman JS, Gochberg DF, Dortch RD, Does MD (2010) Characterization of 1H NMR signal in human cortical bone for magnetic resonance imaging. Magn Reson Med 64:680–687PubMedCentralPubMed
82.
Zurück zum Zitat Fernandez-Sara MA, Wehrli SL, Wehrli FW (2002) Diffusion of exchangeable water in cortical bone studied by nuclear magnetic resonance. Biophys J 82:522–529 Fernandez-Sara MA, Wehrli SL, Wehrli FW (2002) Diffusion of exchangeable water in cortical bone studied by nuclear magnetic resonance. Biophys J 82:522–529
83.
Zurück zum Zitat Ong HH, Wright AC, Wehrli FW (2012) Deuterium nuclear magnetic resonance unambiguously quantifies pore and collagen-bound water in cortical bone. J Bone Miner Res 27:2573–2581PubMedCentralPubMed Ong HH, Wright AC, Wehrli FW (2012) Deuterium nuclear magnetic resonance unambiguously quantifies pore and collagen-bound water in cortical bone. J Bone Miner Res 27:2573–2581PubMedCentralPubMed
84.
Zurück zum Zitat Gatehouse PD, Bydder GM (2003) Magnetic resonance imaging of short T2 components in tissue. Clin Radiol 58:1–19PubMed Gatehouse PD, Bydder GM (2003) Magnetic resonance imaging of short T2 components in tissue. Clin Radiol 58:1–19PubMed
85.
Zurück zum Zitat Reichert IL, Robson MD, Gatehouse PD, He T, Chappell KE, Holmes J, Girgis S, Bydder GM (2005) Magnetic resonance imaging of cortical bone with ultrashort TE pulse sequences. Magn Reson Imaging 23:611–618PubMed Reichert IL, Robson MD, Gatehouse PD, He T, Chappell KE, Holmes J, Girgis S, Bydder GM (2005) Magnetic resonance imaging of cortical bone with ultrashort TE pulse sequences. Magn Reson Imaging 23:611–618PubMed
86.
Zurück zum Zitat Techawiboonwong A, Song HK, Leonard MB, Wehrli FW (2008) Cortical bone water: in vivo quantification with ultrashort echo-time MR imaging. Radiology 248:824–833PubMedCentralPubMed Techawiboonwong A, Song HK, Leonard MB, Wehrli FW (2008) Cortical bone water: in vivo quantification with ultrashort echo-time MR imaging. Radiology 248:824–833PubMedCentralPubMed
87.
Zurück zum Zitat Du J, Diaz E, Carl M, Bae W, Chung CB, Bydder GM (2012) Ultrashort echo time imaging with bicomponent analysis. Magn Reson Med 67:645–649PubMed Du J, Diaz E, Carl M, Bae W, Chung CB, Bydder GM (2012) Ultrashort echo time imaging with bicomponent analysis. Magn Reson Med 67:645–649PubMed
88.
Zurück zum Zitat Du J, Hamilton G, Takahashi A, Bydder M, Chung CB (2007) Ultrashort echo time spectroscopic imaging (UTESI) of cortical bone. Magn Reson Med 58:1001–1009PubMed Du J, Hamilton G, Takahashi A, Bydder M, Chung CB (2007) Ultrashort echo time spectroscopic imaging (UTESI) of cortical bone. Magn Reson Med 58:1001–1009PubMed
89.
Zurück zum Zitat Li C, Seifert AC, Rad HS, Bhagat YA, Rajapakse CS, Sun W, Lam SC, Wehrli FW (2014) Cortical bone water concentration: dependence of MR imaging measures on age and pore volume fraction. Radiology 272:796–806PubMedCentralPubMed Li C, Seifert AC, Rad HS, Bhagat YA, Rajapakse CS, Sun W, Lam SC, Wehrli FW (2014) Cortical bone water concentration: dependence of MR imaging measures on age and pore volume fraction. Radiology 272:796–806PubMedCentralPubMed
90.
Zurück zum Zitat Horch RA, Gochberg DF, Nyman JS, Does MD (2012) Clinically compatible MRI strategies for discriminating bound and pore water in cortical bone. Magn Reson Med 68:1774–1784PubMedCentralPubMed Horch RA, Gochberg DF, Nyman JS, Does MD (2012) Clinically compatible MRI strategies for discriminating bound and pore water in cortical bone. Magn Reson Med 68:1774–1784PubMedCentralPubMed
91.
Zurück zum Zitat Manhard MK, Horch RA, Gochberg DF, Nyman JS, Does MD (2014) Reproducibility of in vivo bound and pore water imaging of cortical bone. In: ISMRM Annual Meeting, Milan Manhard MK, Horch RA, Gochberg DF, Nyman JS, Does MD (2014) Reproducibility of in vivo bound and pore water imaging of cortical bone. In: ISMRM Annual Meeting, Milan
92.
Zurück zum Zitat Manhard MK, Horch RA, Harkins KD, Gochberg DF, Nyman JS, Does MD (2014) Validation of quantitative bound- and pore-water imaging in cortical bone. Magn Reson Med 71:2166–2171PubMedCentralPubMed Manhard MK, Horch RA, Harkins KD, Gochberg DF, Nyman JS, Does MD (2014) Validation of quantitative bound- and pore-water imaging in cortical bone. Magn Reson Med 71:2166–2171PubMedCentralPubMed
93.
Zurück zum Zitat Burghardt AJ, Kazakia GJ, Ramachandran S, Link TM, Majumdar S (2010) Age- and gender-related differences in the geometric properties and biomechanical significance of intracortical porosity in the distal radius and tibia. J Bone Miner Res 25:983–993PubMedCentralPubMed Burghardt AJ, Kazakia GJ, Ramachandran S, Link TM, Majumdar S (2010) Age- and gender-related differences in the geometric properties and biomechanical significance of intracortical porosity in the distal radius and tibia. J Bone Miner Res 25:983–993PubMedCentralPubMed
94.
Zurück zum Zitat Bousson V, Meunier A, Bergot C, Vicaut E, Rocha MA, Morais MH, Laval-Jeantet AM, Laredo JD (2001) Distribution of intracortical porosity in human midfemoral cortex by age and gender. J Bone Miner Res 16:1308–1317PubMed Bousson V, Meunier A, Bergot C, Vicaut E, Rocha MA, Morais MH, Laval-Jeantet AM, Laredo JD (2001) Distribution of intracortical porosity in human midfemoral cortex by age and gender. J Bone Miner Res 16:1308–1317PubMed
95.
Zurück zum Zitat Horch RA, Gochberg DF, Nyman JS, Does MD (2011) Non-invasive predictors of human cortical bone mechanical properties: T2-discriminated 1H NMR compared with high resolution X-ray. PLoS ONE 6:e16359PubMedCentralPubMed Horch RA, Gochberg DF, Nyman JS, Does MD (2011) Non-invasive predictors of human cortical bone mechanical properties: T2-discriminated 1H NMR compared with high resolution X-ray. PLoS ONE 6:e16359PubMedCentralPubMed
96.
Zurück zum Zitat Granke M, Makowski AJ, Uppuganti S, Does MD, Nyman JS (2015) Identifying novel clinical surrogates to assess human bone fracture toughness. J Bone Miner Res. doi:10.1002/jbmr.2452 PubMed Granke M, Makowski AJ, Uppuganti S, Does MD, Nyman JS (2015) Identifying novel clinical surrogates to assess human bone fracture toughness. J Bone Miner Res. doi:10.​1002/​jbmr.​2452 PubMed
97.
Zurück zum Zitat Granke M, Grimal Q, Saied A, Nauleau P, Peyrin F, Laugier P (2011) Change in porosity is the major determinant of the variation of cortical bone elasticity at the millimeter scale in aged women. Bone 49:1020–1026PubMed Granke M, Grimal Q, Saied A, Nauleau P, Peyrin F, Laugier P (2011) Change in porosity is the major determinant of the variation of cortical bone elasticity at the millimeter scale in aged women. Bone 49:1020–1026PubMed
98.
Zurück zum Zitat Bae WC, Chen PC, Chung CB, Masuda K, D’Lima D, Du J (2012) Quantitative ultrashort echo time (UTE) MRI of human cortical bone: correlation with porosity and biomechanical properties. J Bone Miner Res 27:848–857PubMedCentralPubMed Bae WC, Chen PC, Chung CB, Masuda K, D’Lima D, Du J (2012) Quantitative ultrashort echo time (UTE) MRI of human cortical bone: correlation with porosity and biomechanical properties. J Bone Miner Res 27:848–857PubMedCentralPubMed
99.
Zurück zum Zitat Rai RK, Barbhuyan T, Singh C, Mittal M, Khan MP, Sinha N, Chattopadhyay N (2013) Total water, phosphorus relaxation and inter-atomic organic to inorganic interface are new determinants of trabecular bone integrity. PLoS ONE 8:e83478PubMedCentralPubMed Rai RK, Barbhuyan T, Singh C, Mittal M, Khan MP, Sinha N, Chattopadhyay N (2013) Total water, phosphorus relaxation and inter-atomic organic to inorganic interface are new determinants of trabecular bone integrity. PLoS ONE 8:e83478PubMedCentralPubMed
100.
Zurück zum Zitat Wehrli FW (2013) Magnetic resonance of calcified tissues. J Magn Reson 229:35–48PubMed Wehrli FW (2013) Magnetic resonance of calcified tissues. J Magn Reson 229:35–48PubMed
101.
Zurück zum Zitat Delmas PD, Genant HK, Crans GG, Stock JL, Wong M, Siris E, Adachi JD (2003) Severity of prevalent vertebral fractures and the risk of subsequent vertebral and nonvertebral fractures: results from the MORE trial. Bone 33:522–532PubMed Delmas PD, Genant HK, Crans GG, Stock JL, Wong M, Siris E, Adachi JD (2003) Severity of prevalent vertebral fractures and the risk of subsequent vertebral and nonvertebral fractures: results from the MORE trial. Bone 33:522–532PubMed
102.
Zurück zum Zitat Brennan TC, Rizzoli R, Ammann P (2009) Selective modification of bone quality by PTH, pamidronate, or raloxifene. J Bone Miner Res 24:800–808PubMed Brennan TC, Rizzoli R, Ammann P (2009) Selective modification of bone quality by PTH, pamidronate, or raloxifene. J Bone Miner Res 24:800–808PubMed
103.
Zurück zum Zitat Tasci A, Bilgili H, Altunay H, Gecit MR, Keskin D (2010) Biomechanical and histological outcome of combined raloxifene-estrogen therapy on skeletal and reproductive tissues. Eur J Pharmacol 627:354–361PubMed Tasci A, Bilgili H, Altunay H, Gecit MR, Keskin D (2010) Biomechanical and histological outcome of combined raloxifene-estrogen therapy on skeletal and reproductive tissues. Eur J Pharmacol 627:354–361PubMed
104.
Zurück zum Zitat Allen MR, Iwata K, Sato M, Burr DB (2006) Raloxifene enhances vertebral mechanical properties independent of bone density. Bone 39:1130–1135PubMed Allen MR, Iwata K, Sato M, Burr DB (2006) Raloxifene enhances vertebral mechanical properties independent of bone density. Bone 39:1130–1135PubMed
105.
Zurück zum Zitat Allen MR, Hogan HA, Hobbs WA, Koivuniemi AS, Koivuniemi MC, Burr DB (2007) Raloxifene enhances material-level mechanical properties of femoral cortical and trabecular bone. Endocrinology 148:3908–3913PubMed Allen MR, Hogan HA, Hobbs WA, Koivuniemi AS, Koivuniemi MC, Burr DB (2007) Raloxifene enhances material-level mechanical properties of femoral cortical and trabecular bone. Endocrinology 148:3908–3913PubMed
106.
Zurück zum Zitat Gallant MA, Brown DM, Hammond M, Wallace JM, Du J, Deymier-Black AC, Almer JD, Stock SR, Allen MR, Burr DB (2014) Bone cell-independent benefits of raloxifene on the skeleton: a novel mechanism for improving bone material properties. Bone 61:191–200PubMedCentralPubMed Gallant MA, Brown DM, Hammond M, Wallace JM, Du J, Deymier-Black AC, Almer JD, Stock SR, Allen MR, Burr DB (2014) Bone cell-independent benefits of raloxifene on the skeleton: a novel mechanism for improving bone material properties. Bone 61:191–200PubMedCentralPubMed
107.
Zurück zum Zitat Anumula S, Wehrli SL, Magland J, Wright AC, Wehrli FW (2010) Ultra-short echo-time MRI detects changes in bone mineralization and water content in OVX rat bone in response to alendronate treatment. Bone 46:1391–1399PubMedCentralPubMed Anumula S, Wehrli SL, Magland J, Wright AC, Wehrli FW (2010) Ultra-short echo-time MRI detects changes in bone mineralization and water content in OVX rat bone in response to alendronate treatment. Bone 46:1391–1399PubMedCentralPubMed
108.
Zurück zum Zitat Bae WC, Patil S, Biswas R, Li S, Chang EY, Statum S, D’Lima DD, Chung CB, Du J (2014) Magnetic resonance imaging assessed cortical porosity is highly correlated with muCT porosity. Bone 66:56–61PubMedCentralPubMed Bae WC, Patil S, Biswas R, Li S, Chang EY, Statum S, D’Lima DD, Chung CB, Du J (2014) Magnetic resonance imaging assessed cortical porosity is highly correlated with muCT porosity. Bone 66:56–61PubMedCentralPubMed
109.
Zurück zum Zitat McCalden RW, McGeough JA, Barker MB, Court-Brown CM (1993) Age-related changes in the tensile properties of cortical bone. The relative importance of changes in porosity, mineralization, and microstructure. J Bone Joint Surg Am 75:1193–1205PubMed McCalden RW, McGeough JA, Barker MB, Court-Brown CM (1993) Age-related changes in the tensile properties of cortical bone. The relative importance of changes in porosity, mineralization, and microstructure. J Bone Joint Surg Am 75:1193–1205PubMed
110.
Zurück zum Zitat Yeni YN, Brown CU, Wang Z, Norman TL (1997) The influence of bone morphology on fracture toughness of the human femur and tibia. Bone 21:453–459PubMed Yeni YN, Brown CU, Wang Z, Norman TL (1997) The influence of bone morphology on fracture toughness of the human femur and tibia. Bone 21:453–459PubMed
111.
Zurück zum Zitat Currey JD, Brear K, Zioupos P (1996) The effects of ageing and changes in mineral content in degrading the toughness of human femora. J Biomech 29:257–260PubMed Currey JD, Brear K, Zioupos P (1996) The effects of ageing and changes in mineral content in degrading the toughness of human femora. J Biomech 29:257–260PubMed
112.
Zurück zum Zitat Keller TS, Mao Z, Spengler DM (1990) Young’s modulus, bending strength, and tissue physical properties of human compact bone. J Orthop Res 8:592–603PubMed Keller TS, Mao Z, Spengler DM (1990) Young’s modulus, bending strength, and tissue physical properties of human compact bone. J Orthop Res 8:592–603PubMed
113.
Zurück zum Zitat McNerny EM, Gong B, Morris MD, Kohn DH (2014) Bone fracture toughness and strength correlate with collagen cross-link maturity in a dose-controlled lathyrism mouse model. J Bone Miner Res 30:446–455 McNerny EM, Gong B, Morris MD, Kohn DH (2014) Bone fracture toughness and strength correlate with collagen cross-link maturity in a dose-controlled lathyrism mouse model. J Bone Miner Res 30:446–455
114.
Zurück zum Zitat Vashishth D, Gibson GJ, Khoury JI, Schaffler MB, Kimura J, Fyhrie DP (2001) Influence of nonenzymatic glycation on biomechanical properties of cortical bone. Bone 28:195–201PubMed Vashishth D, Gibson GJ, Khoury JI, Schaffler MB, Kimura J, Fyhrie DP (2001) Influence of nonenzymatic glycation on biomechanical properties of cortical bone. Bone 28:195–201PubMed
115.
Zurück zum Zitat Tang SY, Zeenath U, Vashishth D (2007) Effects of non-enzymatic glycation on cancellous bone fragility. Bone 40:1144–1151PubMedCentralPubMed Tang SY, Zeenath U, Vashishth D (2007) Effects of non-enzymatic glycation on cancellous bone fragility. Bone 40:1144–1151PubMedCentralPubMed
116.
Zurück zum Zitat Kopp J, Bonnet M, Renou JP (1990) Effect of collagen crosslinking on collagen-water interactions (a Dsc investigation). Matrix 9:443–450 Kopp J, Bonnet M, Renou JP (1990) Effect of collagen crosslinking on collagen-water interactions (a Dsc investigation). Matrix 9:443–450
117.
Zurück zum Zitat Miles CA, Avery NC, Rodin VV, Bailey AJ (2005) The increase in denaturation temperature following cross-linking of collagen is caused by dehydration of the fibres. J Mol Biol 346:551–556PubMed Miles CA, Avery NC, Rodin VV, Bailey AJ (2005) The increase in denaturation temperature following cross-linking of collagen is caused by dehydration of the fibres. J Mol Biol 346:551–556PubMed
Metadaten
Titel
The Role of Water Compartments in the Material Properties of Cortical Bone
verfasst von
Mathilde Granke
Mark D. Does
Jeffry S. Nyman
Publikationsdatum
01.09.2015
Verlag
Springer US
Erschienen in
Calcified Tissue International / Ausgabe 3/2015
Print ISSN: 0171-967X
Elektronische ISSN: 1432-0827
DOI
https://doi.org/10.1007/s00223-015-9977-5

Weitere Artikel der Ausgabe 3/2015

Calcified Tissue International 3/2015 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

„Überwältigende“ Evidenz für Tripeltherapie beim metastasierten Prostata-Ca.

22.05.2024 Prostatakarzinom Nachrichten

Patienten mit metastasiertem hormonsensitivem Prostatakarzinom sollten nicht mehr mit einer alleinigen Androgendeprivationstherapie (ADT) behandelt werden, mahnt ein US-Team nach Sichtung der aktuellen Datenlage. Mit einer Tripeltherapie haben die Betroffenen offenbar die besten Überlebenschancen.

So sicher sind Tattoos: Neue Daten zur Risikobewertung

22.05.2024 Melanom Nachrichten

Das größte medizinische Problem bei Tattoos bleiben allergische Reaktionen. Melanome werden dadurch offensichtlich nicht gefördert, die Farbpigmente könnten aber andere Tumoren begünstigen.

CAR-M-Zellen: Warten auf das große Fressen

22.05.2024 Onkologische Immuntherapie Nachrichten

Auch myeloide Immunzellen lassen sich mit chimären Antigenrezeptoren gegen Tumoren ausstatten. Solche CAR-Fresszell-Therapien werden jetzt für solide Tumoren entwickelt. Künftig soll dieser Prozess nicht mehr ex vivo, sondern per mRNA im Körper der Betroffenen erfolgen.

Frühzeitige HbA1c-Kontrolle macht sich lebenslang bemerkbar

22.05.2024 Typ-2-Diabetes Nachrichten

Menschen mit Typ-2-Diabetes von Anfang an intensiv BZ-senkend zu behandeln, wirkt sich positiv auf Komplikationen und Mortalität aus – und das offenbar lebenslang, wie eine weitere Nachfolgeuntersuchung der UKPD-Studie nahelegt.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.