Skip to main content
Erschienen in: European Journal of Nuclear Medicine and Molecular Imaging 4/2008

01.04.2008 | Revwie Article

Current concepts on imaging in radiotherapy

verfasst von: Michela Lecchi, Piero Fossati, Federica Elisei, Roberto Orecchia, Giovanni Lucignani

Erschienen in: European Journal of Nuclear Medicine and Molecular Imaging | Ausgabe 4/2008

Einloggen, um Zugang zu erhalten

Abstract

New high-precision radiotherapy (RT) techniques, such as intensity-modulated radiation therapy (IMRT) or hadrontherapy, allow better dose distribution within the target and spare a larger portion of normal tissue than conventional RT. These techniques require accurate tumour volume delineation and intrinsic characterization, as well as verification of target localisation and monitoring of organ motion and response assessment during treatment. These tasks are strongly dependent on imaging technologies. Among these, computed tomography (CT), magnetic resonance imaging (MRI), ultrasonography (US) and positron emission tomography (PET) have been applied in high-precision RT. For tumour volume delineation and characterization, PET has brought an additional dimension to the management of cancer patients by allowing the incorporation of crucial functional and molecular images in RT treatment planning, i.e. direct evaluation of tumour metabolism, cell proliferation, apoptosis, hypoxia and angiogenesis. The combination of PET and CT in a single imaging system (PET/CT) to obtain a fused anatomical and functional dataset is now emerging as a promising tool in radiotherapy departments for delineation of tumour volumes and optimization of treatment plans. Another exciting new area is image-guided radiotherapy (IGRT), which focuses on the potential benefit of advanced imaging and image registration to improve precision, daily target localization and monitoring during treatment, thus reducing morbidity and potentially allowing the safe delivery of higher doses. The variety of IGRT systems is rapidly expanding, including cone beam CT and US. This article examines the increasing role of imaging techniques in the entire process of high-precision radiotherapy.
Literatur
1.
Zurück zum Zitat Fenwick JD, Tome WA, Soisson ET, Mehta MP, Rock Mackie T. Tomotherapy and other innovative IMRT delivery systems. Semin Radiat Oncol 2006;16 4:199-208, Oct.PubMedCrossRef Fenwick JD, Tome WA, Soisson ET, Mehta MP, Rock Mackie T. Tomotherapy and other innovative IMRT delivery systems. Semin Radiat Oncol 2006;16 4:199-208, Oct.PubMedCrossRef
2.
Zurück zum Zitat Jereczek-Fossa BA, Krengli M, Orecchia R. Particle beam radiotherapy for head and neck tumors: radiobiological basis and clinical experience. Head Neck 2006;28 8:750-60, Aug.PubMedCrossRef Jereczek-Fossa BA, Krengli M, Orecchia R. Particle beam radiotherapy for head and neck tumors: radiobiological basis and clinical experience. Head Neck 2006;28 8:750-60, Aug.PubMedCrossRef
3.
Zurück zum Zitat Ling CC, Humm J, Larson S, Amols H, Fuks Z, Leibel S, et al. Towards multidimensional radiotherapy (MD-CRT): biological imaging and biological conformality. Int J Radiat Oncol Biol Phys 2000;47 3:551-60, Jun 1.PubMedCrossRef Ling CC, Humm J, Larson S, Amols H, Fuks Z, Leibel S, et al. Towards multidimensional radiotherapy (MD-CRT): biological imaging and biological conformality. Int J Radiat Oncol Biol Phys 2000;47 3:551-60, Jun 1.PubMedCrossRef
4.
Zurück zum Zitat Dawson LA, Sharpe MB. Image-guided radiotherapy: rationale, benefits, and limitations. Lancet Oncol 2006;7 10:848-58, Oct.PubMedCrossRef Dawson LA, Sharpe MB. Image-guided radiotherapy: rationale, benefits, and limitations. Lancet Oncol 2006;7 10:848-58, Oct.PubMedCrossRef
5.
Zurück zum Zitat Jaffray D, Kupelian P, Djemil T, Macklis RM. Review of image-guided radiation therapy. Expert Rev Anticancer Ther 2007;7 1:89-103, Jan.PubMedCrossRef Jaffray D, Kupelian P, Djemil T, Macklis RM. Review of image-guided radiation therapy. Expert Rev Anticancer Ther 2007;7 1:89-103, Jan.PubMedCrossRef
6.
Zurück zum Zitat Sherouse GW, Mosher CE, Novins KL, Rosenmann JG, Chaney EL. Virtual simulation: concept and implementation. In: Bruinvis IAD, van der Giessen PH, van Kleffens HJ, Wittkamper FW, editors. Ninth international conference on the use of computers in radiation therapy. Amsterdam, The Netherlands: North Holland Publishing Co.; 1987, pp. 433-6. Sherouse GW, Mosher CE, Novins KL, Rosenmann JG, Chaney EL. Virtual simulation: concept and implementation. In: Bruinvis IAD, van der Giessen PH, van Kleffens HJ, Wittkamper FW, editors. Ninth international conference on the use of computers in radiation therapy. Amsterdam, The Netherlands: North Holland Publishing Co.; 1987, pp. 433-6.
7.
Zurück zum Zitat Baker GR. Localization: conventional and CT simulation. Br J Radiol 2006;79 Spec No 1:S36-49, Sep.PubMedCrossRef Baker GR. Localization: conventional and CT simulation. Br J Radiol 2006;79 Spec No 1:S36-49, Sep.PubMedCrossRef
8.
Zurück zum Zitat Valentini V, Piermattei A, Morganti AG, Gambacorta MA, Azario L, Macchia G, et al. Virtual simulation: fifteen years later. Rays 2003;28 3:293-8, Jul-Sep.PubMed Valentini V, Piermattei A, Morganti AG, Gambacorta MA, Azario L, Macchia G, et al. Virtual simulation: fifteen years later. Rays 2003;28 3:293-8, Jul-Sep.PubMed
9.
Zurück zum Zitat Caldwell CB, Mah K, Ung YC, Danjoux CE, Balogh JM, Ganguli SN, et al. Observer variation in contouring gross tumor volume in patients with poorly defined non-small-cell lung tumors on CT: the impact of 18-FDG-hybrid PET fusion. Int J Radiat Oncol Biol Phys 2001;51:923-31.PubMedCrossRef Caldwell CB, Mah K, Ung YC, Danjoux CE, Balogh JM, Ganguli SN, et al. Observer variation in contouring gross tumor volume in patients with poorly defined non-small-cell lung tumors on CT: the impact of 18-FDG-hybrid PET fusion. Int J Radiat Oncol Biol Phys 2001;51:923-31.PubMedCrossRef
10.
Zurück zum Zitat Cazzaniga LF, Marinoni MA, Bossi A, Bianchi E, Cagna E, Cosentino D, et al. Interphysician variability in defining the planning target volume in the irradiation of prostate and seminal vesicles. Radiother Oncol 1998;47:293-6.PubMedCrossRef Cazzaniga LF, Marinoni MA, Bossi A, Bianchi E, Cagna E, Cosentino D, et al. Interphysician variability in defining the planning target volume in the irradiation of prostate and seminal vesicles. Radiother Oncol 1998;47:293-6.PubMedCrossRef
11.
Zurück zum Zitat Hermans R, Feron M, Bellon E, Dupont P, Van den Bogaert W, Baert AL. Laryngeal tumor volume measurements determined with CT: a study on intra- and interobserver variability. Int J Radiat Oncol Biol Phys 1998;40:553-7.PubMedCrossRef Hermans R, Feron M, Bellon E, Dupont P, Van den Bogaert W, Baert AL. Laryngeal tumor volume measurements determined with CT: a study on intra- and interobserver variability. Int J Radiat Oncol Biol Phys 1998;40:553-7.PubMedCrossRef
12.
Zurück zum Zitat Hurkmans CW, Borger JH, v Giersbergen A, Cho J, Mijnheer BJ. Variability in target volume delineation on CT scans of the breast. Int J Radiat Oncol Biol Phys 2001;50:1366-72.PubMedCrossRef Hurkmans CW, Borger JH, v Giersbergen A, Cho J, Mijnheer BJ. Variability in target volume delineation on CT scans of the breast. Int J Radiat Oncol Biol Phys 2001;50:1366-72.PubMedCrossRef
13.
Zurück zum Zitat Tai P, Van Dyk J, Yu E, Battista J, Stitt L, Coad T. Variability of target volume delineation in cervical oesophageal cancer. Int J Radiat Oncol Biol Phys 1998;42:277-88.PubMedCrossRef Tai P, Van Dyk J, Yu E, Battista J, Stitt L, Coad T. Variability of target volume delineation in cervical oesophageal cancer. Int J Radiat Oncol Biol Phys 1998;42:277-88.PubMedCrossRef
14.
Zurück zum Zitat Yamamoto M, Nagata Y, Okajima K, Ishigaki T, Murata R, Mizowaki T, et al. Differences in target outline delineation from CT scans of brain tumours using different methods and different observers. Radiother Oncol 1999;50:151-6.PubMedCrossRef Yamamoto M, Nagata Y, Okajima K, Ishigaki T, Murata R, Mizowaki T, et al. Differences in target outline delineation from CT scans of brain tumours using different methods and different observers. Radiother Oncol 1999;50:151-6.PubMedCrossRef
15.
Zurück zum Zitat Khoo VS, Joon DL. New developments in MRI for target volume delineation in radiotherapy. Br J Radiol 2006;79 Spec No 1:S2-15, Sep.PubMedCrossRef Khoo VS, Joon DL. New developments in MRI for target volume delineation in radiotherapy. Br J Radiol 2006;79 Spec No 1:S2-15, Sep.PubMedCrossRef
16.
Zurück zum Zitat Lee YK, Bollet M, Charles-Edwards G, Flower MA, Leach MO, McNair H, et al. Radiotherapy treatment planning of prostate cancer using magnetic resonance imaging alone. Radiother Oncol 2003;66 2:203-16, Feb.PubMedCrossRef Lee YK, Bollet M, Charles-Edwards G, Flower MA, Leach MO, McNair H, et al. Radiotherapy treatment planning of prostate cancer using magnetic resonance imaging alone. Radiother Oncol 2003;66 2:203-16, Feb.PubMedCrossRef
17.
Zurück zum Zitat Thornton AF Jr, Sandler HM, Ten Haken RK, McShan DL, Fraass BA, La Vigne ML, et al. The clinical utility of magnetic resonance imaging in 3-dimensional treatment planning of brain neoplasms. Int J Radiat Oncol Biol Phys 1992;24 4:767-75.PubMedCrossRef Thornton AF Jr, Sandler HM, Ten Haken RK, McShan DL, Fraass BA, La Vigne ML, et al. The clinical utility of magnetic resonance imaging in 3-dimensional treatment planning of brain neoplasms. Int J Radiat Oncol Biol Phys 1992;24 4:767-75.PubMedCrossRef
18.
Zurück zum Zitat Newbold K, Partridge M, Cook G, Sohaib SA, Charles-Edwards E, Rhys-Evans P, et al. Advanced imaging applied to radiotherapy planning in head and neck cancer: a clinical review. Br J Radiol 2006;79 943:554-61, Jul.PubMedCrossRef Newbold K, Partridge M, Cook G, Sohaib SA, Charles-Edwards E, Rhys-Evans P, et al. Advanced imaging applied to radiotherapy planning in head and neck cancer: a clinical review. Br J Radiol 2006;79 943:554-61, Jul.PubMedCrossRef
19.
Zurück zum Zitat Manavis J, Sivridis L, Koukourakis MI. Nasopharyngeal carcinoma: the impact of CT-scan and of MRI on staging, radiotherapy treatment planning, and outcome of the disease. Clin Imaging 2005;29 2:128-33, Mar-Apr.PubMed Manavis J, Sivridis L, Koukourakis MI. Nasopharyngeal carcinoma: the impact of CT-scan and of MRI on staging, radiotherapy treatment planning, and outcome of the disease. Clin Imaging 2005;29 2:128-33, Mar-Apr.PubMed
20.
Zurück zum Zitat Rasch C, Barillot I, Remeijer P, Touw A, van Herk M, Lebesque JV. Definition of the prostate in CT and MRI: a multi-observer study. Int J Radiat Oncol Biol Phys 1999;43 1:57-66, Jan 1.PubMedCrossRef Rasch C, Barillot I, Remeijer P, Touw A, van Herk M, Lebesque JV. Definition of the prostate in CT and MRI: a multi-observer study. Int J Radiat Oncol Biol Phys 1999;43 1:57-66, Jan 1.PubMedCrossRef
21.
22.
Zurück zum Zitat Heenan SD. Magnetic resonance imaging in prostate cancer. Prostate Cancer Prostatic Dis 2004;7 4:282-8.PubMedCrossRef Heenan SD. Magnetic resonance imaging in prostate cancer. Prostate Cancer Prostatic Dis 2004;7 4:282-8.PubMedCrossRef
23.
Zurück zum Zitat Kauczor HU, Zechmann C, Stieltjes B, Weber MA. Functional magnetic resonance imaging for defining the biological target volume. Cancer Imaging 2006;6:51-5, Jun 1.PubMedPubMedCentralCrossRef Kauczor HU, Zechmann C, Stieltjes B, Weber MA. Functional magnetic resonance imaging for defining the biological target volume. Cancer Imaging 2006;6:51-5, Jun 1.PubMedPubMedCentralCrossRef
24.
Zurück zum Zitat Zapotoczna A, Sasso G, Simpson J, Roach M. Current role and future perspectives of magnetic resonance spectroscopy in radiation oncology for prostate cancer. Neoplasia 2007;9 6:455-63, Jun.PubMedPubMedCentralCrossRef Zapotoczna A, Sasso G, Simpson J, Roach M. Current role and future perspectives of magnetic resonance spectroscopy in radiation oncology for prostate cancer. Neoplasia 2007;9 6:455-63, Jun.PubMedPubMedCentralCrossRef
25.
Zurück zum Zitat Payne GS, Leach MO. Applications of magnetic resonance spectroscopy in radiotherapy treatment planning. Br J Radiol 2006;79 Spec No 1:S16-26, Sep.PubMedCrossRef Payne GS, Leach MO. Applications of magnetic resonance spectroscopy in radiotherapy treatment planning. Br J Radiol 2006;79 Spec No 1:S16-26, Sep.PubMedCrossRef
26.
Zurück zum Zitat Pouliot J, Kim Y, Lessard E, Hsu IC, Vigneron DB, Kurhanewicz J. Inverse planning for HDR prostate brachytherapy used to boost dominant intraprostatic lesions defined by magnetic resonance spectroscopy imaging. Int J Radiat Oncol Biol Phys 2004;59 4:1196-207, Jul 15.PubMedCrossRef Pouliot J, Kim Y, Lessard E, Hsu IC, Vigneron DB, Kurhanewicz J. Inverse planning for HDR prostate brachytherapy used to boost dominant intraprostatic lesions defined by magnetic resonance spectroscopy imaging. Int J Radiat Oncol Biol Phys 2004;59 4:1196-207, Jul 15.PubMedCrossRef
27.
Zurück zum Zitat Zanzonico P. PET-based biological imaging for radiation therapy treatment planning. Crit Rev Eukaryot Gene Expr 2006;16 1:61-101.PubMedCrossRef Zanzonico P. PET-based biological imaging for radiation therapy treatment planning. Crit Rev Eukaryot Gene Expr 2006;16 1:61-101.PubMedCrossRef
28.
Zurück zum Zitat Vanuytsel LJ, Vansteenkiste JF, Stroobants SG, De Leyn PR, De Wever W, Verbeken EK, et al. The impact of (18)F-fluoro-2-deoxy-D-glucose positron emission tomography (FDG-PET) lymph node staging on the radiation treatment volumes in patients with non-small cell lung cancer. Radiother Oncol 2000;55 3:317-24, Jun.PubMedCrossRef Vanuytsel LJ, Vansteenkiste JF, Stroobants SG, De Leyn PR, De Wever W, Verbeken EK, et al. The impact of (18)F-fluoro-2-deoxy-D-glucose positron emission tomography (FDG-PET) lymph node staging on the radiation treatment volumes in patients with non-small cell lung cancer. Radiother Oncol 2000;55 3:317-24, Jun.PubMedCrossRef
29.
Zurück zum Zitat Erdi YE, Rosenzweig K, Erdi AK, Macapinlac HA, Hu YC, Braban LE, et al. Radiotherapy treatment planning for patients with non-small cell lung cancer using positron emission tomography (PET). Radiother Oncol 2002;62 1:51-60, Jan.PubMedCrossRef Erdi YE, Rosenzweig K, Erdi AK, Macapinlac HA, Hu YC, Braban LE, et al. Radiotherapy treatment planning for patients with non-small cell lung cancer using positron emission tomography (PET). Radiother Oncol 2002;62 1:51-60, Jan.PubMedCrossRef
30.
Zurück zum Zitat Ashamalla H, Rafla S, Parikh K, Mokhtar B, Goswami G, Kambam S, et al. The contribution of integrated PET/CT to the evolving definition of treatment volumes in radiation treatment planning in lung cancer. Int J Radiat Oncol Biol Phys 2005;63 4:1016-23, Nov 15.PubMedCrossRef Ashamalla H, Rafla S, Parikh K, Mokhtar B, Goswami G, Kambam S, et al. The contribution of integrated PET/CT to the evolving definition of treatment volumes in radiation treatment planning in lung cancer. Int J Radiat Oncol Biol Phys 2005;63 4:1016-23, Nov 15.PubMedCrossRef
31.
Zurück zum Zitat Deniaud-Alexandre E, Touboul E, Lerouge D, Grahek D, Foulquier JN, Petegnief Y, et al. Impact of computed tomography and 18F-deoxyglucose coincidence detection emission tomography image fusion for optimization of conformal radiotherapy in non-small-cell lung cancer. Int J Radiat Oncol Biol Phys 2005;63 5:1432-41, Dec 1.PubMedCrossRef Deniaud-Alexandre E, Touboul E, Lerouge D, Grahek D, Foulquier JN, Petegnief Y, et al. Impact of computed tomography and 18F-deoxyglucose coincidence detection emission tomography image fusion for optimization of conformal radiotherapy in non-small-cell lung cancer. Int J Radiat Oncol Biol Phys 2005;63 5:1432-41, Dec 1.PubMedCrossRef
32.
Zurück zum Zitat Messa C, Ceresoli GL, Rizzo G, Artioli D, Cattaneo M, Castellone P, et al. Feasibility of [18F]FDG-PET and coregistered CT on clinical target volume definition of advanced non-small cell lung cancer. Q J Nucl Med Mol Imaging 2005;49 3:259-66, Sep.PubMed Messa C, Ceresoli GL, Rizzo G, Artioli D, Cattaneo M, Castellone P, et al. Feasibility of [18F]FDG-PET and coregistered CT on clinical target volume definition of advanced non-small cell lung cancer. Q J Nucl Med Mol Imaging 2005;49 3:259-66, Sep.PubMed
33.
Zurück zum Zitat Grills IS, Yan D, Black QC, Wong CY, Martinez AA, Kestin LL. Clinical implications of defining the gross tumor volume with combination of CT and 18FDG-positron emission tomography in non-small-cell lung cancer. Int J Radiat Oncol Biol Phys 2007;67 3:709-19, Mar 1.PubMedCrossRef Grills IS, Yan D, Black QC, Wong CY, Martinez AA, Kestin LL. Clinical implications of defining the gross tumor volume with combination of CT and 18FDG-positron emission tomography in non-small-cell lung cancer. Int J Radiat Oncol Biol Phys 2007;67 3:709-19, Mar 1.PubMedCrossRef
34.
Zurück zum Zitat Moureau-Zabotto L, Touboul E, Lerouge D, Deniaud-Alexandre E, Grahek D, Foulquier JN, et al. Impact of CT and 18F-deoxyglucose positron emission tomography image fusion for conformal radiotherapy in esophageal carcinoma. Int J Radiat Oncol Biol Phys 2005;63 2:340-5, Oct 1.PubMedCrossRef Moureau-Zabotto L, Touboul E, Lerouge D, Deniaud-Alexandre E, Grahek D, Foulquier JN, et al. Impact of CT and 18F-deoxyglucose positron emission tomography image fusion for conformal radiotherapy in esophageal carcinoma. Int J Radiat Oncol Biol Phys 2005;63 2:340-5, Oct 1.PubMedCrossRef
35.
Zurück zum Zitat Vrieze O, Haustermans K, De Wever W, Lerut T, Van Cutsem E, Ectors N, et al. Is there a role for FGD-PET in radiotherapy planning in esophageal carcinoma? Radiother Oncol 2004;73 3:269-75, Dec.PubMedCrossRef Vrieze O, Haustermans K, De Wever W, Lerut T, Van Cutsem E, Ectors N, et al. Is there a role for FGD-PET in radiotherapy planning in esophageal carcinoma? Radiother Oncol 2004;73 3:269-75, Dec.PubMedCrossRef
36.
Zurück zum Zitat Hutchings M, Loft A, Hansen M, Berthelsen AK, Specht L. Clinical impact of FDG-PET/CT in the planning of radiotherapy for early-stage Hodgkin lymphoma. Eur J Haematol 2007;78 3:206-12, Mar.PubMedCrossRef Hutchings M, Loft A, Hansen M, Berthelsen AK, Specht L. Clinical impact of FDG-PET/CT in the planning of radiotherapy for early-stage Hodgkin lymphoma. Eur J Haematol 2007;78 3:206-12, Mar.PubMedCrossRef
37.
Zurück zum Zitat Daisne JF, Duprez T, Weynand B, Lonneux M, Hamoir M, Reychler H, et al. Tumor volume in pharyngolaryngeal squamous cell carcinoma: comparison at CT, MR imaging, and FDG PET and validation with surgical specimen. Radiology 2004;233 1:93-100, Oct.PubMedCrossRef Daisne JF, Duprez T, Weynand B, Lonneux M, Hamoir M, Reychler H, et al. Tumor volume in pharyngolaryngeal squamous cell carcinoma: comparison at CT, MR imaging, and FDG PET and validation with surgical specimen. Radiology 2004;233 1:93-100, Oct.PubMedCrossRef
38.
Zurück zum Zitat Schwartz DL, Ford EC, Rajendran J, Yueh B, Coltrera MD, Virgin J, et al. FDG-PET/CT-guided intensity modulated head and neck radiotherapy: a pilot investigation. Head Neck 2005;27 6:478-87, Jun.PubMedCrossRef Schwartz DL, Ford EC, Rajendran J, Yueh B, Coltrera MD, Virgin J, et al. FDG-PET/CT-guided intensity modulated head and neck radiotherapy: a pilot investigation. Head Neck 2005;27 6:478-87, Jun.PubMedCrossRef
39.
Zurück zum Zitat Gregoire V, Haustermans K, Geets X, Roels S, Lonneux M. PET-based treatment planning in radiotherapy: a new standard? J Nucl Med 2007;48 Suppl 1:68S-77S, Jan. Gregoire V, Haustermans K, Geets X, Roels S, Lonneux M. PET-based treatment planning in radiotherapy: a new standard? J Nucl Med 2007;48 Suppl 1:68S-77S, Jan.
40.
Zurück zum Zitat Lin LL, Mutic S, Malyapa RS, Low DA, Miller TR, Vicic M, et al. Sequential FDG-PET brachytherapy treatment planning in carcinoma of the cervix. Int J Radiat Oncol Biol Phys 2005;63 5:1494-501, Dec 1.PubMedCrossRef Lin LL, Mutic S, Malyapa RS, Low DA, Miller TR, Vicic M, et al. Sequential FDG-PET brachytherapy treatment planning in carcinoma of the cervix. Int J Radiat Oncol Biol Phys 2005;63 5:1494-501, Dec 1.PubMedCrossRef
41.
Zurück zum Zitat Schinagl DA, Kaanders JH, Oyen WJ. From anatomical to biological target volumes: the role of PET in radiation treatment planning. Cancer Imaging 2006;6:S107-16, Oct 31.PubMedPubMedCentralCrossRef Schinagl DA, Kaanders JH, Oyen WJ. From anatomical to biological target volumes: the role of PET in radiation treatment planning. Cancer Imaging 2006;6:S107-16, Oct 31.PubMedPubMedCentralCrossRef
42.
Zurück zum Zitat Allal AS, Dulguerov P, Allaoua M, Haenggeli CA, El-Ghazi el A, Lehmann W, et al. Standardized uptake value of 2-[F-18]fluoro-2-deoxy-d-glucose in predicting outcome in head and neck carcinomas treated by radiotherapy with or without chemotherapy. J Clin Oncol 2002;20:1398-404.PubMedCrossRef Allal AS, Dulguerov P, Allaoua M, Haenggeli CA, El-Ghazi el A, Lehmann W, et al. Standardized uptake value of 2-[F-18]fluoro-2-deoxy-d-glucose in predicting outcome in head and neck carcinomas treated by radiotherapy with or without chemotherapy. J Clin Oncol 2002;20:1398-404.PubMedCrossRef
43.
Zurück zum Zitat Kalff V, Duong C, Drummond EG, Matthews JP, Hicks RJ. Findings on 18F-FDG PET scans after neoadjuvant chemoradiation provides prognostic stratification in patients with locally advanced rectal carcinoma subsequently treated by radical surgery. J Nucl Med 2006;47:14-22.PubMed Kalff V, Duong C, Drummond EG, Matthews JP, Hicks RJ. Findings on 18F-FDG PET scans after neoadjuvant chemoradiation provides prognostic stratification in patients with locally advanced rectal carcinoma subsequently treated by radical surgery. J Nucl Med 2006;47:14-22.PubMed
44.
Zurück zum Zitat Brahme A. Biologically optimized 3-dimensional in vivo predictive assay-based radiation therapy using positron emission tomography-computerized tomography imaging. Acta Oncol 2003;42 2:123-36.PubMedCrossRef Brahme A. Biologically optimized 3-dimensional in vivo predictive assay-based radiation therapy using positron emission tomography-computerized tomography imaging. Acta Oncol 2003;42 2:123-36.PubMedCrossRef
45.
Zurück zum Zitat Albrecht S, Buchegger F, Soloviev D, Zaidi H, Vees H, Khan HG, et al. (11)C-acetate PET in the early evaluation of prostate cancer recurrence. Eur J Nucl Med Mol Imaging 2007;34 2:185-96, Feb.PubMedCrossRef Albrecht S, Buchegger F, Soloviev D, Zaidi H, Vees H, Khan HG, et al. (11)C-acetate PET in the early evaluation of prostate cancer recurrence. Eur J Nucl Med Mol Imaging 2007;34 2:185-96, Feb.PubMedCrossRef
46.
Zurück zum Zitat Erdi YE, Mawlawi O, Larson SM, Imbriaco M, Yeung H, Finn R, et al. Segmentation of lung lesion volume by adaptive positron emission tomography image thresholding. Cancer 1997;80 12 Suppl:2505-9, Dec 15.PubMedCrossRef Erdi YE, Mawlawi O, Larson SM, Imbriaco M, Yeung H, Finn R, et al. Segmentation of lung lesion volume by adaptive positron emission tomography image thresholding. Cancer 1997;80 12 Suppl:2505-9, Dec 15.PubMedCrossRef
47.
Zurück zum Zitat Biehl KJ, Kong FM, Dehdashti F, Jin JY, Mutic S, El Naqa I, et al. 18F-FDG PET definition of gross tumour volume for radiotherapy of non-small cell lung cancer: is a single standardized uptake value threshold approach appropriate? J Nucl Med 2006;47 11:1808-12.PubMed Biehl KJ, Kong FM, Dehdashti F, Jin JY, Mutic S, El Naqa I, et al. 18F-FDG PET definition of gross tumour volume for radiotherapy of non-small cell lung cancer: is a single standardized uptake value threshold approach appropriate? J Nucl Med 2006;47 11:1808-12.PubMed
48.
Zurück zum Zitat Jentzen W, Freudenberg L, Eising EG, Heinze M, Brandau W, Bockisch A. Segmentation of PET volumes by iterative image thresholding. J Nucl Med 2007;48 1:108-14, Jan.PubMed Jentzen W, Freudenberg L, Eising EG, Heinze M, Brandau W, Bockisch A. Segmentation of PET volumes by iterative image thresholding. J Nucl Med 2007;48 1:108-14, Jan.PubMed
49.
Zurück zum Zitat Daisne JF, Sibomana M, Bol A, Doumont T, Lonneux M, Gregoire V. Tri-dimensional automatic segmentation of PET volumes based on measured source-to-background ratios: influence of reconstruction algorithms. Radiother Oncol 2003;69 3:247-50, Dec.PubMedCrossRef Daisne JF, Sibomana M, Bol A, Doumont T, Lonneux M, Gregoire V. Tri-dimensional automatic segmentation of PET volumes based on measured source-to-background ratios: influence of reconstruction algorithms. Radiother Oncol 2003;69 3:247-50, Dec.PubMedCrossRef
50.
Zurück zum Zitat Lucignani G, Paganelli G, Bombardieri E. The use of standardized uptake values for assessing FDG uptake with PET in oncology: a clinical perspective. Nucl Med Commun 2004;25 7:651-6, Jul.PubMedCrossRef Lucignani G, Paganelli G, Bombardieri E. The use of standardized uptake values for assessing FDG uptake with PET in oncology: a clinical perspective. Nucl Med Commun 2004;25 7:651-6, Jul.PubMedCrossRef
51.
Zurück zum Zitat Erdi YE, Nehmeh SA, Pan T, Pevsner A, Rosenzweig KE, Mageras G, et al. The CT motion quantitation of lung lesions and its impact on PET-measured SUVs. J Nucl Med 2004;45 8:1287-92, Aug.PubMed Erdi YE, Nehmeh SA, Pan T, Pevsner A, Rosenzweig KE, Mageras G, et al. The CT motion quantitation of lung lesions and its impact on PET-measured SUVs. J Nucl Med 2004;45 8:1287-92, Aug.PubMed
52.
Zurück zum Zitat Somer EJ. PACS man: questioning nuclear medicine and PET integration. Nucl Med Commun 2006;27 8:601-2, Aug.PubMedCrossRef Somer EJ. PACS man: questioning nuclear medicine and PET integration. Nucl Med Commun 2006;27 8:601-2, Aug.PubMedCrossRef
53.
Zurück zum Zitat Polizzari CA, Chen GT, Spelbring DR, Weichselbaum RR, Chen CT. Accurate three-dimensional registration of CT, PET, and/or MR images of the brain. J Comput Assist Tomogr 1989;13:20-26, Aug.CrossRef Polizzari CA, Chen GT, Spelbring DR, Weichselbaum RR, Chen CT. Accurate three-dimensional registration of CT, PET, and/or MR images of the brain. J Comput Assist Tomogr 1989;13:20-26, Aug.CrossRef
54.
Zurück zum Zitat Wells WM, Viola P, Atsumi H, Nakajima S, Kikinis R. Multi-modal volume registration by maximization of mutual information. Med Image Anal 1996;1 1:35-51, Mar.PubMedCrossRef Wells WM, Viola P, Atsumi H, Nakajima S, Kikinis R. Multi-modal volume registration by maximization of mutual information. Med Image Anal 1996;1 1:35-51, Mar.PubMedCrossRef
55.
Zurück zum Zitat Slomka PJ. Software approach to merging molecular with anatomic information. J Nucl Med 2004;45 Suppl 1:36S-45S, Jan.PubMed Slomka PJ. Software approach to merging molecular with anatomic information. J Nucl Med 2004;45 Suppl 1:36S-45S, Jan.PubMed
56.
Zurück zum Zitat De Ruysscher D, Wanders S, Minken A, Lumens A, Schiffelers J, Stultiens C, et al. Effects of radiotherapy planning with a dedicated combined PET-CT-simulator of patients with non-small cell lung cancer on dose limiting normal tissues and radiation dose-escalation: a planning study. Radiother Oncol 2005;77 1:5-10, Oct.PubMedCrossRef De Ruysscher D, Wanders S, Minken A, Lumens A, Schiffelers J, Stultiens C, et al. Effects of radiotherapy planning with a dedicated combined PET-CT-simulator of patients with non-small cell lung cancer on dose limiting normal tissues and radiation dose-escalation: a planning study. Radiother Oncol 2005;77 1:5-10, Oct.PubMedCrossRef
57.
Zurück zum Zitat Shao Y, Cherry SR, Farahani K, Slates R, Silverman RW, Meadors K, et al. Development of a PET detector system compatible with MRI/NMR systems. IEEE Trans Nucl Sci 1997;44:1167-71.CrossRef Shao Y, Cherry SR, Farahani K, Slates R, Silverman RW, Meadors K, et al. Development of a PET detector system compatible with MRI/NMR systems. IEEE Trans Nucl Sci 1997;44:1167-71.CrossRef
58.
Zurück zum Zitat Farahani K, Slates R, Shao Y, Silverman R, Cherry S. Contemporaneous positron emission tomography and MR imaging at 1.5 T. J Magn Reson Imaging 1999;9 3:497-500, Mar.PubMedCrossRef Farahani K, Slates R, Shao Y, Silverman R, Cherry S. Contemporaneous positron emission tomography and MR imaging at 1.5 T. J Magn Reson Imaging 1999;9 3:497-500, Mar.PubMedCrossRef
59.
Zurück zum Zitat Catana C, Wu Y, Judenhofer MS, Qi J, Pichler BJ, Cherry SR. Simultaneous acquisition of multislice PET and MR images: initial results with a MR-compatible PET scanner. J Nucl Med 2006;47 12:1968-76, Dec.PubMed Catana C, Wu Y, Judenhofer MS, Qi J, Pichler BJ, Cherry SR. Simultaneous acquisition of multislice PET and MR images: initial results with a MR-compatible PET scanner. J Nucl Med 2006;47 12:1968-76, Dec.PubMed
60.
Zurück zum Zitat Hurkmans CW, Remeijer P, Lebesque JV, Mijnheer BJ. Set-up verification using portal imaging; review of current clinical practice. Radiother Oncol 2001;58 2:105-20, Feb.PubMedCrossRef Hurkmans CW, Remeijer P, Lebesque JV, Mijnheer BJ. Set-up verification using portal imaging; review of current clinical practice. Radiother Oncol 2001;58 2:105-20, Feb.PubMedCrossRef
61.
Zurück zum Zitat Peignaux K, Crehange G, Truc G, Barillot I, Naudy S, Maingon P. High precision radiotherapy with ultrasonic imaging guidance. Cancer Radiother 2006;10 5:231-4, Sep.PubMedCrossRef Peignaux K, Crehange G, Truc G, Barillot I, Naudy S, Maingon P. High precision radiotherapy with ultrasonic imaging guidance. Cancer Radiother 2006;10 5:231-4, Sep.PubMedCrossRef
62.
Zurück zum Zitat Kupelian PA, Langen KM, Willoughby TR, Wagner TH, Zeidan OA, Meeks SL. Daily variations in the position of the prostate bed in patients with prostate cancer receiving postoperative external beam radiation therapy. Int J Radiat Oncol Biol Phys 2006;66 2:593-6, Oct 1.PubMedCrossRef Kupelian PA, Langen KM, Willoughby TR, Wagner TH, Zeidan OA, Meeks SL. Daily variations in the position of the prostate bed in patients with prostate cancer receiving postoperative external beam radiation therapy. Int J Radiat Oncol Biol Phys 2006;66 2:593-6, Oct 1.PubMedCrossRef
63.
Zurück zum Zitat Meeks SL, Buatti JM, Bouchet LG, Bova FJ, Ryken TC, Pennington EC, et al. Ultrasound-guided extracranial radiosurgery: technique and application. Int J Radiat Oncol Biol Phys 2003;55 4:1092-101, Mar 15.PubMedCrossRef Meeks SL, Buatti JM, Bouchet LG, Bova FJ, Ryken TC, Pennington EC, et al. Ultrasound-guided extracranial radiosurgery: technique and application. Int J Radiat Oncol Biol Phys 2003;55 4:1092-101, Mar 15.PubMedCrossRef
64.
Zurück zum Zitat Morr J, DiPetrillo T, Tsai JS, Engler M, Wazer DE. Implementation and utility of a daily ultrasound-based localization system with intensity-modulated radiotherapy for prostate cancer. Int J Radiat Oncol Biol Phys 2002;53 5:1124-9, Aug 1.PubMedCrossRef Morr J, DiPetrillo T, Tsai JS, Engler M, Wazer DE. Implementation and utility of a daily ultrasound-based localization system with intensity-modulated radiotherapy for prostate cancer. Int J Radiat Oncol Biol Phys 2002;53 5:1124-9, Aug 1.PubMedCrossRef
65.
Zurück zum Zitat Peignaux K, Truc G, Barillot I, Ammor A, Naudy S, Crehange G, et al. Clinical assessment of the use of the Sonarray system for daily prostate localization. Radiother Oncol 2006;81 2:176-8, Nov.PubMedCrossRef Peignaux K, Truc G, Barillot I, Ammor A, Naudy S, Crehange G, et al. Clinical assessment of the use of the Sonarray system for daily prostate localization. Radiother Oncol 2006;81 2:176-8, Nov.PubMedCrossRef
66.
Zurück zum Zitat Soete G, De Cock M, Verellen D, Michielsen D, Keuppens F, Storme G. X-ray-assisted positioning of patients treated by conformal arc radiotherapy for prostate cancer: comparison of setup accuracy using implanted markers versus bony structures. Int J Radiat Oncol Biol Phys 2007;67 3:823-7, Mar 1.PubMedCrossRef Soete G, De Cock M, Verellen D, Michielsen D, Keuppens F, Storme G. X-ray-assisted positioning of patients treated by conformal arc radiotherapy for prostate cancer: comparison of setup accuracy using implanted markers versus bony structures. Int J Radiat Oncol Biol Phys 2007;67 3:823-7, Mar 1.PubMedCrossRef
67.
Zurück zum Zitat Cheng CW, Wong J, Grimm L, Chow M, Uematsu M, Fung A. Commissioning and clinical implementation of a sliding gantry CT scanner installed in an existing treatment room and early clinical experience for precise tumor localization. Am J Clin Oncol 2003;26 3:e28-36, Jun.PubMed Cheng CW, Wong J, Grimm L, Chow M, Uematsu M, Fung A. Commissioning and clinical implementation of a sliding gantry CT scanner installed in an existing treatment room and early clinical experience for precise tumor localization. Am J Clin Oncol 2003;26 3:e28-36, Jun.PubMed
68.
Zurück zum Zitat Thieke C, Malsch U, Schlegel W, Debus J, Huber P, Bendl R, et al. Kilovoltage CT using a linac-CT scanner combination. Br J Radiol 2006;79 Spec No 1:S79-86, Sep.PubMedCrossRef Thieke C, Malsch U, Schlegel W, Debus J, Huber P, Bendl R, et al. Kilovoltage CT using a linac-CT scanner combination. Br J Radiol 2006;79 Spec No 1:S79-86, Sep.PubMedCrossRef
69.
Zurück zum Zitat de Crevoisier R, Kuban D, Lefkopoulos D. Image-guided radiotherapy by in-room CT-linear accelerator combination. Cancer Radiother 2006;10 5:245-51, Sep.PubMedCrossRef de Crevoisier R, Kuban D, Lefkopoulos D. Image-guided radiotherapy by in-room CT-linear accelerator combination. Cancer Radiother 2006;10 5:245-51, Sep.PubMedCrossRef
70.
Zurück zum Zitat Wong JR, Grimm L, Uematsu M, Oren R, Cheng CW, Merrick S, et al. Image-guided radiotherapy for prostate cancer by CT-linear accelerator combination: prostate movements and dosimetric considerations. Int J Radiat Oncol Biol Phys 2005;61 2:561-9, Feb 1.PubMedCrossRef Wong JR, Grimm L, Uematsu M, Oren R, Cheng CW, Merrick S, et al. Image-guided radiotherapy for prostate cancer by CT-linear accelerator combination: prostate movements and dosimetric considerations. Int J Radiat Oncol Biol Phys 2005;61 2:561-9, Feb 1.PubMedCrossRef
71.
Zurück zum Zitat Barker JL Jr, Garden AS, Ang KK, O’Daniel JC, Wang H, Court LE, et al. Quantification of volumetric and geometric changes occurring during fractionated radiotherapy for head-and-neck cancer using an integrated CT/linear accelerator system. Int J Radiat Oncol Biol Phys 2004;59 4:960-70, Jul 15.PubMedCrossRef Barker JL Jr, Garden AS, Ang KK, O’Daniel JC, Wang H, Court LE, et al. Quantification of volumetric and geometric changes occurring during fractionated radiotherapy for head-and-neck cancer using an integrated CT/linear accelerator system. Int J Radiat Oncol Biol Phys 2004;59 4:960-70, Jul 15.PubMedCrossRef
72.
Zurück zum Zitat Chang EL, Shiu AS, Lii MF, Rhines LD, Mendel E, Mahajan A, et al. Phase I clinical evaluation of near-simultaneous computed tomographic image-guided stereotactic body radiotherapy for spinal metastases. Int J Radiat Oncol Biol Phys 2004;59 5:1288-94, Aug 1.PubMedCrossRef Chang EL, Shiu AS, Lii MF, Rhines LD, Mendel E, Mahajan A, et al. Phase I clinical evaluation of near-simultaneous computed tomographic image-guided stereotactic body radiotherapy for spinal metastases. Int J Radiat Oncol Biol Phys 2004;59 5:1288-94, Aug 1.PubMedCrossRef
73.
Zurück zum Zitat Oelfke U, Tucking T, Nill S, Seeber A, Hesse B, Huber P, et al. Linac-integrated kV-cone beam CT: technical features and first applications. Med Dosim 2006;31 1:62-70, Spring.PubMedCrossRef Oelfke U, Tucking T, Nill S, Seeber A, Hesse B, Huber P, et al. Linac-integrated kV-cone beam CT: technical features and first applications. Med Dosim 2006;31 1:62-70, Spring.PubMedCrossRef
74.
Zurück zum Zitat Sorcini B, Tilikidis A. Clinical application of image-guided radiotherapy, IGRT (on the Varian OBI platform). Cancer Radiother 2006;10 5:252-7, Sep.PubMedCrossRef Sorcini B, Tilikidis A. Clinical application of image-guided radiotherapy, IGRT (on the Varian OBI platform). Cancer Radiother 2006;10 5:252-7, Sep.PubMedCrossRef
75.
Zurück zum Zitat Li T, Schreibmann E, Yang Y, Xing L. Motion correction for improved target localization with on-board cone-beam computed tomography. Phys Med Biol 2006;51 2:253-67, Jan 21.PubMedCrossRef Li T, Schreibmann E, Yang Y, Xing L. Motion correction for improved target localization with on-board cone-beam computed tomography. Phys Med Biol 2006;51 2:253-67, Jan 21.PubMedCrossRef
76.
Zurück zum Zitat Mosleh-Shirazi MA, Evans PM, Swindell W, Webb S, Partridge M. A cone-beam megavoltage CT scanner for treatment verification in conformal radiotherapy. Radiother Oncol 1998;48 3:319-28, Sep.PubMedCrossRef Mosleh-Shirazi MA, Evans PM, Swindell W, Webb S, Partridge M. A cone-beam megavoltage CT scanner for treatment verification in conformal radiotherapy. Radiother Oncol 1998;48 3:319-28, Sep.PubMedCrossRef
77.
Zurück zum Zitat Pouliot J, Bani-Hashemi A, Chen J, Svatos M, Ghelmansarai F, Mitschke M, et al. Low-dose megavoltage cone-beam CT for radiation therapy. Int J Radiat Oncol Biol Phys 2005;61 2:552-60, Feb 1.PubMedCrossRef Pouliot J, Bani-Hashemi A, Chen J, Svatos M, Ghelmansarai F, Mitschke M, et al. Low-dose megavoltage cone-beam CT for radiation therapy. Int J Radiat Oncol Biol Phys 2005;61 2:552-60, Feb 1.PubMedCrossRef
78.
Zurück zum Zitat Kuo JS, Yu C, Petrovich Z, Apuzzo ML. The CyberKnife stereotactic radiosurgery system: description, installation, and an initial evaluation of use and functionality. Neurosurgery 2003;53 5:1235-9, Nov.PubMedCrossRef Kuo JS, Yu C, Petrovich Z, Apuzzo ML. The CyberKnife stereotactic radiosurgery system: description, installation, and an initial evaluation of use and functionality. Neurosurgery 2003;53 5:1235-9, Nov.PubMedCrossRef
79.
Zurück zum Zitat Wong JW, Sharpe MB, Jaffray DA, Kini VR, Robertson JM, Stromberg JS, et al. The use of active breathing control (ABC) to reduce margin for breathing motion. Int J Radiat Oncol Biol Phys 1999;44 4:911-9, Jul 1.PubMedCrossRef Wong JW, Sharpe MB, Jaffray DA, Kini VR, Robertson JM, Stromberg JS, et al. The use of active breathing control (ABC) to reduce margin for breathing motion. Int J Radiat Oncol Biol Phys 1999;44 4:911-9, Jul 1.PubMedCrossRef
80.
Zurück zum Zitat Mah D, Hanley J, Rosenzweig KE, Yorke E, Braban L, Ling CC, et al. Technical aspects of the deep inspiration breath-hold technique in the treatment of thoracic cancer. Int J Radiat Oncol Biol Phys 2000;48 4:1175-85, Nov 1.PubMedCrossRef Mah D, Hanley J, Rosenzweig KE, Yorke E, Braban L, Ling CC, et al. Technical aspects of the deep inspiration breath-hold technique in the treatment of thoracic cancer. Int J Radiat Oncol Biol Phys 2000;48 4:1175-85, Nov 1.PubMedCrossRef
81.
Zurück zum Zitat Mageras GS, Yorke E. Deep inspiration breath hold and respiratory gating strategies for reducing organ motion in radiation treatment. Semin Radiat Oncol 2004;14 1:65-75, Jan.PubMedCrossRef Mageras GS, Yorke E. Deep inspiration breath hold and respiratory gating strategies for reducing organ motion in radiation treatment. Semin Radiat Oncol 2004;14 1:65-75, Jan.PubMedCrossRef
82.
Zurück zum Zitat Minohara S, Kanai T, Endo M, Noda K, Kanazawa M. Respiratory gated irradiation system for heavy-ion radiotherapy. Int J Radiat Oncol Biol Phys 2000;47 4:1097-103, Jul 1.PubMedCrossRef Minohara S, Kanai T, Endo M, Noda K, Kanazawa M. Respiratory gated irradiation system for heavy-ion radiotherapy. Int J Radiat Oncol Biol Phys 2000;47 4:1097-103, Jul 1.PubMedCrossRef
83.
Zurück zum Zitat Kubo D, Hill BC. Respiration gated radiotherapy treatment: a technical study. Physics 1996;41 1:83-91, Jan. Kubo D, Hill BC. Respiration gated radiotherapy treatment: a technical study. Physics 1996;41 1:83-91, Jan.
84.
Zurück zum Zitat Kubo D, Len PM, Minohara S, Mostafavi H. Breathing synchronized radiotherapy program at the University of California Davis Cancer Center. Med Phys 2000;27 2:346-53, Feb.PubMedCrossRef Kubo D, Len PM, Minohara S, Mostafavi H. Breathing synchronized radiotherapy program at the University of California Davis Cancer Center. Med Phys 2000;27 2:346-53, Feb.PubMedCrossRef
85.
Zurück zum Zitat Onimaru R, Shirato H, Fujino M, Suzuki K, Yamazaki K, Nishimura M, et al. The effect of tumor location and respiratory function on tumor movement estimated by real-time tracking radiotherapy (RTRT) system. Int J Radiat Oncol Biol Phys 2005;63 1:164-9, Sep 1.PubMedCrossRef Onimaru R, Shirato H, Fujino M, Suzuki K, Yamazaki K, Nishimura M, et al. The effect of tumor location and respiratory function on tumor movement estimated by real-time tracking radiotherapy (RTRT) system. Int J Radiat Oncol Biol Phys 2005;63 1:164-9, Sep 1.PubMedCrossRef
86.
Zurück zum Zitat Keall PJ, Joshi S, Vedam SS, Siebers JV, Kini VR, Mohan R. Four-dimensional radiotherapy planning for DMLC-based respiratory motion tracking. Med Phys 2005;32 4:942-51, Apr.PubMedCrossRef Keall PJ, Joshi S, Vedam SS, Siebers JV, Kini VR, Mohan R. Four-dimensional radiotherapy planning for DMLC-based respiratory motion tracking. Med Phys 2005;32 4:942-51, Apr.PubMedCrossRef
88.
Zurück zum Zitat Nehmeh SA, Erdi YE, Pan T, Pevsner A, Rosenzweig KE, Yorke E, et al. Four-dimensional (4D) PET/CT imaging of the thorax. Med Phys 2004;31 12:3179-86, Dec.PubMedCrossRef Nehmeh SA, Erdi YE, Pan T, Pevsner A, Rosenzweig KE, Yorke E, et al. Four-dimensional (4D) PET/CT imaging of the thorax. Med Phys 2004;31 12:3179-86, Dec.PubMedCrossRef
89.
Zurück zum Zitat Wolthaus JW, van Herk M, Muller SH, Belderbos JS, Lebesque JV, de Bois JA, et al. Fusion of respiration-correlated PET and CT scans: correlated lung tumour motion in anatomical and functional scans. Phys Med Biol 2005;50 7:1569-83, Apr 7.PubMedCrossRef Wolthaus JW, van Herk M, Muller SH, Belderbos JS, Lebesque JV, de Bois JA, et al. Fusion of respiration-correlated PET and CT scans: correlated lung tumour motion in anatomical and functional scans. Phys Med Biol 2005;50 7:1569-83, Apr 7.PubMedCrossRef
90.
Zurück zum Zitat Willoughby TR, Forbes AR, Buchholz D, Langen KM, Wagner TH, Zeidan OA. Evaluation of an infrared camera and X-ray system using implanted fiducials in patients with lung tumors for gated radiation therapy. Int J Radiat Oncol Biol Phys 2006;66 2:568-75, Oct 1.PubMedCrossRef Willoughby TR, Forbes AR, Buchholz D, Langen KM, Wagner TH, Zeidan OA. Evaluation of an infrared camera and X-ray system using implanted fiducials in patients with lung tumors for gated radiation therapy. Int J Radiat Oncol Biol Phys 2006;66 2:568-75, Oct 1.PubMedCrossRef
91.
Zurück zum Zitat Parodi K, Paganetti H, Cascio E, Flanz JB, Bonab AA, Alpert NM, et al. PET/CT imaging for treatment verification after proton therapy: a study with plastic phantoms and metallic implants. Med Phys 2007;34 2:419-35, Feb.PubMedPubMedCentralCrossRef Parodi K, Paganetti H, Cascio E, Flanz JB, Bonab AA, Alpert NM, et al. PET/CT imaging for treatment verification after proton therapy: a study with plastic phantoms and metallic implants. Med Phys 2007;34 2:419-35, Feb.PubMedPubMedCentralCrossRef
92.
Zurück zum Zitat Mockel D, Muller H, Pawelke J, Sommer M, Will E, Enghardt W. Quantification of beta(+) activity generated by hard photons by means of PET. Phys Med Biol 2007;52 9:2515-30, May 7.PubMedCrossRef Mockel D, Muller H, Pawelke J, Sommer M, Will E, Enghardt W. Quantification of beta(+) activity generated by hard photons by means of PET. Phys Med Biol 2007;52 9:2515-30, May 7.PubMedCrossRef
93.
Zurück zum Zitat Parodi K, Enghardt W, Haberer T. In-beam PET measurements of β+ radioactivity induced by proton beams. Phys 2002;47 1:21-36, Jan 7. Parodi K, Enghardt W, Haberer T. In-beam PET measurements of β+ radioactivity induced by proton beams. Phys 2002;47 1:21-36, Jan 7.
94.
Zurück zum Zitat Ponisch F, Parodi K, Hasch BG, Enghardt W. The modelling of positron emitter production and PET imaging during carbon ion therapy. Phys Med Biol 2004;49 23:5217-32, Dec 7.PubMedCrossRef Ponisch F, Parodi K, Hasch BG, Enghardt W. The modelling of positron emitter production and PET imaging during carbon ion therapy. Phys Med Biol 2004;49 23:5217-32, Dec 7.PubMedCrossRef
95.
Zurück zum Zitat Enghardt W, Fromm WD, Geissel H, Heller H, Kraft G, Magel A, et al. The spatial distribution of positron-emitting nuclei generated by relativistic light ion beams in organic matter. Phys Med Biol 1992;37:2127.CrossRef Enghardt W, Fromm WD, Geissel H, Heller H, Kraft G, Magel A, et al. The spatial distribution of positron-emitting nuclei generated by relativistic light ion beams in organic matter. Phys Med Biol 1992;37:2127.CrossRef
96.
Zurück zum Zitat Pawelke J, Byars L, Enghardt W, Fromm WD, Geissel H, Hasch BG, et al. The investigation of different cameras for in-beam PET imaging. Phys Med Biol 1996;41:279-96.PubMedCrossRef Pawelke J, Byars L, Enghardt W, Fromm WD, Geissel H, Hasch BG, et al. The investigation of different cameras for in-beam PET imaging. Phys Med Biol 1996;41:279-96.PubMedCrossRef
97.
Zurück zum Zitat Surti S, Karp JS, Muehllehner G. Image quality assessment of LaBr3-based whole-body 3D PET scanners: a Monte Carlo evaluation. Phys Med Biol 2004;49 19:4593-610, Oct 7.PubMedCrossRef Surti S, Karp JS, Muehllehner G. Image quality assessment of LaBr3-based whole-body 3D PET scanners: a Monte Carlo evaluation. Phys Med Biol 2004;49 19:4593-610, Oct 7.PubMedCrossRef
98.
Zurück zum Zitat Piermattei A, Fidanzio A, Stimato G, Azario L, Grimaldi L, D’Onofrio G, et al. In vivo dosimetry by an aSi-based EPID. Med Phys 2006;33 11:4414-22, Nov.PubMedCrossRef Piermattei A, Fidanzio A, Stimato G, Azario L, Grimaldi L, D’Onofrio G, et al. In vivo dosimetry by an aSi-based EPID. Med Phys 2006;33 11:4414-22, Nov.PubMedCrossRef
99.
Zurück zum Zitat Messa C, Di Muzio N, Picchio M, Gilardi MC, Bettinardi V, Fazio F. PET/CT and radiotherapy. Q J Nucl Med Mol Imaging 2006;50 1:4-14, Mar.PubMed Messa C, Di Muzio N, Picchio M, Gilardi MC, Bettinardi V, Fazio F. PET/CT and radiotherapy. Q J Nucl Med Mol Imaging 2006;50 1:4-14, Mar.PubMed
100.
Zurück zum Zitat Molthoff CF, Klabbers BM, Berkhof J, Felten JT, van Gelder M, Windhorst AD, et al. Monitoring Response to Radiotherapy in Human Squamous Cell Cancer Bearing Nude Mice: Comparison of 2′-deoxy-2′-[(18)F]fluoro-d-glucose (FDG) and 3′-[ (18)F]fluoro-3′-deoxythymidine (FLT). Mol Imaging Biol 2007, Jul 21, in press. Molthoff CF, Klabbers BM, Berkhof J, Felten JT, van Gelder M, Windhorst AD, et al. Monitoring Response to Radiotherapy in Human Squamous Cell Cancer Bearing Nude Mice: Comparison of 2′-deoxy-2′-[(18)F]fluoro-d-glucose (FDG) and 3′-[ (18)F]fluoro-3′-deoxythymidine (FLT). Mol Imaging Biol 2007, Jul 21, in press.
101.
102.
Zurück zum Zitat Ergün EL, Kara PO, Gedik GK, Kars A, Turker A, Caner B. The role of Tc-99m (V) DMSA scintigraphy in the diagnosis and follow-up of lung cancer lesions. Ann Nucl Med 2007;21 5:275-83, Jul.PubMedCrossRef Ergün EL, Kara PO, Gedik GK, Kars A, Turker A, Caner B. The role of Tc-99m (V) DMSA scintigraphy in the diagnosis and follow-up of lung cancer lesions. Ann Nucl Med 2007;21 5:275-83, Jul.PubMedCrossRef
103.
Zurück zum Zitat Nestle U, Schaefer-Schuler A, Kremp S, Groeschel A, Hellwig D, Rube C, et al. Target volume definition for 18F-FDG PET-positive lymph nodes in radiotherapy of patients with non-small cell lung cancer. Eur J Nucl Med Mol Imaging 2007;34 4:453-62, Apr.PubMedCrossRef Nestle U, Schaefer-Schuler A, Kremp S, Groeschel A, Hellwig D, Rube C, et al. Target volume definition for 18F-FDG PET-positive lymph nodes in radiotherapy of patients with non-small cell lung cancer. Eur J Nucl Med Mol Imaging 2007;34 4:453-62, Apr.PubMedCrossRef
104.
Zurück zum Zitat Ciernik IF, Brown DW, Schmid D, Hany T, Egli P, Davis JB. 3D-segmentation of the (18)F-choline PET signal for target volume definition in radiation therapy of the prostate. Technol Cancer Res Treat 2007;6 1:23-30, Feb.PubMedCrossRef Ciernik IF, Brown DW, Schmid D, Hany T, Egli P, Davis JB. 3D-segmentation of the (18)F-choline PET signal for target volume definition in radiation therapy of the prostate. Technol Cancer Res Treat 2007;6 1:23-30, Feb.PubMedCrossRef
105.
Zurück zum Zitat Yoshida S, Nakagomi K, Goto S, Futatsubashi M, Torizuka T. 11C-Choline positron emission tomography in prostate cancer: primary staging and recurrent site staging. Urol Int 2005;74:214-20.PubMedCrossRef Yoshida S, Nakagomi K, Goto S, Futatsubashi M, Torizuka T. 11C-Choline positron emission tomography in prostate cancer: primary staging and recurrent site staging. Urol Int 2005;74:214-20.PubMedCrossRef
106.
Zurück zum Zitat de Jong IJ, Pruim J, Elsinga PH, Vaalburg W, Mensink HJ. 11C-choline positron emission tomography for the evaluation after treatment of localized prostate cancer. Eur Urol 2003;44 1:32-8, Jul.PubMedCrossRef de Jong IJ, Pruim J, Elsinga PH, Vaalburg W, Mensink HJ. 11C-choline positron emission tomography for the evaluation after treatment of localized prostate cancer. Eur Urol 2003;44 1:32-8, Jul.PubMedCrossRef
107.
Zurück zum Zitat Grosu AL, Weber WA, Astner ST, Adam M, Krause BJ, Schwaiger M, et al. 11C-methionine PET improves the target volume delineation of meningiomastreated with stereotactic fractionated radiotherapy. Int J Radiat Oncol Biol Phys 2006;66 2:339-44, Oct 1.PubMedCrossRef Grosu AL, Weber WA, Astner ST, Adam M, Krause BJ, Schwaiger M, et al. 11C-methionine PET improves the target volume delineation of meningiomastreated with stereotactic fractionated radiotherapy. Int J Radiat Oncol Biol Phys 2006;66 2:339-44, Oct 1.PubMedCrossRef
108.
Zurück zum Zitat Ceyssens S, Van Laere K, de Groot T, Goffin J, Bormans G, Mortelmans L. [11C]methionine PET, histopathology, and survival in primary brain tumors and recurrence. AJNR Am J Neuroradiol 2006;27 7:1432-7, Aug.PubMed Ceyssens S, Van Laere K, de Groot T, Goffin J, Bormans G, Mortelmans L. [11C]methionine PET, histopathology, and survival in primary brain tumors and recurrence. AJNR Am J Neuroradiol 2006;27 7:1432-7, Aug.PubMed
109.
Zurück zum Zitat Nariai T, Tanaka Y, Wakimoto H, Aoyagi M, Tamaki M, Ishiwata K, et al. Usefulness of L-[methyl-11C] methionine-positron emission tomography as a biological monitoring tool in the treatment of glioma. Neurosurgery 2005;103 3:498-507, Sep.CrossRef Nariai T, Tanaka Y, Wakimoto H, Aoyagi M, Tamaki M, Ishiwata K, et al. Usefulness of L-[methyl-11C] methionine-positron emission tomography as a biological monitoring tool in the treatment of glioma. Neurosurgery 2005;103 3:498-507, Sep.CrossRef
110.
Zurück zum Zitat Tsuyuguchi N, Takami T, Sunada I, Iwai Y, Yamanaka K, Tanaka K, et al. Ann methionine positron emission tomography for differentiation of recurrent brain tumor and radiation necrosis after stereotactic radiosurgery-in malignant glioma. Nucl Med 2004;18 4:291-6, Jun.CrossRef Tsuyuguchi N, Takami T, Sunada I, Iwai Y, Yamanaka K, Tanaka K, et al. Ann methionine positron emission tomography for differentiation of recurrent brain tumor and radiation necrosis after stereotactic radiosurgery-in malignant glioma. Nucl Med 2004;18 4:291-6, Jun.CrossRef
111.
Zurück zum Zitat Grosu AL, Lachner R, Wiedenmann N, Stark S, Thamm R, Kneschaurek P, et al. Validation of a method for automatic image fusion (BrainLAB System) of CT data and 11Cmethionine-PET data for stereotactic radiotherapy using a LINAC: first clinical experience. Int J Radiat Oncol Biol Phys 2003;56 5:1450-63, Aug 1.PubMedCrossRef Grosu AL, Lachner R, Wiedenmann N, Stark S, Thamm R, Kneschaurek P, et al. Validation of a method for automatic image fusion (BrainLAB System) of CT data and 11Cmethionine-PET data for stereotactic radiotherapy using a LINAC: first clinical experience. Int J Radiat Oncol Biol Phys 2003;56 5:1450-63, Aug 1.PubMedCrossRef
112.
Zurück zum Zitat Milker-Zabel S, Zabel-du Bois A, Henze M, Huber P, Schulz-Ertner D, Hoess A, et al. Improved target volume definition for fractionated stereotactic radiotherapy in patients with intracranial meningiomas by correlation of CT, MRI, and [68Ga]-DOTATOC-PET. Int J Radiat Oncol Biol Phys 2006;65 1:222-7, May 1.PubMedCrossRef Milker-Zabel S, Zabel-du Bois A, Henze M, Huber P, Schulz-Ertner D, Hoess A, et al. Improved target volume definition for fractionated stereotactic radiotherapy in patients with intracranial meningiomas by correlation of CT, MRI, and [68Ga]-DOTATOC-PET. Int J Radiat Oncol Biol Phys 2006;65 1:222-7, May 1.PubMedCrossRef
113.
Zurück zum Zitat Thorwarth D, Eschmann S, Paulsen F, Alber M. A model of reoxygenation dynamics of head-and-neck tumors based on serial 18F-fluoromisonidazole positron emission tomography investigations. Int J Radiat Oncol Biol Phys 2007;68 2:515-21, Jun 1.PubMedCrossRef Thorwarth D, Eschmann S, Paulsen F, Alber M. A model of reoxygenation dynamics of head-and-neck tumors based on serial 18F-fluoromisonidazole positron emission tomography investigations. Int J Radiat Oncol Biol Phys 2007;68 2:515-21, Jun 1.PubMedCrossRef
114.
Zurück zum Zitat Gagel B, Reinartz P, Demirel C, Kaiser HJ, Zimny M, Piroth M, et al. BMC [18F] fluoromisonidazole and [18F] fluorodeoxyglucose positron emission tomography in response evaluation after chemo-/radiotherapy of non-small-cell lung cancer: a feasibility study. Cancer 2006;6:51, Mar 4.PubMedPubMedCentral Gagel B, Reinartz P, Demirel C, Kaiser HJ, Zimny M, Piroth M, et al. BMC [18F] fluoromisonidazole and [18F] fluorodeoxyglucose positron emission tomography in response evaluation after chemo-/radiotherapy of non-small-cell lung cancer: a feasibility study. Cancer 2006;6:51, Mar 4.PubMedPubMedCentral
115.
Zurück zum Zitat Thorwarth D, Eschmann SM, Holzner F, Paulsen F, Alber M. Combined uptake of [18F]FDG and [18F]FMISO correlates with radiation therapy outcome in head-and-neck cancer patients. Radiother Oncol 2006;80 2:151-6, Aug.PubMedCrossRef Thorwarth D, Eschmann SM, Holzner F, Paulsen F, Alber M. Combined uptake of [18F]FDG and [18F]FMISO correlates with radiation therapy outcome in head-and-neck cancer patients. Radiother Oncol 2006;80 2:151-6, Aug.PubMedCrossRef
116.
Zurück zum Zitat Eschmann SM, Paulsen F, Reimold M, Dittmann H, Welz S, Reischl G, et al. Prognostic impact of hypoxia imaging with 18F-misonidazole PET in non-small cell lung cancer and head and neck cancer before radiotherapy. J Nucl Med 2005;46 2:253-60, Feb.PubMed Eschmann SM, Paulsen F, Reimold M, Dittmann H, Welz S, Reischl G, et al. Prognostic impact of hypoxia imaging with 18F-misonidazole PET in non-small cell lung cancer and head and neck cancer before radiotherapy. J Nucl Med 2005;46 2:253-60, Feb.PubMed
117.
Zurück zum Zitat Sun A, Sorensen J, Karlsson M, Turesson I, Langstrom B, Nilsson P, et al. 1-[11C]-acetate PET imaging in head and neck cancer-a comparison with 18F-FDG-PET: implications for staging and radiotherapy planning. Eur J Nucl Med Mol Imaging 2007;34 5:651-7, May.PubMedCrossRef Sun A, Sorensen J, Karlsson M, Turesson I, Langstrom B, Nilsson P, et al. 1-[11C]-acetate PET imaging in head and neck cancer-a comparison with 18F-FDG-PET: implications for staging and radiotherapy planning. Eur J Nucl Med Mol Imaging 2007;34 5:651-7, May.PubMedCrossRef
118.
Zurück zum Zitat Oyama N, Miller TR, Dehdashti F, Siegel BA, Fischer KC, Michalski JM, et al. 11Cacetate PET imaging of prostate cancer: detection of recurrent disease at PSA relapse. J Nucl Med 2003;44 4:549-55, Apr.PubMed Oyama N, Miller TR, Dehdashti F, Siegel BA, Fischer KC, Michalski JM, et al. 11Cacetate PET imaging of prostate cancer: detection of recurrent disease at PSA relapse. J Nucl Med 2003;44 4:549-55, Apr.PubMed
119.
Zurück zum Zitat Dehdashti F, Siegel BA, Fischer KC, Michalski JM, Kibel AS, Andriole GL, et al. 11Cacetate PET imaging of prostate cancer: detection of recurrent disease at PSA relapse Oyama N. Miller J Nucl Med 2003;44 4:549-55, Apr.PubMed Dehdashti F, Siegel BA, Fischer KC, Michalski JM, Kibel AS, Andriole GL, et al. 11Cacetate PET imaging of prostate cancer: detection of recurrent disease at PSA relapse Oyama N. Miller J Nucl Med 2003;44 4:549-55, Apr.PubMed
120.
Zurück zum Zitat Xiangsong Z, Weian C. Differentiation of recurrent astrocytoma from radiation necrosis: a pilot study with (13)N-NH (3) PET. J Neurooncol 2007;82 3:305-11, May.PubMedCrossRef Xiangsong Z, Weian C. Differentiation of recurrent astrocytoma from radiation necrosis: a pilot study with (13)N-NH (3) PET. J Neurooncol 2007;82 3:305-11, May.PubMedCrossRef
121.
Zurück zum Zitat Yang YJ, Ryu JS, Kim SY, Oh SJ, Im KC, Lee H, et al. Use of 3′-deoxy-3′-[18F]fluorothymidine PET to monitor early responses to radiation therapy in murine SCCVII tumors. Eur J Nucl Med Mol Imaging 2006;33 4:412-9, Apr.PubMedCrossRef Yang YJ, Ryu JS, Kim SY, Oh SJ, Im KC, Lee H, et al. Use of 3′-deoxy-3′-[18F]fluorothymidine PET to monitor early responses to radiation therapy in murine SCCVII tumors. Eur J Nucl Med Mol Imaging 2006;33 4:412-9, Apr.PubMedCrossRef
122.
Zurück zum Zitat Sugiyama M, Sakahara H, Sato K, Harada N, Fukumoto D, Kakiuchi, et al. Evaluation of 3′-Deoxy-3′-18F-fluorothymidine for monitoring tumor response to radiotherapy and photodynamic therapy in mice. J Nucl Med 2004;45 10:1754-8, Oct.PubMed Sugiyama M, Sakahara H, Sato K, Harada N, Fukumoto D, Kakiuchi, et al. Evaluation of 3′-Deoxy-3′-18F-fluorothymidine for monitoring tumor response to radiotherapy and photodynamic therapy in mice. J Nucl Med 2004;45 10:1754-8, Oct.PubMed
123.
Zurück zum Zitat Chao KS. 3′-deoxy-3′-(18)F-fluorothymidine (FLT) Positron emission tomography for early prediction of response to chemoradiotherapy—a clinical application model of esophageal cancer. Semin Oncol 2007;34 2 Suppl 1:S31-6, Apr.PubMedCrossRef Chao KS. 3′-deoxy-3′-(18)F-fluorothymidine (FLT) Positron emission tomography for early prediction of response to chemoradiotherapy—a clinical application model of esophageal cancer. Semin Oncol 2007;34 2 Suppl 1:S31-6, Apr.PubMedCrossRef
124.
Zurück zum Zitat Chen JC, Chang SM, Hsu FY, Wang HE, Liu RS. MicroPET-based pharmacokinetic analysis of the radiolabeled boron compound [18F]FBPA-F in rats with F98 glioma. Appl Radiat Isot 2004;61 5:887-91, Nov.PubMedCrossRef Chen JC, Chang SM, Hsu FY, Wang HE, Liu RS. MicroPET-based pharmacokinetic analysis of the radiolabeled boron compound [18F]FBPA-F in rats with F98 glioma. Appl Radiat Isot 2004;61 5:887-91, Nov.PubMedCrossRef
Metadaten
Titel
Current concepts on imaging in radiotherapy
verfasst von
Michela Lecchi
Piero Fossati
Federica Elisei
Roberto Orecchia
Giovanni Lucignani
Publikationsdatum
01.04.2008
Verlag
Springer Berlin Heidelberg
Erschienen in
European Journal of Nuclear Medicine and Molecular Imaging / Ausgabe 4/2008
Print ISSN: 1619-7070
Elektronische ISSN: 1619-7089
DOI
https://doi.org/10.1007/s00259-007-0631-y

Weitere Artikel der Ausgabe 4/2008

European Journal of Nuclear Medicine and Molecular Imaging 4/2008 Zur Ausgabe