Skip to main content
Erschienen in: Cancer Immunology, Immunotherapy 3/2007

01.03.2007 | Original Article

Successful induction of clinically competent dendritic cells from granulocyte colony-stimulating factor-mobilized monocytes for cancer vaccine therapy

verfasst von: Yuji Ueda, Tsuyoshi Itoh, Nobuaki Fuji, Sachio Harada, Hiroshi Fujiki, Keiji Shimizu, Atsushi Shiozaki, Arihiro Iwamoto, Takeshi Shimizu, Osam Mazda, Takafumi Kimura, Yoshiaki Sonoda, Masafumi Taniwaki, Hisakazu Yamagishi

Erschienen in: Cancer Immunology, Immunotherapy | Ausgabe 3/2007

Einloggen, um Zugang zu erhalten

Abstract

Recent studies have suggested that dendritic cell (DC)-based immunotherapy is one promising approach for the treatment of cancer. We previously studied the clinical toxicity, feasibility, and efficacy of cancer vaccine therapy with peptide-pulsed DCs. In that study, we used granulocyte colony-stimulating factor (G-CSF)-mobilized peripheral blood monocytes as a cell source of DCs. However, previous investigations have suggested that G-CSF-mobilized peripheral blood monocytes produce reduced levels of proinflammatory cytokines such as interleukin (IL)-12 and tumor necrosis factor (TNF)-α. These T helper (Th)-1-type cytokines are thought to promote antitumor immune response. In this study, we assessed the functional abilities of DCs generated from G-CSF-mobilized monocytes obtained from 13 patients with CEA-positive advanced solid cancers. Peripheral blood mononuclear cells were obtained from leukapheresis products collected before and after systemic administration of G-CSF (subcutaneous administration of high-dose [5–10 μg/kg] human recombinant G-CSF for five consecutive days). In vitro cytokine production profiles after stimulation with lipopolysaccharide (LPS) were compared between monocytes with and without G-CSF mobilization. DCs generated from monocytes were also examined with respect to cytokine production and the capacity to induce peptide-specific T cell responses. Administration of G-CSF was found to efficiently mobilize peripheral blood monocytes. Although G-CSF-mobilized monocytes (G/Mo) less effectively produced Th-1-type cytokines than control monocytes (C/Mo), DCs generated from G/Mo restored the same level of IL-12 production as that seen in DCs generated from C/Mo. T cell induction assay using recall antigen peptide and phenotypic analyses also demonstrated that DCs generated from G/Mo retained characteristics identical to those generated from C/Mo. Our results suggest that G-CSF mobilization can be used to collect monocytes as a cell source for the generation of DCs for cancer immunotherapy. DCs generated in this fashion were pulsed with HLA-A24-restricted CEA epitope peptide and administered to patients safely; immunological responses were induced in some patients.
Literatur
1.
Zurück zum Zitat Timmerman JM, Levy R (1999) Dendritic cell vaccines for cancer immunotherapy. Annu Rev Med 50:507PubMedCrossRef Timmerman JM, Levy R (1999) Dendritic cell vaccines for cancer immunotherapy. Annu Rev Med 50:507PubMedCrossRef
2.
Zurück zum Zitat Nestle FO, Alijagic S, Gilliet M, Sun Y, Grabbe S, Dummer R et al (1998) Vaccination of melanoma patients with peptide- or tumor lysates-pulsed dendritic cells. Nat Med 4:328PubMedCrossRef Nestle FO, Alijagic S, Gilliet M, Sun Y, Grabbe S, Dummer R et al (1998) Vaccination of melanoma patients with peptide- or tumor lysates-pulsed dendritic cells. Nat Med 4:328PubMedCrossRef
3.
Zurück zum Zitat Schuler TB, Schultz ES, Berger TG, Weinlich G, Ebner S, Woerl P et al (2002) Rapid induction of tumor-specific type 1 T helper cells in metastatic melanoma patients by vaccination with mature, cryopreserved, peptide-loaded monocyte-derived dendritic cells. J Exp Med 195:1279PubMedCrossRef Schuler TB, Schultz ES, Berger TG, Weinlich G, Ebner S, Woerl P et al (2002) Rapid induction of tumor-specific type 1 T helper cells in metastatic melanoma patients by vaccination with mature, cryopreserved, peptide-loaded monocyte-derived dendritic cells. J Exp Med 195:1279PubMedCrossRef
4.
Zurück zum Zitat Paneli MC, Wunderlich J, Jeffries J, Wang E, Mixon A, Rosenberg SA et al (2000) Phase 1 study in melanoma-associated antigens MART-1 and gp100. J Immunother 23:487CrossRef Paneli MC, Wunderlich J, Jeffries J, Wang E, Mixon A, Rosenberg SA et al (2000) Phase 1 study in melanoma-associated antigens MART-1 and gp100. J Immunother 23:487CrossRef
5.
Zurück zum Zitat Lau R, Wang F, Jeffery G, Marty V, Kuniyoshi J, Made E et al (2001) Phase I trial of intravenous peptide-pulsed dendritic cells in patients with metastatic melanoma. J Immunother 24:66PubMedCrossRef Lau R, Wang F, Jeffery G, Marty V, Kuniyoshi J, Made E et al (2001) Phase I trial of intravenous peptide-pulsed dendritic cells in patients with metastatic melanoma. J Immunother 24:66PubMedCrossRef
6.
Zurück zum Zitat Murphy GP, Tjoa BA, Simmons SJ, Jarisch J, Bowes VA, Radge H et al (1999) Infusion of dendritic cells pulsed with HLA-A2-specific prostate-specific membrane antigen peptides: a phase II prostate cancer vaccine trial involving patients with hormone-refractory metastatic disease. Prostate 38:73PubMedCrossRef Murphy GP, Tjoa BA, Simmons SJ, Jarisch J, Bowes VA, Radge H et al (1999) Infusion of dendritic cells pulsed with HLA-A2-specific prostate-specific membrane antigen peptides: a phase II prostate cancer vaccine trial involving patients with hormone-refractory metastatic disease. Prostate 38:73PubMedCrossRef
7.
Zurück zum Zitat Horiguchi Y, Nukaya I, Okazawa K, Kawashima I, Fikes J, Sette A et al (2002) Screening of HLA-A24-restricted epitope peptides from prostate-specific membrane antigen that induce specific antitumor cytotoxic T lymphocytes. Clin Cancer Res 8:3885PubMed Horiguchi Y, Nukaya I, Okazawa K, Kawashima I, Fikes J, Sette A et al (2002) Screening of HLA-A24-restricted epitope peptides from prostate-specific membrane antigen that induce specific antitumor cytotoxic T lymphocytes. Clin Cancer Res 8:3885PubMed
8.
Zurück zum Zitat Fong L, Hou Y, Rivas A, Benike C, Yuen A, Fisher GA et al (2001) Altered peptide ligand vaccination with Flt3 ligand expanded dendritic cells for tumor immunotherapy. Proc Natl Acad Sci USA 98:8809PubMedCrossRef Fong L, Hou Y, Rivas A, Benike C, Yuen A, Fisher GA et al (2001) Altered peptide ligand vaccination with Flt3 ligand expanded dendritic cells for tumor immunotherapy. Proc Natl Acad Sci USA 98:8809PubMedCrossRef
9.
Zurück zum Zitat Sadanaga N, Nagashima H, Mashino K, Tahara K, Yamaguchi H, Ohta M et al (2001) Dendritic cell vaccination with MAGE peptide is a novel therapeutic approach for gastrointestinal carcinomas. Clin Cancer Res 7:2277PubMed Sadanaga N, Nagashima H, Mashino K, Tahara K, Yamaguchi H, Ohta M et al (2001) Dendritic cell vaccination with MAGE peptide is a novel therapeutic approach for gastrointestinal carcinomas. Clin Cancer Res 7:2277PubMed
10.
Zurück zum Zitat Ueda Y, Itoh T, Nukaya I, Kawashima I, Okugawa K, Yano Y et al (2004) Dendritic cell-based immunotherapy of cancer with carcinoembryonic antigen-derived, HLA-A24-restricted CTL epitope: clinical outcomes of 18 cases with metastatic gastrointestinal or lung adenocarcinomas. Int J Oncol 24:909PubMed Ueda Y, Itoh T, Nukaya I, Kawashima I, Okugawa K, Yano Y et al (2004) Dendritic cell-based immunotherapy of cancer with carcinoembryonic antigen-derived, HLA-A24-restricted CTL epitope: clinical outcomes of 18 cases with metastatic gastrointestinal or lung adenocarcinomas. Int J Oncol 24:909PubMed
11.
Zurück zum Zitat McIlroy D, Gregoire M (2003) Optimizing dendritic cell-based anticancer immunotherapy: maturation state does have clinical impact. Cancer Immunol Immunother 52:583PubMedCrossRef McIlroy D, Gregoire M (2003) Optimizing dendritic cell-based anticancer immunotherapy: maturation state does have clinical impact. Cancer Immunol Immunother 52:583PubMedCrossRef
12.
Zurück zum Zitat Kessinger A, Armitage JO (1991) The evolving role of autologous peripheral stem cell transplantation following high-dose therapy for malignancies. Blood 77:211PubMed Kessinger A, Armitage JO (1991) The evolving role of autologous peripheral stem cell transplantation following high-dose therapy for malignancies. Blood 77:211PubMed
13.
Zurück zum Zitat Teshima T, Harada M, Takamatsu Y, Makino K, Taniguchi S, Inaba S et al (1992) Cytotoxic drug and cytotoxic drug/G-CSF mobilization of peripheral blood stem cells and their use for autografting. Bone Marrow Transplant 10:215PubMed Teshima T, Harada M, Takamatsu Y, Makino K, Taniguchi S, Inaba S et al (1992) Cytotoxic drug and cytotoxic drug/G-CSF mobilization of peripheral blood stem cells and their use for autografting. Bone Marrow Transplant 10:215PubMed
14.
Zurück zum Zitat Bensinger WI, Martin PJ, Storer B, Clift R, Forman SJ, Negrin R et al (2001) Transplantation of bone marrow as compared with peripheral-blood cells from HLA-identical relatives in patients with hematologic cancers. N Engl J Med 18:175CrossRef Bensinger WI, Martin PJ, Storer B, Clift R, Forman SJ, Negrin R et al (2001) Transplantation of bone marrow as compared with peripheral-blood cells from HLA-identical relatives in patients with hematologic cancers. N Engl J Med 18:175CrossRef
15.
Zurück zum Zitat Saito M, Kiyokawa N, Taguchi T, Suzuki K, Sekino T, Mimori K et al (2002) Granulocyte colony-stimulating factor directly affects human monocytes and modulates cytokine secretion. Exp Hematol 30:1115PubMedCrossRef Saito M, Kiyokawa N, Taguchi T, Suzuki K, Sekino T, Mimori K et al (2002) Granulocyte colony-stimulating factor directly affects human monocytes and modulates cytokine secretion. Exp Hematol 30:1115PubMedCrossRef
16.
Zurück zum Zitat Mielcarek M, Graf L, Johnson G, Torok-Storb B (1998) Production of interleukin-10 by granulocyte colony-stimulating factor-mobilized blood products: a mechanism for monocyte-mediated suppression of T-cell proliferation. Blood 92:215PubMed Mielcarek M, Graf L, Johnson G, Torok-Storb B (1998) Production of interleukin-10 by granulocyte colony-stimulating factor-mobilized blood products: a mechanism for monocyte-mediated suppression of T-cell proliferation. Blood 92:215PubMed
17.
Zurück zum Zitat Boneberg EM, Hareng L, Gantner F, Wendel A, Hartung T (2000) Human monocytes express functional receptors for granulocyte colony-stimulating factor that mediate suppression of monokines and interferon-gamma. Blood 95:270PubMed Boneberg EM, Hareng L, Gantner F, Wendel A, Hartung T (2000) Human monocytes express functional receptors for granulocyte colony-stimulating factor that mediate suppression of monokines and interferon-gamma. Blood 95:270PubMed
18.
Zurück zum Zitat Bensinger WI, Clift RA, Anasetti C, Appelbaum FA, Demirer T, Rowley S et al (1996) Transplantation of allogeneic peripheral blood stem cells mobilized by recombinant human granulocyte colony stimulating factor. Stem Cells 14:90PubMedCrossRef Bensinger WI, Clift RA, Anasetti C, Appelbaum FA, Demirer T, Rowley S et al (1996) Transplantation of allogeneic peripheral blood stem cells mobilized by recombinant human granulocyte colony stimulating factor. Stem Cells 14:90PubMedCrossRef
19.
Zurück zum Zitat Pan L, Delmonte J Jr, Jalen CK, Ferrara JL (1995) Pretreatment of donor mice with granulocyte colony-stimulating factor polarizes donor T lymphocytes toward type-2 cytokine production and reduces severity of experimental graft-versus-host disease. Blood 86:4422PubMed Pan L, Delmonte J Jr, Jalen CK, Ferrara JL (1995) Pretreatment of donor mice with granulocyte colony-stimulating factor polarizes donor T lymphocytes toward type-2 cytokine production and reduces severity of experimental graft-versus-host disease. Blood 86:4422PubMed
20.
Zurück zum Zitat Sloand EM, Kim S, Maciejewski JP, VanRhee F, Chaurhuri A, Barrett J et al (2000) Pharmacologic doses of granulocyte colony-stimulating factor affect cytokine production by lymphocytes in vitro and in vivo. Blood 95:2269PubMed Sloand EM, Kim S, Maciejewski JP, VanRhee F, Chaurhuri A, Barrett J et al (2000) Pharmacologic doses of granulocyte colony-stimulating factor affect cytokine production by lymphocytes in vitro and in vivo. Blood 95:2269PubMed
21.
Zurück zum Zitat Sallusto F, Lanzavecchia A (1994) Efficient presentation of soluble antigen by cultured human dendritic cells is maintained by granulocyte/macrophage colony-stimulating factor plus interleukin 4, downregulated by tumor necrosis factor alpha. J Exp Med 179:1109–1118PubMedCrossRef Sallusto F, Lanzavecchia A (1994) Efficient presentation of soluble antigen by cultured human dendritic cells is maintained by granulocyte/macrophage colony-stimulating factor plus interleukin 4, downregulated by tumor necrosis factor alpha. J Exp Med 179:1109–1118PubMedCrossRef
22.
Zurück zum Zitat Rutella S, Rumi C, Lucia MB, Sica S, Cauda R, Leone G (1998) Serum of healthy donors receiving granulocyte colony-stimulating factor induces T cell unresponsiveness. Exp Hematol 26:1024PubMed Rutella S, Rumi C, Lucia MB, Sica S, Cauda R, Leone G (1998) Serum of healthy donors receiving granulocyte colony-stimulating factor induces T cell unresponsiveness. Exp Hematol 26:1024PubMed
23.
Zurück zum Zitat Kalinski P, Mailliard RB, Giermasz A, Zeh HJ, Basse P, Bartlett DL et al (2005) Natural killer-dendritic cell cross-talk in cancer immunotherapy. Expert Opin Biol Ther 5:1303PubMedCrossRef Kalinski P, Mailliard RB, Giermasz A, Zeh HJ, Basse P, Bartlett DL et al (2005) Natural killer-dendritic cell cross-talk in cancer immunotherapy. Expert Opin Biol Ther 5:1303PubMedCrossRef
24.
Zurück zum Zitat Knutson KL, Disis ML (2005) Tumor antigen-specific T helper cells in cancer immunity and immunotherapy. Cancer Immunol Immunother 54:721PubMedCrossRef Knutson KL, Disis ML (2005) Tumor antigen-specific T helper cells in cancer immunity and immunotherapy. Cancer Immunol Immunother 54:721PubMedCrossRef
25.
Zurück zum Zitat Bender A, Sapp M, Schuler G, Steinman RM, Bhardwaji N (1996) Improved methods for the generation of dendritic cells from nonproliferating progenitors in human blood. J Immunol Methods 196:121PubMedCrossRef Bender A, Sapp M, Schuler G, Steinman RM, Bhardwaji N (1996) Improved methods for the generation of dendritic cells from nonproliferating progenitors in human blood. J Immunol Methods 196:121PubMedCrossRef
26.
Zurück zum Zitat Syme RM, Duggan P, Stewart D, Gluck S (2001) Generation of dendritic cells ex vivo: differences in steady state versus mobilized blood from patients with breast cancer, with lymphoma, and from normal donors. J Hematother Stem Cell Res 10:621PubMedCrossRef Syme RM, Duggan P, Stewart D, Gluck S (2001) Generation of dendritic cells ex vivo: differences in steady state versus mobilized blood from patients with breast cancer, with lymphoma, and from normal donors. J Hematother Stem Cell Res 10:621PubMedCrossRef
27.
Zurück zum Zitat Choi D, Perrin M, Hoffmann S, Chang AE, Ratanatharaorn V, Uberti J et al (1998) Dendritic cell-based vaccines in the setting of peripheral blood stem cell transplantation: CD34+ cell-depleted mobilized peripheral blood can serve as a source of potent dendritic cells. Clin Cancer Res 4:2709PubMed Choi D, Perrin M, Hoffmann S, Chang AE, Ratanatharaorn V, Uberti J et al (1998) Dendritic cell-based vaccines in the setting of peripheral blood stem cell transplantation: CD34+ cell-depleted mobilized peripheral blood can serve as a source of potent dendritic cells. Clin Cancer Res 4:2709PubMed
28.
Zurück zum Zitat Reichardt VL, Okada CY, Liso A, Benike CJ, Stockerl KE, Engelman EG et al (1999) Idiotype vaccination using dendritic cells after autologous peripheral blood stem cell transplantation for multiple myeloma—a feasibility study. Blood 93:2411PubMed Reichardt VL, Okada CY, Liso A, Benike CJ, Stockerl KE, Engelman EG et al (1999) Idiotype vaccination using dendritic cells after autologous peripheral blood stem cell transplantation for multiple myeloma—a feasibility study. Blood 93:2411PubMed
29.
Zurück zum Zitat Mielcarek M, Martin PJ, Torok-Storb B (1997) Suppression of alloantigen-induced T-cell proliferation by CD14+ cells derived from granulocyte colony-stimulating factor-mobilized peripheral blood mononuclear cells. Blood 89:1629PubMed Mielcarek M, Martin PJ, Torok-Storb B (1997) Suppression of alloantigen-induced T-cell proliferation by CD14+ cells derived from granulocyte colony-stimulating factor-mobilized peripheral blood mononuclear cells. Blood 89:1629PubMed
30.
Zurück zum Zitat Tanaka J, Mielcarek M, Torok-Storb B (1998) Impaired induction of the CD28-responsive complex in granulocyte colony-stimulating factor mobilized CD4 T cells. Blood 91:347PubMed Tanaka J, Mielcarek M, Torok-Storb B (1998) Impaired induction of the CD28-responsive complex in granulocyte colony-stimulating factor mobilized CD4 T cells. Blood 91:347PubMed
31.
Zurück zum Zitat Jonuleit H, Giesecke-Tuettenberg A, Tuting T, Thurner-Schuler B, Stuge TB, Paragnik L et al (2001) A comparison of two types of dendritic cell as adjuvants for the induction of melanoma-specific T-cell responses in humans following intranodal injection. Int J Cancer 93:243PubMedCrossRef Jonuleit H, Giesecke-Tuettenberg A, Tuting T, Thurner-Schuler B, Stuge TB, Paragnik L et al (2001) A comparison of two types of dendritic cell as adjuvants for the induction of melanoma-specific T-cell responses in humans following intranodal injection. Int J Cancer 93:243PubMedCrossRef
32.
Zurück zum Zitat Takeda K, Clausen BE, Kaisho T, Tsujimura T, Terada N, Forster I et al (1999) Enhanced Th1 activity and development of chronic enterocolitis in mice devoid of Stat3 in macrophages and neutrophils. Immunity 10:39PubMedCrossRef Takeda K, Clausen BE, Kaisho T, Tsujimura T, Terada N, Forster I et al (1999) Enhanced Th1 activity and development of chronic enterocolitis in mice devoid of Stat3 in macrophages and neutrophils. Immunity 10:39PubMedCrossRef
33.
Zurück zum Zitat Ino K, Singh RK, Talmadge JE (1997) Monocytes from mobilized stem cells inhibit T cell function. J Leukoc Biol 61:583–591PubMed Ino K, Singh RK, Talmadge JE (1997) Monocytes from mobilized stem cells inhibit T cell function. J Leukoc Biol 61:583–591PubMed
Metadaten
Titel
Successful induction of clinically competent dendritic cells from granulocyte colony-stimulating factor-mobilized monocytes for cancer vaccine therapy
verfasst von
Yuji Ueda
Tsuyoshi Itoh
Nobuaki Fuji
Sachio Harada
Hiroshi Fujiki
Keiji Shimizu
Atsushi Shiozaki
Arihiro Iwamoto
Takeshi Shimizu
Osam Mazda
Takafumi Kimura
Yoshiaki Sonoda
Masafumi Taniwaki
Hisakazu Yamagishi
Publikationsdatum
01.03.2007
Verlag
Springer-Verlag
Erschienen in
Cancer Immunology, Immunotherapy / Ausgabe 3/2007
Print ISSN: 0340-7004
Elektronische ISSN: 1432-0851
DOI
https://doi.org/10.1007/s00262-006-0197-8

Weitere Artikel der Ausgabe 3/2007

Cancer Immunology, Immunotherapy 3/2007 Zur Ausgabe

Erhebliches Risiko für Kehlkopfkrebs bei mäßiger Dysplasie

29.05.2024 Larynxkarzinom Nachrichten

Fast ein Viertel der Personen mit mäßig dysplastischen Stimmlippenläsionen entwickelt einen Kehlkopftumor. Solche Personen benötigen daher eine besonders enge ärztliche Überwachung.

15% bedauern gewählte Blasenkrebs-Therapie

29.05.2024 Urothelkarzinom Nachrichten

Ob Patienten und Patientinnen mit neu diagnostiziertem Blasenkrebs ein Jahr später Bedauern über die Therapieentscheidung empfinden, wird einer Studie aus England zufolge von der Radikalität und dem Erfolg des Eingriffs beeinflusst.

Erhöhtes Risiko fürs Herz unter Checkpointhemmer-Therapie

28.05.2024 Nebenwirkungen der Krebstherapie Nachrichten

Kardiotoxische Nebenwirkungen einer Therapie mit Immuncheckpointhemmern mögen selten sein – wenn sie aber auftreten, wird es für Patienten oft lebensgefährlich. Voruntersuchung und Monitoring sind daher obligat.

Costims – das nächste heiße Ding in der Krebstherapie?

28.05.2024 Onkologische Immuntherapie Nachrichten

„Kalte“ Tumoren werden heiß – CD28-kostimulatorische Antikörper sollen dies ermöglichen. Am besten könnten diese in Kombination mit BiTEs und Checkpointhemmern wirken. Erste klinische Studien laufen bereits.

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.