Skip to main content
Erschienen in: European Radiology 8/2021

26.01.2021 | Breast

A deep learning model integrating mammography and clinical factors facilitates the malignancy prediction of BI-RADS 4 microcalcifications in breast cancer screening

verfasst von: Huanhuan Liu, Yanhong Chen, Yuzhen Zhang, Lijun Wang, Ran Luo, Haoting Wu, Chenqing Wu, Huiling Zhang, Weixiong Tan, Hongkun Yin, Dengbin Wang

Erschienen in: European Radiology | Ausgabe 8/2021

Einloggen, um Zugang zu erhalten

Abstract

Objectives

To investigate the value of full-field digital mammography-based deep learning (DL) in predicting malignancy of Breast Imaging Reporting and Data System (BI-RADS) 4 microcalcifications.

Methods

A total of 384 patients with 414 pathologically confirmed microcalcifications (221 malignant and 193 benign) were randomly allocated into the training, validation, and testing datasets (272/71/71 lesions) in this retrospective study. A combined DL model was developed incorporating mammography and clinical variables. Model performance was evaluated by using areas under the receiver operating characteristic curve (AUC) and compared with the clinical model, stand-alone DL image model, and BI-RADS approach. The predictive performance for malignancy was also compared between the combined model and human readers (2 juniors and 2 seniors).

Results

The combined DL model demonstrated favorable AUC, sensitivity, and specificity of 0.910, 85.3%, and 91.9% in predicting BI-RADS 4 malignant microcalcifications in the testing dataset, which outperformed the clinical model, DL image model, and BI-RADS with AUCs of 0.799, 0.841, and 0.804, respectively. The combined model achieved non-inferior performance as senior radiologists (p = 0.860, p = 0.800) and outperformed junior radiologists (p = 0.155, p = 0.029). The diagnostic performance of two junior radiologists was improved after artificial intelligence assistance with AUCs increased to 0.854 and 0.901 from 0.816 (p = 0.556) and 0.773 (p = 0.046), while the interobserver agreement was improved with a kappa value increased to 0.843 from 0.331.

Conclusions

The combined deep learning model can improve the malignancy prediction of BI-RADS 4 microcalcifications in screening mammography and assist junior radiologists to achieve better performance, which can facilitate clinical decision-making.

Key Points

The combined deep learning model demonstrated high diagnostic power, sensitivity, and specificity for predicting malignant BI-RADS 4 mammographic microcalcifications.
The combined model achieved similar performance with senior breast radiologists, while it outperformed junior breast radiologists.
Deep learning could improve the diagnostic performance of junior radiologists and facilitate clinical decision-making.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A (2018) Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 68:394–424CrossRef Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A (2018) Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 68:394–424CrossRef
2.
Zurück zum Zitat Tabár L, Yen AM, Wu WY et al (2015) Insights from the breast cancer screening trials: how screening affects the natural history of breast cancer and implications for evaluating service screening programs. Breast J 21:13–20CrossRef Tabár L, Yen AM, Wu WY et al (2015) Insights from the breast cancer screening trials: how screening affects the natural history of breast cancer and implications for evaluating service screening programs. Breast J 21:13–20CrossRef
3.
Zurück zum Zitat Independent UK Panel on Breast Cancer Screening (2012) The benefits and harms of breast cancer screening: an independent review. Lancet 380:1778–1786CrossRef Independent UK Panel on Breast Cancer Screening (2012) The benefits and harms of breast cancer screening: an independent review. Lancet 380:1778–1786CrossRef
4.
Zurück zum Zitat Gülsün M, Demirkazik FB, Ariyürek M (2003) Evaluation of breast microcalcifications according to breast imaging reporting and data system criteria and Le Gal’s classification. Eur J Radiol 47:227–231CrossRef Gülsün M, Demirkazik FB, Ariyürek M (2003) Evaluation of breast microcalcifications according to breast imaging reporting and data system criteria and Le Gal’s classification. Eur J Radiol 47:227–231CrossRef
5.
Zurück zum Zitat O'Grady S, Morgan MP (2018) Microcalcifications in breast cancer: from pathophysiology to diagnosis and prognosis. Biochim Biophys Acta Rev Cancer 1869:310–320CrossRef O'Grady S, Morgan MP (2018) Microcalcifications in breast cancer: from pathophysiology to diagnosis and prognosis. Biochim Biophys Acta Rev Cancer 1869:310–320CrossRef
6.
Zurück zum Zitat D’Orsi CJSE, Mendelson EB (2013) Breast imaging reporting and data system: ACR BI-RADS-breast imaging atlas, 5th edn. Reston, American College of Radiology D’Orsi CJSE, Mendelson EB (2013) Breast imaging reporting and data system: ACR BI-RADS-breast imaging atlas, 5th edn. Reston, American College of Radiology
7.
Zurück zum Zitat Park GE, Kim SH, Lee JM, Kang BJ, Chae BJ (2019) Comparison of positive predictive values of categorization of suspicious calcifications using the 4th and 5th editions of BI-RADS. AJR Am J Roentgenol 213:710–715CrossRef Park GE, Kim SH, Lee JM, Kang BJ, Chae BJ (2019) Comparison of positive predictive values of categorization of suspicious calcifications using the 4th and 5th editions of BI-RADS. AJR Am J Roentgenol 213:710–715CrossRef
8.
Zurück zum Zitat Lehman CD, Arao RF, Sprague BL et al (2017) National performance benchmarks for modern screening digital mammography: update from the Breast Cancer Surveillance Consortium. Radiology 283:49–58CrossRef Lehman CD, Arao RF, Sprague BL et al (2017) National performance benchmarks for modern screening digital mammography: update from the Breast Cancer Surveillance Consortium. Radiology 283:49–58CrossRef
9.
Zurück zum Zitat Yala A, Schuster T, Miles R, Barzilay R, Lehman C (2019) A deep learning model to triage screening mammograms: a simulation study. Radiology 293:38–46CrossRef Yala A, Schuster T, Miles R, Barzilay R, Lehman C (2019) A deep learning model to triage screening mammograms: a simulation study. Radiology 293:38–46CrossRef
10.
Zurück zum Zitat Jiang Y, Nishikawa RM, Schmidt RA, Metz CE (2006) Comparison of independent double readings and computer-aided diagnosis (CAD) for the diagnosis of breast calcifications. Acad Radiol 13:84–94CrossRef Jiang Y, Nishikawa RM, Schmidt RA, Metz CE (2006) Comparison of independent double readings and computer-aided diagnosis (CAD) for the diagnosis of breast calcifications. Acad Radiol 13:84–94CrossRef
11.
Zurück zum Zitat McKinney SM, Sieniek M, Godbole V et al (2020) International evaluation of an AI system for breast cancer screening. Nature 577:89–94CrossRef McKinney SM, Sieniek M, Godbole V et al (2020) International evaluation of an AI system for breast cancer screening. Nature 577:89–94CrossRef
12.
Zurück zum Zitat van Velzen SGM, Lessmann N, Velthuis BK et al (2020) Deep learning for automatic calcium scoring in CT: validation using multiple cardiac CT and chest CT protocols. Radiology 295:66–79CrossRef van Velzen SGM, Lessmann N, Velthuis BK et al (2020) Deep learning for automatic calcium scoring in CT: validation using multiple cardiac CT and chest CT protocols. Radiology 295:66–79CrossRef
13.
Zurück zum Zitat Xu Y, Hosny A, Zeleznik R et al (2019) Deep learning predicts lung cancer treatment response from serial medical imaging. Clin Cancer Res 25:3266–3275CrossRef Xu Y, Hosny A, Zeleznik R et al (2019) Deep learning predicts lung cancer treatment response from serial medical imaging. Clin Cancer Res 25:3266–3275CrossRef
14.
Zurück zum Zitat Cai H, Huang Q, Rong W et al (2019) Breast microcalcification diagnosis using deep convolutional neural network from digital mammograms. Comput Math Methods Med 2019:2717454CrossRef Cai H, Huang Q, Rong W et al (2019) Breast microcalcification diagnosis using deep convolutional neural network from digital mammograms. Comput Math Methods Med 2019:2717454CrossRef
15.
Zurück zum Zitat Wang J, Yang X, Cai H, Tan W, Jin C, Li L (2016) Discrimination of breast cancer with microcalcifications on mammography by deep learning. Sci Rep 6:27327CrossRef Wang J, Yang X, Cai H, Tan W, Jin C, Li L (2016) Discrimination of breast cancer with microcalcifications on mammography by deep learning. Sci Rep 6:27327CrossRef
16.
Zurück zum Zitat Lei C, Wei W, Liu Z et al (2019) Mammography-based radiomic analysis for predicting benign BI-RADS category 4 calcifications. Eur J Radiol 121:108711CrossRef Lei C, Wei W, Liu Z et al (2019) Mammography-based radiomic analysis for predicting benign BI-RADS category 4 calcifications. Eur J Radiol 121:108711CrossRef
17.
Zurück zum Zitat Dong L, Wesseloo J, Potvin Y, Li X (2016) Discrimination of mine seismic events and blasts using the fisher classifier, naive Bayesian classifier and logistic regression. Rock Mech Rock Eng 49:183–211CrossRef Dong L, Wesseloo J, Potvin Y, Li X (2016) Discrimination of mine seismic events and blasts using the fisher classifier, naive Bayesian classifier and logistic regression. Rock Mech Rock Eng 49:183–211CrossRef
18.
Zurück zum Zitat Pedregosa F, Varoquaux G, Gramfort A et al (2011) Scikit-learn: machine learning in Python. J Mach Learn Res 12:2825–2830 Pedregosa F, Varoquaux G, Gramfort A et al (2011) Scikit-learn: machine learning in Python. J Mach Learn Res 12:2825–2830
19.
Zurück zum Zitat Evans A, Clements K, Maxwell A et al (2010) Lesion size is a major determinant of the mammographic features of ductal carcinoma in situ: findings from the Sloane project. Clin Radiol 65:181–184CrossRef Evans A, Clements K, Maxwell A et al (2010) Lesion size is a major determinant of the mammographic features of ductal carcinoma in situ: findings from the Sloane project. Clin Radiol 65:181–184CrossRef
20.
Zurück zum Zitat Russakovsky O, Deng J, Su H et al (2015) ImageNet large scale visual recognition challenge. Int J Comput Vis 115:211–252CrossRef Russakovsky O, Deng J, Su H et al (2015) ImageNet large scale visual recognition challenge. Int J Comput Vis 115:211–252CrossRef
21.
Zurück zum Zitat Sandler MHA, Zhu M, Zhmoginov A, Chen LC. (2018) MobileNetV2: inverted residuals and linear bottlenecks. The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp 4510-4520 Sandler MHA, Zhu M, Zhmoginov A, Chen LC. (2018) MobileNetV2: inverted residuals and linear bottlenecks. The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp 4510-4520
22.
Zurück zum Zitat Duan C, Cao Y, Zhou L, Tan MT, Chen P (2018) A novel nonparametric confidence interval for differences of proportions for correlated binary data. Stat Methods Med Res 27:2249–2263 Duan C, Cao Y, Zhou L, Tan MT, Chen P (2018) A novel nonparametric confidence interval for differences of proportions for correlated binary data. Stat Methods Med Res 27:2249–2263
23.
Zurück zum Zitat Esteva A, Kuprel B, Novoa RA et al (2017) Dermatologist-level classification of skin cancer with deep neural networks. Nature 542:115–118CrossRef Esteva A, Kuprel B, Novoa RA et al (2017) Dermatologist-level classification of skin cancer with deep neural networks. Nature 542:115–118CrossRef
24.
Zurück zum Zitat Ibrahim A, Primakov S, Beuque M et al (2020) Radiomics for precision medicine: current challenges,future prospects, and the proposal of a new framework. Methods S1046-2023(20):30111-0 Ibrahim A, Primakov S, Beuque M et al (2020) Radiomics for precision medicine: current challenges,future prospects, and the proposal of a new framework. Methods S1046-2023(20):30111-0
25.
Zurück zum Zitat Yasaka K, Akai H, Abe O, Kiryu S (2018) Deep learning with convolutional neural network for differentiation of liver masses at dynamic contrast-enhanced CT: a preliminary study. Radiology 286:887–896CrossRef Yasaka K, Akai H, Abe O, Kiryu S (2018) Deep learning with convolutional neural network for differentiation of liver masses at dynamic contrast-enhanced CT: a preliminary study. Radiology 286:887–896CrossRef
26.
Zurück zum Zitat Topol EJ (2019) High-performance medicine: the convergence of human and artificial intelligence. Nat Med 25:44–56CrossRef Topol EJ (2019) High-performance medicine: the convergence of human and artificial intelligence. Nat Med 25:44–56CrossRef
Metadaten
Titel
A deep learning model integrating mammography and clinical factors facilitates the malignancy prediction of BI-RADS 4 microcalcifications in breast cancer screening
verfasst von
Huanhuan Liu
Yanhong Chen
Yuzhen Zhang
Lijun Wang
Ran Luo
Haoting Wu
Chenqing Wu
Huiling Zhang
Weixiong Tan
Hongkun Yin
Dengbin Wang
Publikationsdatum
26.01.2021
Verlag
Springer Berlin Heidelberg
Erschienen in
European Radiology / Ausgabe 8/2021
Print ISSN: 0938-7994
Elektronische ISSN: 1432-1084
DOI
https://doi.org/10.1007/s00330-020-07659-y

Weitere Artikel der Ausgabe 8/2021

European Radiology 8/2021 Zur Ausgabe

Mammakarzinom: Brustdichte beeinflusst rezidivfreies Überleben

26.05.2024 Mammakarzinom Nachrichten

Frauen, die zum Zeitpunkt der Brustkrebsdiagnose eine hohe mammografische Brustdichte aufweisen, haben ein erhöhtes Risiko für ein baldiges Rezidiv, legen neue Daten nahe.

„Übersichtlicher Wegweiser“: Lauterbachs umstrittener Klinik-Atlas ist online

17.05.2024 Klinik aktuell Nachrichten

Sie sei „ethisch geboten“, meint Gesundheitsminister Karl Lauterbach: mehr Transparenz über die Qualität von Klinikbehandlungen. Um sie abzubilden, lässt er gegen den Widerstand vieler Länder einen virtuellen Klinik-Atlas freischalten.

Klinikreform soll zehntausende Menschenleben retten

15.05.2024 Klinik aktuell Nachrichten

Gesundheitsminister Lauterbach hat die vom Bundeskabinett beschlossene Klinikreform verteidigt. Kritik an den Plänen kommt vom Marburger Bund. Und in den Ländern wird über den Gang zum Vermittlungsausschuss spekuliert.

Darf man die Behandlung eines Neonazis ablehnen?

08.05.2024 Gesellschaft Nachrichten

In einer Leseranfrage in der Zeitschrift Journal of the American Academy of Dermatology möchte ein anonymer Dermatologe bzw. eine anonyme Dermatologin wissen, ob er oder sie einen Patienten behandeln muss, der eine rassistische Tätowierung trägt.

Update Radiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.