Skip to main content
Erschienen in: Journal of Bone and Mineral Metabolism 1/2021

17.09.2020 | Invited Review

Genetic disorders associated with the RANKL/OPG/RANK pathway

verfasst von: Jing-Yi Xue, Shiro Ikegawa, Long Guo

Erschienen in: Journal of Bone and Mineral Metabolism | Ausgabe 1/2021

Einloggen, um Zugang zu erhalten

Abstract

The RANKL/OPG/RANK signalling pathway is a major regulatory system for osteoclast formation and activity. Mutations in TNFSF11, TNFRSF11B and TNFRSF11A cause defects in bone metabolism and development, thereby leading to skeletal disorders with changes in bone density and/or morphology. To date, nine kinds of monogenic skeletal diseases have been found to be causally associated with TNFSF11, TNFRSF11B and TNFRSF11A mutations. These diseases can be divided into two types according to the mutation effects and the resultant pathogenesis. One is caused by the mutations inducing constitutional RANK activation or OPG deficiency, which increase osteoclastogenesis and accelerate bone turnover, resulting in juvenile Paget’s disease 2, Paget disease of bone 2, familial expansile osteolysis, expansile skeletal hyperphosphatasia, panostotic expansile bone disease, and Paget disease of bone 5. The other is caused by the de-activating mutations in TNFRSF11A or TNFSF11, which decrease osteoclastogenesis and elevate bone density, resulting in osteopetrosis, autosomal recessive 2 and 7, and dysosteosclerosis. Here we reviewed the current knowledge about these genetic disorders with paying particular attention to the updating genotype–phenotype association in the TNFRSF11A-caused diseases.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Soysa NS, Neil A, Aoki K, Ohya K (2012) Osteoclast formation and differentiation: an overview. J Med Dent Sci 59:65–74PubMed Soysa NS, Neil A, Aoki K, Ohya K (2012) Osteoclast formation and differentiation: an overview. J Med Dent Sci 59:65–74PubMed
2.
Zurück zum Zitat Ikebuchi Y, Aoki S, Honma M, Hayashi M, Sugamori Y, Khan M, Kariya Y, Kato G, Tabata Y, Penninger JM, Udagawa N (2018) Coupling of bone resorption and formation by RANKL reverse signalling. Nature 561:195–200CrossRef Ikebuchi Y, Aoki S, Honma M, Hayashi M, Sugamori Y, Khan M, Kariya Y, Kato G, Tabata Y, Penninger JM, Udagawa N (2018) Coupling of bone resorption and formation by RANKL reverse signalling. Nature 561:195–200CrossRef
3.
Zurück zum Zitat Sobacchi C, Frattini A, Guerrini MM, Abinun M, Pangrazio A, Susani L, Bredius R, Mancini G, Cant A, Bishop N, Grabowski P (2007) Osteoclast-poor human osteopetrosis due to mutations in the gene encoding RANKL. Nat Genet 39:960–962CrossRef Sobacchi C, Frattini A, Guerrini MM, Abinun M, Pangrazio A, Susani L, Bredius R, Mancini G, Cant A, Bishop N, Grabowski P (2007) Osteoclast-poor human osteopetrosis due to mutations in the gene encoding RANKL. Nat Genet 39:960–962CrossRef
4.
Zurück zum Zitat Lo Iacono N, Pangrazio A, Abinun M, Bredius R, Zecca M, Blair HC, Vezzoni P, Villa A, Sobacchi C (2013) RANKL cytokine: from pioneer of the osteoimmunology era to cure for a rare disease. Clin Dev Immunol 2013:412768CrossRef Lo Iacono N, Pangrazio A, Abinun M, Bredius R, Zecca M, Blair HC, Vezzoni P, Villa A, Sobacchi C (2013) RANKL cytokine: from pioneer of the osteoimmunology era to cure for a rare disease. Clin Dev Immunol 2013:412768CrossRef
5.
Zurück zum Zitat Beard CJ, Key L, Newburger PE, Ezekowitz RA, Arceci R, Miller B, Proto P, Ryan T, Anast C, Simons ER (1986) Neutrophil defect associated with malignant infantile osteopetrosis. J Lab Clin Med 108:489–497 Beard CJ, Key L, Newburger PE, Ezekowitz RA, Arceci R, Miller B, Proto P, Ryan T, Anast C, Simons ER (1986) Neutrophil defect associated with malignant infantile osteopetrosis. J Lab Clin Med 108:489–497
6.
Zurück zum Zitat Sobacchi C, Schulz A, Coxon FP, Villa A, Helfrich MH (2013) Osteopetrosis: genetics, treatment and new insights into osteoclast function. Nat Rev Endocrinol 9:522–536CrossRef Sobacchi C, Schulz A, Coxon FP, Villa A, Helfrich MH (2013) Osteopetrosis: genetics, treatment and new insights into osteoclast function. Nat Rev Endocrinol 9:522–536CrossRef
7.
Zurück zum Zitat Polyzos SA, Cundy T, Mantzoros CS (2018) Juvenile paget disease. Metabolism 80:15–26CrossRef Polyzos SA, Cundy T, Mantzoros CS (2018) Juvenile paget disease. Metabolism 80:15–26CrossRef
8.
Zurück zum Zitat Whyte MP, Tau C, McAlister WH, Zhang X, Novack DV, Preliasco V, Santini-Araujo E, Mumm S (2014) Juvenile Paget's disease with heterozygous duplication within TNFRSF11A encoding RANK. Bone 68:153–161CrossRef Whyte MP, Tau C, McAlister WH, Zhang X, Novack DV, Preliasco V, Santini-Araujo E, Mumm S (2014) Juvenile Paget's disease with heterozygous duplication within TNFRSF11A encoding RANK. Bone 68:153–161CrossRef
9.
Zurück zum Zitat Whyte MP, Obrecht SE, Finnegan PM, Jones JL, Podgornik MN, McAlister WH, Mumm S (2002) Osteoprotegerin deficiency and juvenile Paget's disease. New Engl J Med 347:175–184CrossRef Whyte MP, Obrecht SE, Finnegan PM, Jones JL, Podgornik MN, McAlister WH, Mumm S (2002) Osteoprotegerin deficiency and juvenile Paget's disease. New Engl J Med 347:175–184CrossRef
10.
Zurück zum Zitat Cundy T, Hegde M, Naot D, Chong B, King A, Wallace R, Mulley J, Love DR, Seidel J, Fawkner M, Banovic T (2002) A mutation in the gene TNFRSF11B encoding osteoprotegerin causes an idiopathic hyperphosphatasia phenotype. Hum Mol Genet 11:2119–2127CrossRef Cundy T, Hegde M, Naot D, Chong B, King A, Wallace R, Mulley J, Love DR, Seidel J, Fawkner M, Banovic T (2002) A mutation in the gene TNFRSF11B encoding osteoprotegerin causes an idiopathic hyperphosphatasia phenotype. Hum Mol Genet 11:2119–2127CrossRef
11.
Zurück zum Zitat Chong B, Hegde M, Fawkner M, Simonet S, Cassinelli H, Coker M, Kanis J, Seidel J, Tau C, Tüysüz B, Yüksel B (2003) Idiopathic hyperphosphatasia and TNFRSF11B mutations: relationships between phenotype and genotype. J Bone Miner Res 18:2095–2104CrossRef Chong B, Hegde M, Fawkner M, Simonet S, Cassinelli H, Coker M, Kanis J, Seidel J, Tau C, Tüysüz B, Yüksel B (2003) Idiopathic hyperphosphatasia and TNFRSF11B mutations: relationships between phenotype and genotype. J Bone Miner Res 18:2095–2104CrossRef
12.
Zurück zum Zitat Hughes AE, Ralston SH, Marken J, Bell C, MacPherson H, Wallace RG, Van Hul W, Whyte MP, Nakatsuka K, Hovy L, Anderson DM (2000) Mutations in TNFRSF11A, affecting the signal peptide of RANK, cause familial expansile osteolysis. Nat Genet 24:45–48CrossRef Hughes AE, Ralston SH, Marken J, Bell C, MacPherson H, Wallace RG, Van Hul W, Whyte MP, Nakatsuka K, Hovy L, Anderson DM (2000) Mutations in TNFRSF11A, affecting the signal peptide of RANK, cause familial expansile osteolysis. Nat Genet 24:45–48CrossRef
13.
Zurück zum Zitat Johnson-Pais TL, Singer FR, Bone HG, McMurray CT, Hansen MF, Leach RJ (2003) Identification of a novel tandem duplication in exon 1 of the TNFRSF11A gene in two unrelated patients with familial expansile osteolysis. J Bone Miner Res 18:376–380CrossRef Johnson-Pais TL, Singer FR, Bone HG, McMurray CT, Hansen MF, Leach RJ (2003) Identification of a novel tandem duplication in exon 1 of the TNFRSF11A gene in two unrelated patients with familial expansile osteolysis. J Bone Miner Res 18:376–380CrossRef
14.
Zurück zum Zitat Topham DG, Sampson MJ (2016) Familial expansile osteolysis: an Australian case report of a Paget's disease mimic. J Med Imag Radiat Oncol 60:370–373CrossRef Topham DG, Sampson MJ (2016) Familial expansile osteolysis: an Australian case report of a Paget's disease mimic. J Med Imag Radiat Oncol 60:370–373CrossRef
15.
Zurück zum Zitat Palenzuela L, Vives-Bauza C, Fernandez-Cadenas I, Meseguer A, Font N, Sarret E, Schwartz S, Andreu AL (2002) Familial expansile osteolysis in a large Spanish kindred resulting from an insertion mutation in the TNFRSF11A gene. J Med Genet 39:e67CrossRef Palenzuela L, Vives-Bauza C, Fernandez-Cadenas I, Meseguer A, Font N, Sarret E, Schwartz S, Andreu AL (2002) Familial expansile osteolysis in a large Spanish kindred resulting from an insertion mutation in the TNFRSF11A gene. J Med Genet 39:e67CrossRef
16.
Zurück zum Zitat Elahi E, Shafaghati Y, Asadi S, Absalan F, Goodarzi H, Gharaii N, Karimi-Nejad MH, Shahram F, Hughes AE (2007) Intragenic SNP haplotypes associated with 84dup18 mutation in TNFRSF11A in four FEO pedigrees suggest three independent origins for this mutation. J Bone Miner Metab 25:159–164CrossRef Elahi E, Shafaghati Y, Asadi S, Absalan F, Goodarzi H, Gharaii N, Karimi-Nejad MH, Shahram F, Hughes AE (2007) Intragenic SNP haplotypes associated with 84dup18 mutation in TNFRSF11A in four FEO pedigrees suggest three independent origins for this mutation. J Bone Miner Metab 25:159–164CrossRef
17.
Zurück zum Zitat Whyte MP, Mills BG, Reinus WR, Podgornik MN, Roodman GD, Gannon FH, Eddy MC, Mcalister WH (2000) Expansile skeletal hyperphosphatasia: a new familial metabolic bone disease. J Bone Miner Res 15:2330–2344CrossRef Whyte MP, Mills BG, Reinus WR, Podgornik MN, Roodman GD, Gannon FH, Eddy MC, Mcalister WH (2000) Expansile skeletal hyperphosphatasia: a new familial metabolic bone disease. J Bone Miner Res 15:2330–2344CrossRef
18.
Zurück zum Zitat Whyte MP, Hughes AE (2002) Expansile skeletal hyperphosphatasia is caused by a 15-base pair tandem duplication in TNFRSF11A encoding RANK and is allelic to familial expansile osteolysis. J Bone Miner Res 17:26–29CrossRef Whyte MP, Hughes AE (2002) Expansile skeletal hyperphosphatasia is caused by a 15-base pair tandem duplication in TNFRSF11A encoding RANK and is allelic to familial expansile osteolysis. J Bone Miner Res 17:26–29CrossRef
19.
Zurück zum Zitat Whyte MP, Mumm S (2004) Heritable disorders of the RANKL/OPG/RANK signaling pathway. J Musculoskel Neuron 4:254–267 Whyte MP, Mumm S (2004) Heritable disorders of the RANKL/OPG/RANK signaling pathway. J Musculoskel Neuron 4:254–267
20.
Zurück zum Zitat Schafer AL, Mumm S, El-Sayed I, McAlister WH, Horvai AE, Tom AM, Hsiao EC, Schaefer FV, Collins MT, Anderson MS, Whyte MP (2014) Panostotic expansile bone disease with massive jaw tumor formation and a novel mutation in the signal peptide of RANK. J Bone Miner Res 29:911–921CrossRef Schafer AL, Mumm S, El-Sayed I, McAlister WH, Horvai AE, Tom AM, Hsiao EC, Schaefer FV, Collins MT, Anderson MS, Whyte MP (2014) Panostotic expansile bone disease with massive jaw tumor formation and a novel mutation in the signal peptide of RANK. J Bone Miner Res 29:911–921CrossRef
21.
Zurück zum Zitat Nakatsuka K, Nishizawa Y, Ralston SH (2003) Phenotypic characterization of early onset Paget's disease of bone caused by a 27-bp duplication in the TNFRSF11A gene. J Bone Miner Res 18:1381–1385CrossRef Nakatsuka K, Nishizawa Y, Ralston SH (2003) Phenotypic characterization of early onset Paget's disease of bone caused by a 27-bp duplication in the TNFRSF11A gene. J Bone Miner Res 18:1381–1385CrossRef
22.
Zurück zum Zitat Ke YH, Yue H, He JW, Liu YJ, Zhang ZL (2009) Early onset Paget's disease of bone caused by a novel mutation (78dup27) of the TNFRSF11A gene in a Chinese family. Acta Pharmacol Sin 30:1204–1210CrossRef Ke YH, Yue H, He JW, Liu YJ, Zhang ZL (2009) Early onset Paget's disease of bone caused by a novel mutation (78dup27) of the TNFRSF11A gene in a Chinese family. Acta Pharmacol Sin 30:1204–1210CrossRef
23.
Zurück zum Zitat Iwamoto SJ, Rothman MS, Duan S, Baker JC, Mumm S, Whyte MP (2020) Early-onset Paget's disease of bone in a Mexican family caused by a novel tandem duplication (77dup27) in TNFRSF11A that encodes RANK. Bone 133:115224CrossRef Iwamoto SJ, Rothman MS, Duan S, Baker JC, Mumm S, Whyte MP (2020) Early-onset Paget's disease of bone in a Mexican family caused by a novel tandem duplication (77dup27) in TNFRSF11A that encodes RANK. Bone 133:115224CrossRef
24.
Zurück zum Zitat Guerrini MM, Sobacchi C, Cassani B, Abinun M, Kilic SS, Pangrazio A, Moratto D, Mazzolari E, Clayton-Smith J, Orchard P, Coxon FP (2008) Human osteoclast-poor osteopetrosis with hypogammaglobulinemia due to TNFRSF11A (RANK) mutations. Am J Hum Genet 83:64–76CrossRef Guerrini MM, Sobacchi C, Cassani B, Abinun M, Kilic SS, Pangrazio A, Moratto D, Mazzolari E, Clayton-Smith J, Orchard P, Coxon FP (2008) Human osteoclast-poor osteopetrosis with hypogammaglobulinemia due to TNFRSF11A (RANK) mutations. Am J Hum Genet 83:64–76CrossRef
25.
Zurück zum Zitat Pangrazio A, Cassani B, Guerrini MM, Crockett JC, Marrella V, Zammataro L, Strina D, Schulz A, Schlack C, Kornak U, Mellis DJ (2012) RANK-dependent autosomal recessive osteopetrosis: characterization of five new cases with novel mutations. J Bone Miner Res 27:342–351CrossRef Pangrazio A, Cassani B, Guerrini MM, Crockett JC, Marrella V, Zammataro L, Strina D, Schulz A, Schlack C, Kornak U, Mellis DJ (2012) RANK-dependent autosomal recessive osteopetrosis: characterization of five new cases with novel mutations. J Bone Miner Res 27:342–351CrossRef
26.
Zurück zum Zitat Shamriz O, Shaag A, Yaacov B, NaserEddin A, Weintraub M, Elpeleg O, Stepensky P (2017) The use of whole exome sequencing for the diagnosis of autosomal recessive malignant infantile osteopetrosis. Clin Genet 92:80–85CrossRef Shamriz O, Shaag A, Yaacov B, NaserEddin A, Weintraub M, Elpeleg O, Stepensky P (2017) The use of whole exome sequencing for the diagnosis of autosomal recessive malignant infantile osteopetrosis. Clin Genet 92:80–85CrossRef
27.
Zurück zum Zitat Alabdullatif MA, Al Dhaibani MA, Khassawneh MY, El-Hattab AW (2017) Chromosomal microarray in a highly consanguineous population: diagnostic yield, utility of regions of homozygosity, and novel mutations. Clin Genet 91:616–622CrossRef Alabdullatif MA, Al Dhaibani MA, Khassawneh MY, El-Hattab AW (2017) Chromosomal microarray in a highly consanguineous population: diagnostic yield, utility of regions of homozygosity, and novel mutations. Clin Genet 91:616–622CrossRef
28.
Zurück zum Zitat Guo L, Elcioglu NH, Karalar OK, Topkar MO, Wang Z, Sakamoto Y, Matsumoto N, Miyake N, Nishimura G, Ikegawa S (2018) Dysosteosclerosis is also caused by TNFRSF11A mutation. J Hum Genet 63:769–774CrossRef Guo L, Elcioglu NH, Karalar OK, Topkar MO, Wang Z, Sakamoto Y, Matsumoto N, Miyake N, Nishimura G, Ikegawa S (2018) Dysosteosclerosis is also caused by TNFRSF11A mutation. J Hum Genet 63:769–774CrossRef
29.
Zurück zum Zitat Xue JY, Wang Z, Shinagawa S, Ohashi H, Otomo N, Elcioglu NH, Nakashima T, Nishimura G, Ikegawa S, Guo L (2019) TNFRSF11A-associated dysosteosclerosis: a report of the second case and characterization of the phenotypic spectrum. J Bone Miner Res 34:1873–1879CrossRef Xue JY, Wang Z, Shinagawa S, Ohashi H, Otomo N, Elcioglu NH, Nakashima T, Nishimura G, Ikegawa S, Guo L (2019) TNFRSF11A-associated dysosteosclerosis: a report of the second case and characterization of the phenotypic spectrum. J Bone Miner Res 34:1873–1879CrossRef
30.
Zurück zum Zitat Fukumoto S, Matsumoto T (2017) Recent advances in the management of osteoporosis. F1000Research 6:625CrossRef Fukumoto S, Matsumoto T (2017) Recent advances in the management of osteoporosis. F1000Research 6:625CrossRef
31.
Zurück zum Zitat Ahern E, Smyth MJ, Dougall WC, Teng MW (2018) Roles of the RANKL-RANK axis in antitumour immunity-implications for therapy. Nat Rev Clin Oncol 15:676–693CrossRef Ahern E, Smyth MJ, Dougall WC, Teng MW (2018) Roles of the RANKL-RANK axis in antitumour immunity-implications for therapy. Nat Rev Clin Oncol 15:676–693CrossRef
32.
Zurück zum Zitat Diker-Cohen T, Rosenberg D, Avni T, Shepshelovich D, Tsvetov G, Gafter-Gvili A (2020) Risk for infections during treatment with denosumab for osteoporosis: a systematic review and meta-analysis. J Clin Endocrinol Metab 105:1641–1658CrossRef Diker-Cohen T, Rosenberg D, Avni T, Shepshelovich D, Tsvetov G, Gafter-Gvili A (2020) Risk for infections during treatment with denosumab for osteoporosis: a systematic review and meta-analysis. J Clin Endocrinol Metab 105:1641–1658CrossRef
33.
Zurück zum Zitat Naot D, Wilson LC, Allgrove J, Adviento E, Piec I, Musson DS, Cundy T, Calder AD (2020) Juvenile Paget's disease with compound heterozygous mutations in TNFRSF11B presenting with recurrent clavicular fractures and a mild skeletal phenotype. Bone 130:115098CrossRef Naot D, Wilson LC, Allgrove J, Adviento E, Piec I, Musson DS, Cundy T, Calder AD (2020) Juvenile Paget's disease with compound heterozygous mutations in TNFRSF11B presenting with recurrent clavicular fractures and a mild skeletal phenotype. Bone 130:115098CrossRef
34.
Zurück zum Zitat Grasemann C, Schündeln MM, Hövel M, Schweiger B, Bergmann C, Herrmann R, Wieczorek D, Zabel B, Wieland R, Hauffa BP (2013) Effects of RANK-ligand antibody (denosumab) treatment on bone turnover markers in a girl with juvenile Paget's disease. J Clin Endocrinol Metab 98:3121–3126CrossRef Grasemann C, Schündeln MM, Hövel M, Schweiger B, Bergmann C, Herrmann R, Wieczorek D, Zabel B, Wieland R, Hauffa BP (2013) Effects of RANK-ligand antibody (denosumab) treatment on bone turnover markers in a girl with juvenile Paget's disease. J Clin Endocrinol Metab 98:3121–3126CrossRef
35.
Zurück zum Zitat Saki F, Karamizadeh Z, Nasirabadi S, Mumm S, McAlister WH, Whyte MP (2013) Juvenile paget’s disease in an Iranian kindred with vitamin D deficiency and novel homozygous TNFRSF11B mutation. J Bone Miner Res 28:1501–1508CrossRef Saki F, Karamizadeh Z, Nasirabadi S, Mumm S, McAlister WH, Whyte MP (2013) Juvenile paget’s disease in an Iranian kindred with vitamin D deficiency and novel homozygous TNFRSF11B mutation. J Bone Miner Res 28:1501–1508CrossRef
36.
Zurück zum Zitat Naot D, Choi A, Musson DS, Simsek Kiper PÖ, Utine GE, Boduroglu K, Peacock M, DiMeglio LA, Cundy T (2014) Novel homozygous mutations in the osteoprotegerin gene TNFRSF11B in two unrelated patients with juvenile Paget’s disease. Bone 68:6–10CrossRef Naot D, Choi A, Musson DS, Simsek Kiper PÖ, Utine GE, Boduroglu K, Peacock M, DiMeglio LA, Cundy T (2014) Novel homozygous mutations in the osteoprotegerin gene TNFRSF11B in two unrelated patients with juvenile Paget’s disease. Bone 68:6–10CrossRef
37.
Zurück zum Zitat Gottesman GS, Madson KL, McAlister WH, Nenninger A, Wenkert D, Mumm S, Whyte MP (2016) Auricular ossification: a newly recognized feature of osteoprotegerin-deficiency juvenile Paget disease. Am J Med Genet A 170A:978–985CrossRef Gottesman GS, Madson KL, McAlister WH, Nenninger A, Wenkert D, Mumm S, Whyte MP (2016) Auricular ossification: a newly recognized feature of osteoprotegerin-deficiency juvenile Paget disease. Am J Med Genet A 170A:978–985CrossRef
38.
Zurück zum Zitat Grasemann C, Unger N, Hövel M, Arweiler-Harbeck D, Herrmann R, Schündeln MM, Müller O, Schweiger B, Lausch E, Meissner T, Kiewert C, Hauffa BP, Shaw NJ (2017) Loss of functional osteoprotegerin: more than a skeletal problem. J Clin Endocrinol Metab 102:210–219CrossRef Grasemann C, Unger N, Hövel M, Arweiler-Harbeck D, Herrmann R, Schündeln MM, Müller O, Schweiger B, Lausch E, Meissner T, Kiewert C, Hauffa BP, Shaw NJ (2017) Loss of functional osteoprotegerin: more than a skeletal problem. J Clin Endocrinol Metab 102:210–219CrossRef
Metadaten
Titel
Genetic disorders associated with the RANKL/OPG/RANK pathway
verfasst von
Jing-Yi Xue
Shiro Ikegawa
Long Guo
Publikationsdatum
17.09.2020
Verlag
Springer Singapore
Erschienen in
Journal of Bone and Mineral Metabolism / Ausgabe 1/2021
Print ISSN: 0914-8779
Elektronische ISSN: 1435-5604
DOI
https://doi.org/10.1007/s00774-020-01148-4

Weitere Artikel der Ausgabe 1/2021

Journal of Bone and Mineral Metabolism 1/2021 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Ist Fasten vor Koronarinterventionen wirklich nötig?

Wenn Eingriffe wie eine Koronarangiografie oder eine Koronarangioplastie anstehen, wird häufig empfohlen, in den Stunden zuvor nüchtern zu bleiben. Ein französisches Forscherteam hat diese Maßnahme hinterfragt.

Typ-2-Diabetes: Ernährungsunsicherheit vervierfacht Risiko für schwere Hypoglykämien

04.06.2024 Typ-2-Diabetes Nachrichten

Wenn ältere Menschen mit Typ-2-Diabetes Schwierigkeiten beim Beschaffen und Zubereiten von Mahlzeiten haben, geht dies mit einem deutlich gesteigerten Risiko für schwere Hypoglykämien einher.

Mehr Brustkrebs, aber weniger andere gynäkologische Tumoren mit Levonorgestrel-IUS

04.06.2024 Levonorgestrel Nachrichten

Unter Frauen, die ein Levonorgestrel-freisetzendes intrauterines System (IUS) verwenden, ist die Brustkrebsrate um 13% erhöht. Dafür kommt es deutlich seltener zu Endometrium-, Zervix- und Ovarialkarzinomen.

GLP-1-Agonist Semaglutid wirkt kardio- und nephroprotektiv

03.06.2024 Semaglutid Nachrichten

Der GLP-1-Agonist Semaglutid hat in der FLOW-Studie bewiesen, dass sich damit die Progression chronischer Nierenerkrankungen bei Patienten mit Typ-2-Diabetes bremsen lässt. Auch in kardiovaskulärer Hinsicht war die Therapie erfolgreich.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.