Skip to main content
Erschienen in: Breast Cancer Research and Treatment 2/2011

Open Access 01.04.2011 | Brief Report

PALB2 mutations in German and Russian patients with bilateral breast cancer

verfasst von: Natalia Bogdanova, Anna P. Sokolenko, Aglaya G. Iyevleva, Svetlana N. Abysheva, Magda Blaut, Michael Bremer, Hans Christiansen, Margret Rave-Fränk, Thilo Dörk, Evgeny N. Imyanitov

Erschienen in: Breast Cancer Research and Treatment | Ausgabe 2/2011

download
DOWNLOAD
print
DRUCKEN
insite
SUCHEN

Abstract

Since germline mutations in the PALB2 (Partner and Localizer of BRCA2) gene have been identified as breast cancer (BC) susceptibility alleles, the geographical spread and risks associated with PALB2 mutations are subject of intense investigation. Patients with bilateral breast cancer constitute a valuable group for genetic studies. We have thus scanned the whole coding region of PALB2 in a total of 203 German or Russian bilateral breast cancer patients using an approach based on high-resolution melting analysis and direct sequencing of genomic DNA samples. Truncating PALB2 mutations were identified in 4/203 (2%) breast cancer patients with bilateral disease. The two nonsense mutations, p.E545X and p.Q921X, have not been previously described whereas the two other mutations, p.R414X and c.509_510delGA, are recurrent. Our results indicate that PALB2 germline mutations account for a small, but not negligible, proportion of bilateral breast carcinomas in German and Russian populations.
Hinweise

Electronic supplementary material

The online version of this article (doi:10.​1007/​s10549-010-1290-4) contains supplementary material, which is available to authorized users.
Natalia Bogdanova and Anna P. Sokolenko contributed equally to this work.

Introduction

Breast cancer (BC) has an inherited component, and the high-penetrance breast cancer predisposing genes, BRCA1 and BRCA2, account for up to 10–30% of familial breast cancer clustering [13]. Other relevant genes, such as CHEK2, NBS1, PALB2, BRIP1, etc., also contribute to hereditary breast cancer, although their impact appears to be somewhat more population-specific [4]. The PALB2 (Partner and Localizer of BRCA2) gene is located on chromosome 16p12.2 and encodes for a protein involved in BRCA2-related pathways [5]. Its biallelic inactivation results in Fanconi anemia, while the presence of a germline mutation in the heterozygous state is associated with increased risk of breast, pancreatic, and possibly some other cancers (Table 1 and references therein). The geographical spread of PALB2 mutations has not been comprehensively analyzed yet, and several recent studies have failed to identify any PALB2 mutations in breast cancer series from their population [2427]. The search for breast cancer predisposing mutations is considered to be particularly effective in patient series with a pronounced family history of the disease. However, the collection of multi-case breast cancer families can be complicated in countries with low birth rate and/or recent historical turbulences and/or lack of comprehensive registration of (familial) cancer cases. Others and we have suggested that patients with bilateral occurrence of breast cancer constitute a valuable group for genetic studies [2831]. It has been calculated that the bilateral occurrence of breast cancer can be considered an equivalent of the presence of two affected first-degree relatives [28].
Table 1
Survey of inactivating PALB2 mutations in patients with cancer or Fanconi anemia
Study
Country/ethnicity
Patients
PALB2 mutations
Founder effect
Breast cancer
 Erkko et al. [6]
Finland
113 Familial, BRCA1/2 negative
1592delT (L531fs): 3
19/947 (2%) familial BC, 8/1274 (0.6%) sporadic BC, 2/1079 (0.2%) controls [7]
 Rahman et al. [8]
UK
923 Familial, BRCA1/2 negative
2386G>T (G796X): 1; 2982insT (A995fs): 1; 3113G>A (W1038X): 2; 3116delA (N1039fs): 3; 3549C>G (Y1183X): 3
 
 Tischkowitz et al. [9]
Canada (Ashkenazi Jews, French Canadian, other)
68 Familial, BRCA1/2 negative
229delT (C77fs)
 
 Foulkes et al. [10]
Canada (French Canadian)
50 Young-onset (< 50 years) or familial
2323C>T (Q775X)
2/356 (0.6%) young-onset BC
 Cao et al. [11]
China
360 Young-onset (< 35 years) or familial
751C>T (Q251X): 2; 1050_1051delAAinsTCT (Q350fs): 1
 
 Garcia et al. [12]
Spain
95 Familial, BRCA1/2 negative
1056_1057delGA (K353fsX7)
 
 Sluiter et al. [13]
South Africa (whites)
48 Young-onset (29–45 years)
697delG (V233fs)
 
 Adank et al. [14]
The Netherlands
110 Cancer families with BRCA2-like clinical features, BRCA1/2 negative
509_510delGA (R170fs)
 
 Balia et al. [15]
Italy
95 Familial, BRCA1/2 negative
1317delG (G439fs)
 
 Ding YC et al. [16]
USA
97 Male, BRCA2 negative
3549C>A (Y1183X)
 
 Papi et al. [17]
Italy
132 Familial, BRCA1/2 negative
2257C>T (R753X)
 
 Present study
Germany
158 Bilateral
509_510delGA (R170fs), 1633G>T (E545X)
 
 Present study
Russia
45 Bilateral, BRCA1/2 negative
1240C>T (R414X), 2761C>T (Q921X)
 
Pancreatic cancer
 Jones et al. [18]
USA
97 Familial
172_175delTTGT (S58fs); IVS5-1G>T; 3116delA (N1039fs); 3256C>T (R1086X)
 
 Tischkowitz et al. [19]
Canada
254 Familial and sporadic
Deletion of the exons 12 and 13
 
 Slater et al. [20]
Europe
81 Familial
1240C>T (R414X), 508_509delAG (R170fs), 3116delA (N1039fs)
 
Ovarian cancer
 Dansonka-Mieszkowska et al. [21]
Poland
70
509_510delGA (R170fs)
2/339 (0.6%) ovarian cancer cases, 4/648 (0.6%) familial BC, 1/1310 (0.08%) controls
  
Fanconi anemia
  
 Reid et al. [22]
Various
82, negative for mutations in other known FA genes
Biallelic mutations: 395delT (V132fs)/3113+5G>C (r.2835_3113del279/A946fs); 757_758delCT (L253fs)/3294_3298delGACGA (K1098fs); 2257C>T (R753X)/3549C>A (Y1183X); 2393_2394insCT (T799fs)/3350+4A>G (r.3350insGCAG/F1118fs); 2521delA (T841fs)/3323delA (Y1108fs); 2962C>T (Q988X)/3549C>G (Y1183X); 3116delA (N1039fs)/3549C>G (Y1183X)
 
 Xia et al. [23]
 
Case report
Biallelic mutation: Y551X/deletion of the exons 2–6
 
We have previously employed population-specific series of patients with bilateral breast cancer to study the distribution of germline mutations in BRCA1, BRCA2, or CHEK2 [30, 32]. Here we report on the identification of PALB2 mutations in patients with bilateral breast cancer from Germany and Russia.

Patients and methods

The German case series consisted of 158 patients from Lower Saxony (Northern Germany) with bilateral breast cancer who had been recruited at the time they received radiotherapy either at Hannover Medical School during the years 1996–2005 (n = 112), or at the University Medical Center Göttingen during the years 2007–2009 (n = 46). 70 (44%) patients had synchronous bilateral BC (mean age: 59 years; age range 29–83 years) and 88 (56%) patients had metachronous disease (mean age for the first tumor: 51 years; age range 27–72 years; mean age for the second tumor: 60 years; age range 31–82 years). Five (3%) women were diagnosed with her first primary below age 30 years, 16 (10%) between 30 and 39 years, 30 (19%) between 40 and 49 years, and 107 (68%) at the age of 50 years or above. Family history revealed at least one first-degree relative with breast cancer in 29 (18%) of the cases, and a second-degree family history of breast cancer in 14 (9%) additional patients. Two women also had a personal history of ovarian cancer. Pathogenic BRCA1 or BRCA2 mutations were known in ten of the German patients (6%); these patients were left within the study.
The Russian bilateral breast cancer patients were represented by 45 BRCA1/BRCA2 mutation-negative women, who underwent treatment in the N.N. Petrov Institute of Oncology (St.-Petersburg) in the years 1999–2009. 16 (36%) patients had synchronous bilateral BC (mean age: 53 years; age range 30–77 years) and 29 (64%) patients had the metachronous disease (mean age for the first tumor: 47 years; age range 25–77 years; mean age for the second tumor: 58 years; age range: 28–86 years). Age at first BC onset was below 30 years in two (4%) women, between 30 and 39 years in five (11%) cases, between 40 and 49 years in 17 (38%) patients, and 50 years or above in 21 (47%) females. 13 (29%) of the women reported a first-degree family history of the disease, and seven (16%) additional patients had second-degree relatives affected by BC.
PCR amplifications were set up in the presence of the EvaGreen dye (BioBudget, Krefeld, Germany), and high-resolution melting analysis was performed on the Rotor-Gene 6000 real-time PCR machine (Corbett Research, Mortlake, Australia). Primer sequences are described in the Supplementary Table 1. Melting profiles were evaluated using the Melt Curve Analysis tool of the Rotor-Gene 6000 Series Software Version 1.7. All samples with suspicious melting behavior were then subjected to direct sequencing to identify the underlying substitution. The three common PALB2 polymorphisms, p.Q559R, p.E672Q, and p.G998E, were confirmed by allele-specific TaqMan assays on a 7500FAST Sequence Detection System platform.
The population frequency and the location of missense substitutions were assessed using the SNP database of the NCBI Genbank (http://​www.​ncbi.​nlm.​nih.​gov/​snp) and UniprotKB (http://​www.​uniprot.​org/​uniprot/​). Bioinformatic analyses of missense substitutions were performed using SIFT (http://​sift.​jcvi.​org/​sift-bin/​SIFT_​BLink_​submit.​html) or PolyPhen-2 (http://​genetics.​bwh.​harvard.​edu/​pph2/​, with Q86YC2 as the protein identifier and in the HumDiv trained mode), which predict pathogenicity on the basis of evolutionary and structural calculations.
The project has been approved by the Ethical Boards of all participating research centers which contributed DNA samples to the study.

Results and discussion

All portions of the PALB2 coding region were successfully analyzed by high-resolution melting (Supplementary Fig. 1). Direct sequencing of samples with suspicious melting profiles revealed four truncating and several missense mutations. A list of the identified nucleotide sequence changes is provided in Table 2.
Table 2
PALB2 coding sequence alterations in 158 German and 45 Russian patients with bilateral breast cancer
Exon
Nucleotide variation
Amino acid change
Allelic counts in German patients (relative fraction)
Allelic counts in Russian patients (relative fraction)
Reference
2
53A>G
K18R
2 (0.01)
This study
4
509_510delGA
Frameshift mutation (R170X)
1 (<0.01)
Dansonka-Mieszkowska et al. [21]
 
807T>C
G269G
1 (<0.01)
This study
 
1240C>T
Nonsense mutation (R414X)
1 (0.01)
Slater et al. [20]
 
1470C>T
P490P
1 (0.01)
rs45612837
 
1572A>G
S524S
1 (<0.01)
rs45472400
 
1633G>T
Nonsense mutation (E545X)
1 (<0.01)
This study
 
1676A>G
Q559R
18 (0.06)
6 (0.06)
rs152451
5
2014G>C
E672Q
11 (0.03)
1 (0.01)
rs45532440
8
2761C>T
Nonsense mutation (Q921X)
1 (0.01)
This study
 
2794G>A
V932 M
2 (0.01)
3 (0.03)
rs45624036
 
2816T>G
L939 W
1 (<0.01)
rs45478192
9
2993G>A
G998E
9 (0.03)
1 (0.01)
rs45551636
 
3300T>G
T1100T
7 (0.02)
1 (0.01)
rs45516100
13
3495G>A
S1165S
1 (<0.01)
rs45439097
The analysis of 158 German bilateral breast cancer patients led to the identification of two (1.3%) truncating mutations, both located in exon 4 of the PALB2 gene. The c.1633G>T allele (p.E545X) has not been described in prior literature, while the c.509_510delGA (p.R170fs) mutation appears to be recurrent in Poland, a neighboring country of both Germany and Russia [21]. The patient with the novel PALB2 mutation, p.E545X, was diagnosed at the age of 83 years as having bilateral invasive ductal carcinoma (IDC) with estrogen and progesterone receptor negative tumors (T2N1M0 and T2N0M0). She did not have an apparent family history of breast cancer, but reportedly her maternal grandmother suffered from stomach cancer and her sister died at the age of 67 from a cancer of unknown origin. The second German PALB2 mutation carrier, heterozygous for the c.509_510delGA frameshift mutation, was diagnosed with synchronous bilateral disease at the age of 63 years. She presented with bilateral invasive lobular breast cancer, with an additional invasive ductal component in one tumor; both cancers were of stage 1 (T1N0M0 and T1N0M0) and had positive estrogen and progesterone receptor status. Again, there was no family history of breast cancer, but her father suffered from a stomach cancer. None of the ten patients who carried a mutation in BRCA1 or BRCA2 was also a carrier of truncating PALB2 mutation; if we consider the frequency of PALB2 heterozygotes in BRCA1/2-negative German bilateral breast cancer cases, this estimate will approach to 2/148 (1.4%).
The investigation of 45 (4.4%) Russian patients with bilateral breast cancer revealed another two deleterious mutations. One woman carried the c.1240C >T (p.R414X) allele in exon 4; this mutation has been previously described in a European family with pancreatic cancer [20]. This patient developed first disease at age 66 (IDC, T2N1M0, ER+/PR+) and the contralateral tumor at age 70 (Paget’s carcinoma, T1N0M0, ER-/PR+). She reported that her mother was also affected by breast cancer. The second patient had a newly identified mutation, c.2761C >T (p.Q921X). She was diagnosed with synchronous bilateral breast cancer at age 48 (both tumors: IDC, T4N0M0, ER+/PR−); her mother suffered from breast cancer, and her maternal grandfather was diagnosed with stomach cancer.
Six missense substitutions were identified besides the four truncating mutations (Table 2). The variants p.Q559R, p.E672Q, p.V932M, p.L939W and p.G998E are known to be relatively common both in breast cancer patients and in healthy controls [8]. Bioinformatic analysis using SIFT and PolyPhen-2 classified p.Q559R and p.V932M as benign, whereas p.E672Q, p.L939W and p.G998E were predicted as probably damaging by one or both of these software tools [8]. The new missense variant, p.K18R, was observed in two bilateral breast cancer cases from this study. It resides in a putative coiled-coil region of unknown functional importance and is predicted by PolyPhen-2 to be probably damaging. Large-scale case–control comparisons as well as functional studies will be useful to identify any possible disease risks associated with these variants.
While the data indicate that PALB2 mutations are relatively uncommon in German and Russian populations, it may be noteworthy that the rate of mutation carriers appears somewhat higher in our series of bilateral breast cancer (2%) than in most published series of familial breast cancer from other populations (Table 1). This would be in line with the assumption that patients with bilateral disease constitute a subgroup where the detection of rare at-risk alleles is particularly effective [2831].
In summary, truncating PALB2 heterozygous mutations have been identified in 4/203 (2%) breast cancer patients with bilateral disease. We conclude that PALB2 mutations contribute to a small fraction of bilateral breast cancer in Germany and Russia. The observation that two of the four mutations identified in our study are recurrent [20, 21] may provide a rationale for mutation-specific screening efforts in extended series of Eastern and Central European cancer patients.

Acknowledgments

We cordially thank Johann H. Karstens and Peter Hillemanns for their support of the studies on breast cancer genetics at Hannover Medical School. This study has been supported by the Russian Federation for Basic Research (grants 08-04-00369, 10-04-92110, 10-04-92601, 10-04-00962), the Federal Agency for Science and Innovations (contract 02.740.11.0780), the Commission of the European Communities (grant PITN-GA-2009-238132), and the Government of Moscow (grant 15/10). N.B. has been supported by the German Academic Exchange Program (DAAD), by the Friends of Hannover Medical School, and by a Hannelore-Munke stipend at Hannover Medical School. The initiation of our bilateral Russian-German research collaboration has been supported by a grant from the German Research Foundation (DFG, Do 761/7-1).

Conflict of interest

None.
Open Access This article is licensed under a Creative Commons Attribution-NonCommercial 2.0 International License, which permits any non-commercial use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.
The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

Unsere Produktempfehlungen

e.Med Interdisziplinär

Kombi-Abonnement

Für Ihren Erfolg in Klinik und Praxis - Die beste Hilfe in Ihrem Arbeitsalltag

Mit e.Med Interdisziplinär erhalten Sie Zugang zu allen CME-Fortbildungen und Fachzeitschriften auf SpringerMedizin.de.

e.Med Gynäkologie

Kombi-Abonnement

Mit e.Med Gynäkologie erhalten Sie Zugang zu CME-Fortbildungen der beiden Fachgebiete, den Premium-Inhalten der Fachzeitschriften, inklusive einer gedruckten gynäkologischen oder urologischen Zeitschrift Ihrer Wahl.

Anhänge

Electronic supplementary material

Below is the link to the electronic supplementary material.
Literatur
1.
Zurück zum Zitat Fackenthal JD, Olopade OI (2007) Breast cancer risk associated with BRCA1 and BRCA2 in diverse populations. Nat Rev Cancer 7:937–948PubMedCrossRef Fackenthal JD, Olopade OI (2007) Breast cancer risk associated with BRCA1 and BRCA2 in diverse populations. Nat Rev Cancer 7:937–948PubMedCrossRef
2.
Zurück zum Zitat Turnbull C, Rahman N (2008) Genetic predisposition to breast cancer: past, present, and future. Annu Rev Genomics Hum Genet 9:321–345PubMedCrossRef Turnbull C, Rahman N (2008) Genetic predisposition to breast cancer: past, present, and future. Annu Rev Genomics Hum Genet 9:321–345PubMedCrossRef
3.
Zurück zum Zitat Kurian AW (2010) BRCA1 and BRCA2 mutations across race and ethnicity:distribution and clinical implications. Curr Opin Obstet Gynecol 22:72–78PubMedCrossRef Kurian AW (2010) BRCA1 and BRCA2 mutations across race and ethnicity:distribution and clinical implications. Curr Opin Obstet Gynecol 22:72–78PubMedCrossRef
4.
5.
Zurück zum Zitat Tischkowitz M, Xia B (2010) PALB2/FANCN: Recombining cancer and Fanconi anemia. Cancer Res 70:7353–7359PubMedCrossRef Tischkowitz M, Xia B (2010) PALB2/FANCN: Recombining cancer and Fanconi anemia. Cancer Res 70:7353–7359PubMedCrossRef
6.
Zurück zum Zitat Erkko H, Xia B, Nikkilä J, Schleutker J, Syrjäkoski K, Mannermaa A, Kallioniemi A, Pylkäs K, Karppinen SM, Rapakko K, Miron A, Sheng Q, Li G, Mattila H, Bell DW, Haber DA, Grip M, Reiman M, Jukkola-Vuorinen A, Mustonen A, Kere J, Aaltonen LA, Kosma VM, Kataja V, Soini Y, Drapkin RI, Livingston DM, Winqvist R (2007) A recurrent mutation in PALB2 in Finnish cancer families. Nature 446:316–319PubMedCrossRef Erkko H, Xia B, Nikkilä J, Schleutker J, Syrjäkoski K, Mannermaa A, Kallioniemi A, Pylkäs K, Karppinen SM, Rapakko K, Miron A, Sheng Q, Li G, Mattila H, Bell DW, Haber DA, Grip M, Reiman M, Jukkola-Vuorinen A, Mustonen A, Kere J, Aaltonen LA, Kosma VM, Kataja V, Soini Y, Drapkin RI, Livingston DM, Winqvist R (2007) A recurrent mutation in PALB2 in Finnish cancer families. Nature 446:316–319PubMedCrossRef
7.
Zurück zum Zitat Heikkinen T, Kärkkäinen H, Aaltonen K, Milne RL, Heikkilä P, Aittomäki K, Blomqvist C, Nevanlinna H (2009) The breast cancer susceptibility mutation PALB2 1592delT is associated with an aggressive tumor phenotype. Clin Cancer Res 15:3214–3222PubMedCrossRef Heikkinen T, Kärkkäinen H, Aaltonen K, Milne RL, Heikkilä P, Aittomäki K, Blomqvist C, Nevanlinna H (2009) The breast cancer susceptibility mutation PALB2 1592delT is associated with an aggressive tumor phenotype. Clin Cancer Res 15:3214–3222PubMedCrossRef
8.
Zurück zum Zitat Rahman N, Seal S, Thompson D, Kelly P, Renwick A, Elliott A, Reid S, Spanova K, Barfoot R, Chagtai T, Jayatilake H, McGuffog L, Hanks S, Evans DG, Eccles D, Breast Cancer Susceptibility Collaboration (UK), Easton DF, Stratton MR (2007) PALB2, which encodes a BRCA2-interacting protein, is a breast cancer susceptibility gene. Nat Genet 39:165–167PubMedCrossRef Rahman N, Seal S, Thompson D, Kelly P, Renwick A, Elliott A, Reid S, Spanova K, Barfoot R, Chagtai T, Jayatilake H, McGuffog L, Hanks S, Evans DG, Eccles D, Breast Cancer Susceptibility Collaboration (UK), Easton DF, Stratton MR (2007) PALB2, which encodes a BRCA2-interacting protein, is a breast cancer susceptibility gene. Nat Genet 39:165–167PubMedCrossRef
9.
Zurück zum Zitat Tischkowitz M, Xia B, Sabbaghian N, Reis-Filho JS, Hamel N, Li G, van Beers EH, Li L, Khalil T, Quenneville LA, Omeroglu A, Poll A, Lepage P, Wong N, Nederlof PM, Ashworth A, Tonin PN, Narod SA, Livingston DM, Foulkes WD (2007) Analysis of PALB2/FANCN-associated breast cancer families. Proc Natl Acad Sci USA 104:6788–6793PubMedCrossRef Tischkowitz M, Xia B, Sabbaghian N, Reis-Filho JS, Hamel N, Li G, van Beers EH, Li L, Khalil T, Quenneville LA, Omeroglu A, Poll A, Lepage P, Wong N, Nederlof PM, Ashworth A, Tonin PN, Narod SA, Livingston DM, Foulkes WD (2007) Analysis of PALB2/FANCN-associated breast cancer families. Proc Natl Acad Sci USA 104:6788–6793PubMedCrossRef
10.
Zurück zum Zitat Foulkes WD, Ghadirian P, Akbari MR, Hamel N, Giroux S, Sabbaghian N, Darnel A, Royer R, Poll A, Fafard E, Robidoux A, Martin G, Bismar TA, Tischkowitz M, Rousseau F, Narod SA (2007) Identification of a novel truncating PALB2 mutation and analysis of its contribution to early-onset breast cancer in French-Canadian women. Breast Cancer Res 9:R83PubMedCrossRef Foulkes WD, Ghadirian P, Akbari MR, Hamel N, Giroux S, Sabbaghian N, Darnel A, Royer R, Poll A, Fafard E, Robidoux A, Martin G, Bismar TA, Tischkowitz M, Rousseau F, Narod SA (2007) Identification of a novel truncating PALB2 mutation and analysis of its contribution to early-onset breast cancer in French-Canadian women. Breast Cancer Res 9:R83PubMedCrossRef
11.
Zurück zum Zitat Cao AY, Huang J, Hu Z, Li WF, Ma ZL, Tang LL, Zhang B, Su FX, Zhou J, Di GH, Shen KW, Wu J, Lu JS, Luo JM, Yuan WT, Shen ZZ, Huang W, Shao ZM (2009) The prevalence of PALB2 germline mutations in BRCA1/BRCA2 negative Chinese women with early onset breast cancer or affected relatives. Breast Cancer Res Treat 114:457–462PubMedCrossRef Cao AY, Huang J, Hu Z, Li WF, Ma ZL, Tang LL, Zhang B, Su FX, Zhou J, Di GH, Shen KW, Wu J, Lu JS, Luo JM, Yuan WT, Shen ZZ, Huang W, Shao ZM (2009) The prevalence of PALB2 germline mutations in BRCA1/BRCA2 negative Chinese women with early onset breast cancer or affected relatives. Breast Cancer Res Treat 114:457–462PubMedCrossRef
12.
Zurück zum Zitat García MJ, Fernández V, Osorio A, Barroso A, Fernández F, Urioste M, Benítez J (2009) Mutational analysis of FANCL, FANCM and the recently identified FANCI suggests that among the 13 known Fanconi Anemia genes, only FANCD1/BRCA2 plays a major role in high-risk breast cancer predisposition. Carcinogenesis 30:1898–1902PubMedCrossRef García MJ, Fernández V, Osorio A, Barroso A, Fernández F, Urioste M, Benítez J (2009) Mutational analysis of FANCL, FANCM and the recently identified FANCI suggests that among the 13 known Fanconi Anemia genes, only FANCD1/BRCA2 plays a major role in high-risk breast cancer predisposition. Carcinogenesis 30:1898–1902PubMedCrossRef
13.
Zurück zum Zitat Sluiter M, Mew S, van Rensburg EJ (2009) PALB2 sequence variants in young South African breast cancer patients. Fam Cancer 8:347–353PubMedCrossRef Sluiter M, Mew S, van Rensburg EJ (2009) PALB2 sequence variants in young South African breast cancer patients. Fam Cancer 8:347–353PubMedCrossRef
14.
15.
Zurück zum Zitat Balia C, Sensi E, Lombardi G, Roncella M, Bevilacqua G, Caligo MA (2010) PALB2: a novel inactivating mutation in an Italian breast cancer family. Fam Cancer 9:531–536 Balia C, Sensi E, Lombardi G, Roncella M, Bevilacqua G, Caligo MA (2010) PALB2: a novel inactivating mutation in an Italian breast cancer family. Fam Cancer 9:531–536
16.
Zurück zum Zitat Ding YC, Steele L, Kuan C-J, Greilac S, Neuhausen SL (2010) Mutations in BRCA2 and PALB2 in male breast cancer cases from the United States. Breast Cancer Res Treat. doi:10.1007/s10549-010-1195-2 Ding YC, Steele L, Kuan C-J, Greilac S, Neuhausen SL (2010) Mutations in BRCA2 and PALB2 in male breast cancer cases from the United States. Breast Cancer Res Treat. doi:10.​1007/​s10549-010-1195-2
17.
Zurück zum Zitat Papi L, Putignano AL, Congregati C, Piaceri I, Zanna I, Sera F, Morrone D, Genuardi M, Palli D (2010) A PALB2 germline mutation associated with hereditary breast cancer in Italy. Fam Cancer 9:181–185PubMedCrossRef Papi L, Putignano AL, Congregati C, Piaceri I, Zanna I, Sera F, Morrone D, Genuardi M, Palli D (2010) A PALB2 germline mutation associated with hereditary breast cancer in Italy. Fam Cancer 9:181–185PubMedCrossRef
18.
Zurück zum Zitat Jones S, Hruban RH, Kamiyama M, Borges M, Zhang X, Parsons DW, Lin JC, Palmisano E, Brune K, Jaffee EM, Iacobuzio-Donahue CA, Maitra A, Parmigiani G, Kern SE, Velculescu VE, Kinzler KW, Vogelstein B, Eshleman JR, Goggins M, Klein AP (2009) Exomic sequencing identifies PALB2 as a pancreatic cancer susceptibility gene. Science 324:217PubMedCrossRef Jones S, Hruban RH, Kamiyama M, Borges M, Zhang X, Parsons DW, Lin JC, Palmisano E, Brune K, Jaffee EM, Iacobuzio-Donahue CA, Maitra A, Parmigiani G, Kern SE, Velculescu VE, Kinzler KW, Vogelstein B, Eshleman JR, Goggins M, Klein AP (2009) Exomic sequencing identifies PALB2 as a pancreatic cancer susceptibility gene. Science 324:217PubMedCrossRef
19.
Zurück zum Zitat Tischkowitz MD, Sabbaghian N, Hamel N, Borgida A, Rosner C, Taherian N, Srivastava A, Holter S, Rothenmund H, Ghadirian P, Foulkes WD, Gallinger S (2009) Analysis of the gene coding for the BRCA2-interacting protein PALB2 in familial and sporadic pancreatic cancer. Gastroenterology 137:1183–1186PubMedCrossRef Tischkowitz MD, Sabbaghian N, Hamel N, Borgida A, Rosner C, Taherian N, Srivastava A, Holter S, Rothenmund H, Ghadirian P, Foulkes WD, Gallinger S (2009) Analysis of the gene coding for the BRCA2-interacting protein PALB2 in familial and sporadic pancreatic cancer. Gastroenterology 137:1183–1186PubMedCrossRef
20.
Zurück zum Zitat Slater EP, Langer P, Niemczyk E, Strauch K, Butler J, Habbe N, Neoptolemos J, Greenhalf W, Bartsch DK (2010) PALB2 mutations in European familial pancreatic cancer families. Clin Genet 78:490–494PubMedCrossRef Slater EP, Langer P, Niemczyk E, Strauch K, Butler J, Habbe N, Neoptolemos J, Greenhalf W, Bartsch DK (2010) PALB2 mutations in European familial pancreatic cancer families. Clin Genet 78:490–494PubMedCrossRef
21.
Zurück zum Zitat Dansonka-Mieszkowska A, Kluska A, Moes J, Dabrowska M, Nowakowska D, Niwinska A, Derlatka P, Cendrowski K, Kupryjanczyk J (2010) A novel germline PALB2 deletion in Polish breast and ovarian cancer patients. BMC Med Genet 11:20PubMedCrossRef Dansonka-Mieszkowska A, Kluska A, Moes J, Dabrowska M, Nowakowska D, Niwinska A, Derlatka P, Cendrowski K, Kupryjanczyk J (2010) A novel germline PALB2 deletion in Polish breast and ovarian cancer patients. BMC Med Genet 11:20PubMedCrossRef
22.
Zurück zum Zitat Reid S, Schindler D, Hanenberg H, Barker K, Hanks S, Kalb R, Neveling K, Kelly P, Seal S, Freund M, Wurm M, Batish SD, Lach FP, Yetgin S, Neitzel H, Ariffin H, Tischkowitz M, Mathew CG, Auerbach AD, Rahman N (2007) Biallelic mutations in PALB2 cause Fanconi anemia subtype FA-N and predispose to childhood cancer. Nat Genet 39:162–164PubMedCrossRef Reid S, Schindler D, Hanenberg H, Barker K, Hanks S, Kalb R, Neveling K, Kelly P, Seal S, Freund M, Wurm M, Batish SD, Lach FP, Yetgin S, Neitzel H, Ariffin H, Tischkowitz M, Mathew CG, Auerbach AD, Rahman N (2007) Biallelic mutations in PALB2 cause Fanconi anemia subtype FA-N and predispose to childhood cancer. Nat Genet 39:162–164PubMedCrossRef
23.
Zurück zum Zitat Xia B, Dorsman JC, Ameziane N, de Vries Y, Rooimans MA, Sheng Q, Pals G, Errami A, Gluckman E, Llera J, Wang W, Livingston DM, Joenje H, de Winter JP (2007) Fanconi anemia is associated with a defect in the BRCA2 partner PALB2. Nat Genet 39:159–161PubMedCrossRef Xia B, Dorsman JC, Ameziane N, de Vries Y, Rooimans MA, Sheng Q, Pals G, Errami A, Gluckman E, Llera J, Wang W, Livingston DM, Joenje H, de Winter JP (2007) Fanconi anemia is associated with a defect in the BRCA2 partner PALB2. Nat Genet 39:159–161PubMedCrossRef
24.
Zurück zum Zitat Gunnarsson H, Arason A, Gillanders EM, Agnarsson BA, Johannesdottir G, Johannsson OT, Barkardottir RB (2008) Evidence against PALB2 involvement in Icelandic breast cancer susceptibility. J Negat Results Biomed 7:5PubMedCrossRef Gunnarsson H, Arason A, Gillanders EM, Agnarsson BA, Johannesdottir G, Johannsson OT, Barkardottir RB (2008) Evidence against PALB2 involvement in Icelandic breast cancer susceptibility. J Negat Results Biomed 7:5PubMedCrossRef
25.
Zurück zum Zitat Guénard F, Pedneault CS, Ouellette G, Labrie Y, Simard J, Durocher F (2010) Evaluation of the contribution of the three breast cancer susceptibility genes CHEK2, STK11, and PALB2 in non-BRCA1/2 French Canadian families with high risk of breast cancer. Genet Test Mol Biomarkers 14:515–526PubMedCrossRef Guénard F, Pedneault CS, Ouellette G, Labrie Y, Simard J, Durocher F (2010) Evaluation of the contribution of the three breast cancer susceptibility genes CHEK2, STK11, and PALB2 in non-BRCA1/2 French Canadian families with high risk of breast cancer. Genet Test Mol Biomarkers 14:515–526PubMedCrossRef
26.
Zurück zum Zitat McInerney NM, Miller N, Rowan A, Colleran G, Barclay E, Curran C, Kerin MJ, Tomlinson IP, Sawyer E (2010) Evaluation of variants in the CHEK2, BRIP1 and PALB2 genes in an Irish breast cancer cohort. Breast Cancer Res Treat 121:203–210PubMedCrossRef McInerney NM, Miller N, Rowan A, Colleran G, Barclay E, Curran C, Kerin MJ, Tomlinson IP, Sawyer E (2010) Evaluation of variants in the CHEK2, BRIP1 and PALB2 genes in an Irish breast cancer cohort. Breast Cancer Res Treat 121:203–210PubMedCrossRef
27.
Zurück zum Zitat de Sauty Chalon A, Teo Z, Park DJ, Odefrey FA, kConFab, Hopper JL, Southey MC (2010) Are PALB2 mutations associated with increased risk of male breast cancer? Breast Cancer Res Treat 121:253–255CrossRef de Sauty Chalon A, Teo Z, Park DJ, Odefrey FA, kConFab, Hopper JL, Southey MC (2010) Are PALB2 mutations associated with increased risk of male breast cancer? Breast Cancer Res Treat 121:253–255CrossRef
28.
Zurück zum Zitat Antoniou AC, Easton DF (2003) Polygenic inheritance of breast cancer: Implications for design of association studies. Genet Epidemiol 25:190–202PubMedCrossRef Antoniou AC, Easton DF (2003) Polygenic inheritance of breast cancer: Implications for design of association studies. Genet Epidemiol 25:190–202PubMedCrossRef
29.
Zurück zum Zitat Imyanitov EN, Cornelisse CJ, Devilee P (2007) Searching for susceptibility alleles: emphasis on bilateral breast cancer. Int J Cancer 121:921–923PubMedCrossRef Imyanitov EN, Cornelisse CJ, Devilee P (2007) Searching for susceptibility alleles: emphasis on bilateral breast cancer. Int J Cancer 121:921–923PubMedCrossRef
30.
Zurück zum Zitat Fletcher O, Johnson N, Dos Santos Silva I, Kilpivaara O, Aittomäki K, Blomqvist C, Nevanlinna H, Wasielewski M, Meijers-Heijerboer H, Broeks A, Schmidt MK, Van’t Veer LJ, Bremer M, Dörk T, Chekmariova EV, Sokolenko AP, Imyanitov EN, Hamann U, Rashid MU, Brauch H, Justenhoven C, Ashworth A, Peto J (2009) Family history, genetic testing, and clinical risk prediction: pooled analysis of CHEK2 1100delC in 1, 828 bilateral breast cancers and 7, 030 controls. Cancer Epidemiol Biomarkers Prev 18:230–234PubMedCrossRef Fletcher O, Johnson N, Dos Santos Silva I, Kilpivaara O, Aittomäki K, Blomqvist C, Nevanlinna H, Wasielewski M, Meijers-Heijerboer H, Broeks A, Schmidt MK, Van’t Veer LJ, Bremer M, Dörk T, Chekmariova EV, Sokolenko AP, Imyanitov EN, Hamann U, Rashid MU, Brauch H, Justenhoven C, Ashworth A, Peto J (2009) Family history, genetic testing, and clinical risk prediction: pooled analysis of CHEK2 1100delC in 1, 828 bilateral breast cancers and 7, 030 controls. Cancer Epidemiol Biomarkers Prev 18:230–234PubMedCrossRef
31.
Zurück zum Zitat Kuligina E, Reiner A, Imyanitov EN, Begg CB (2010) Evaluating cancer epidemiologic risk factors using multiple primary malignancies. Epidemiology 21:366–372PubMedCrossRef Kuligina E, Reiner A, Imyanitov EN, Begg CB (2010) Evaluating cancer epidemiologic risk factors using multiple primary malignancies. Epidemiology 21:366–372PubMedCrossRef
32.
Zurück zum Zitat Steinmann D, Bremer M, Rades D, Skawran B, Siebrands C, Karstens JH, Dörk T (2001) Mutations of the BRCA1 and BRCA2 genes in patients with bilateral breast cancer. Br J Cancer 85(6):850–858PubMedCrossRef Steinmann D, Bremer M, Rades D, Skawran B, Siebrands C, Karstens JH, Dörk T (2001) Mutations of the BRCA1 and BRCA2 genes in patients with bilateral breast cancer. Br J Cancer 85(6):850–858PubMedCrossRef
Metadaten
Titel
PALB2 mutations in German and Russian patients with bilateral breast cancer
verfasst von
Natalia Bogdanova
Anna P. Sokolenko
Aglaya G. Iyevleva
Svetlana N. Abysheva
Magda Blaut
Michael Bremer
Hans Christiansen
Margret Rave-Fränk
Thilo Dörk
Evgeny N. Imyanitov
Publikationsdatum
01.04.2011
Verlag
Springer US
Erschienen in
Breast Cancer Research and Treatment / Ausgabe 2/2011
Print ISSN: 0167-6806
Elektronische ISSN: 1573-7217
DOI
https://doi.org/10.1007/s10549-010-1290-4

Weitere Artikel der Ausgabe 2/2011

Breast Cancer Research and Treatment 2/2011 Zur Ausgabe

„Überwältigende“ Evidenz für Tripeltherapie beim metastasierten Prostata-Ca.

22.05.2024 Prostatakarzinom Nachrichten

Patienten mit metastasiertem hormonsensitivem Prostatakarzinom sollten nicht mehr mit einer alleinigen Androgendeprivationstherapie (ADT) behandelt werden, mahnt ein US-Team nach Sichtung der aktuellen Datenlage. Mit einer Tripeltherapie haben die Betroffenen offenbar die besten Überlebenschancen.

So sicher sind Tattoos: Neue Daten zur Risikobewertung

22.05.2024 Melanom Nachrichten

Das größte medizinische Problem bei Tattoos bleiben allergische Reaktionen. Melanome werden dadurch offensichtlich nicht gefördert, die Farbpigmente könnten aber andere Tumoren begünstigen.

CAR-M-Zellen: Warten auf das große Fressen

22.05.2024 Onkologische Immuntherapie Nachrichten

Auch myeloide Immunzellen lassen sich mit chimären Antigenrezeptoren gegen Tumoren ausstatten. Solche CAR-Fresszell-Therapien werden jetzt für solide Tumoren entwickelt. Künftig soll dieser Prozess nicht mehr ex vivo, sondern per mRNA im Körper der Betroffenen erfolgen.

Blutdrucksenkung könnte Uterusmyome verhindern

Frauen mit unbehandelter oder neu auftretender Hypertonie haben ein deutlich erhöhtes Risiko für Uterusmyome. Eine Therapie mit Antihypertensiva geht hingegen mit einer verringerten Inzidenz der gutartigen Tumoren einher.

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.