Skip to main content
Erschienen in: Cancer and Metastasis Reviews 1-2/2009

01.06.2009

EMT, the cytoskeleton, and cancer cell invasion

verfasst von: Mahmut Yilmaz, Gerhard Christofori

Erschienen in: Cancer and Metastasis Reviews | Ausgabe 1-2/2009

Einloggen, um Zugang zu erhalten

Abstract

The metastatic process, i.e. the dissemination of cancer cells throughout the body to seed secondary tumors at distant sites, requires cancer cells to leave the primary tumor and to acquire migratory and invasive capabilities. In a process of epithelial-mesenchymal transition (EMT), besides changing their adhesive repertoire, cancer cells employ developmental processes to gain migratory and invasive properties that involve a dramatic reorganization of the actin cytoskeleton and the concomitant formation of membrane protrusions required for invasive growth. The molecular processes underlying such cellular changes are still only poorly understood, and the various migratory organelles, including lamellipodia, filopodia, invadopodia and podosomes, still require a better functional and molecular characterization. Notably, direct experimental evidence linking the formation of migratory membrane protrusions and the process of EMT and tumor metastasis is still lacking. In this review, we have summarized recent novel insights into the molecular processes and players underlying EMT on one side and the formation of invasive membrane protrusions on the other side.
Literatur
1.
Zurück zum Zitat Thiery, J. P., & Sleeman, J. P. (2006). Complex networks orchestrate epithelial-mesenchymal transitions. Nat Rev Mol Cell Biol, 7, 131–142.PubMed Thiery, J. P., & Sleeman, J. P. (2006). Complex networks orchestrate epithelial-mesenchymal transitions. Nat Rev Mol Cell Biol, 7, 131–142.PubMed
2.
Zurück zum Zitat Grunert, S., Jechlinger, M., & Beug, H. (2003). Diverse cellular and molecular mechanisms contribute to epithelial plasticity and metastasis. Nat Rev Mol Cell Biol, 4, 657–665.PubMed Grunert, S., Jechlinger, M., & Beug, H. (2003). Diverse cellular and molecular mechanisms contribute to epithelial plasticity and metastasis. Nat Rev Mol Cell Biol, 4, 657–665.PubMed
3.
Zurück zum Zitat Zavadil, J., & Bottinger, E. P. (2005). TGF-beta and epithelial-to-mesenchymal transitions. Oncogene, 24, 5764–5774.PubMed Zavadil, J., & Bottinger, E. P. (2005). TGF-beta and epithelial-to-mesenchymal transitions. Oncogene, 24, 5764–5774.PubMed
4.
Zurück zum Zitat Savagner, P., Yamada, K. M., & Thiery, J. P. (1997). The zinc-finger protein slug causes desmosome dissociation, an initial and necessary step for growth factor-induced epithelial-mesenchymal transition. J Cell Biol, 137, 1403–1419.PubMed Savagner, P., Yamada, K. M., & Thiery, J. P. (1997). The zinc-finger protein slug causes desmosome dissociation, an initial and necessary step for growth factor-induced epithelial-mesenchymal transition. J Cell Biol, 137, 1403–1419.PubMed
5.
Zurück zum Zitat Lo, H. W., Hsu, S. C., Xia, W., Cao, X., Shih, J. Y., & Wei, Y. (2007). Epidermal growth factor receptor cooperates with signal transducer and activator of transcription 3 to induce epithelial-mesenchymal transition in cancer cells via up-regulation of TWIST gene expression. Cancer Res, 67, 9066–9076.PubMed Lo, H. W., Hsu, S. C., Xia, W., Cao, X., Shih, J. Y., & Wei, Y. (2007). Epidermal growth factor receptor cooperates with signal transducer and activator of transcription 3 to induce epithelial-mesenchymal transition in cancer cells via up-regulation of TWIST gene expression. Cancer Res, 67, 9066–9076.PubMed
6.
Zurück zum Zitat Graham, T. R., Zhau, H. E., Odero-Marah, V. A., Osunkoya, A. O., Kimbro, K. S., & Tighiouart, M. (2008). Insulin-like growth factor-I-dependent up-regulation of ZEB1 drives epithelial-to-mesenchymal transition in human prostate cancer cells. Cancer Res, 68, 2479–2488.PubMed Graham, T. R., Zhau, H. E., Odero-Marah, V. A., Osunkoya, A. O., Kimbro, K. S., & Tighiouart, M. (2008). Insulin-like growth factor-I-dependent up-regulation of ZEB1 drives epithelial-to-mesenchymal transition in human prostate cancer cells. Cancer Res, 68, 2479–2488.PubMed
7.
Zurück zum Zitat Lee, J. M., Dedhar, S., Kalluri, R., & Thompson, E. W. (2006). The epithelial-mesenchymal transition: new insights in signaling, development, and disease. J Cell Biol, 172(7), 973–981.PubMed Lee, J. M., Dedhar, S., Kalluri, R., & Thompson, E. W. (2006). The epithelial-mesenchymal transition: new insights in signaling, development, and disease. J Cell Biol, 172(7), 973–981.PubMed
8.
Zurück zum Zitat Acevedo, V. D., Gangula, R. D., Freeman, K. W., Li, R., Zhang, Y., & Wang, F. (2007). Inducible FGFR-1 activation leads to irreversible prostate adenocarcinoma and an epithelial-to-mesenchymal transition. Cancer Cell, 12, 559–571.PubMed Acevedo, V. D., Gangula, R. D., Freeman, K. W., Li, R., Zhang, Y., & Wang, F. (2007). Inducible FGFR-1 activation leads to irreversible prostate adenocarcinoma and an epithelial-to-mesenchymal transition. Cancer Cell, 12, 559–571.PubMed
9.
Zurück zum Zitat Leong, K. G., Niessen, K., Kulic, I., Raouf, A., Eaves, C., & Pollet, I. (2007). Jagged1-mediated Notch activation induces epithelial-to-mesenchymal transition through Slug-induced repression of E-cadherin. J Exp Med, 204, 2935–2948.PubMed Leong, K. G., Niessen, K., Kulic, I., Raouf, A., Eaves, C., & Pollet, I. (2007). Jagged1-mediated Notch activation induces epithelial-to-mesenchymal transition through Slug-induced repression of E-cadherin. J Exp Med, 204, 2935–2948.PubMed
10.
Zurück zum Zitat Shintani, Y., Maeda, M., Chaika, N., Johnson, K. R., & Wheelock, M. J. (2008). Collagen I promotes epithelial-to-mesenchymal transition in lung cancer cells via transforming growth factor-beta signaling. Am J Respir Cell Mol Biol, 38, 95–104.PubMed Shintani, Y., Maeda, M., Chaika, N., Johnson, K. R., & Wheelock, M. J. (2008). Collagen I promotes epithelial-to-mesenchymal transition in lung cancer cells via transforming growth factor-beta signaling. Am J Respir Cell Mol Biol, 38, 95–104.PubMed
11.
Zurück zum Zitat Zoltan-Jones, A., Huang, L., Ghatak, S., & Toole, B. P. (2003). Elevated hyaluronan production induces mesenchymal and transformed properties in epithelial cells. J Biol Chem, 278, 45801–45810.PubMed Zoltan-Jones, A., Huang, L., Ghatak, S., & Toole, B. P. (2003). Elevated hyaluronan production induces mesenchymal and transformed properties in epithelial cells. J Biol Chem, 278, 45801–45810.PubMed
12.
Zurück zum Zitat Bhowmick, N. A., Ghiassi, M., Bakin, A., Aakre, M., Lundquist, C. A., & Engel, M. E. (2001). Transforming growth factor-beta1 mediates epithelial to mesenchymal transdifferentiation through a RhoA-dependent mechanism. Mol Biol Cell, 12, 27–36.PubMed Bhowmick, N. A., Ghiassi, M., Bakin, A., Aakre, M., Lundquist, C. A., & Engel, M. E. (2001). Transforming growth factor-beta1 mediates epithelial to mesenchymal transdifferentiation through a RhoA-dependent mechanism. Mol Biol Cell, 12, 27–36.PubMed
13.
Zurück zum Zitat Bakin, A. V., Rinehart, C., Tomlinson, A. K., & Arteaga, C. L. (2002). p38 mitogen-activated protein kinase is required for TGFbeta-mediated fibroblastic transdifferentiation and cell migration. J Cell Sci, 115, 3193–3206.PubMed Bakin, A. V., Rinehart, C., Tomlinson, A. K., & Arteaga, C. L. (2002). p38 mitogen-activated protein kinase is required for TGFbeta-mediated fibroblastic transdifferentiation and cell migration. J Cell Sci, 115, 3193–3206.PubMed
14.
Zurück zum Zitat Janda, E., Lehmann, K., Killisch, I., Jechlinger, M., Herzig, M., & Downward, J. (2002). Ras and TGF[beta] cooperatively regulate epithelial cell plasticity and metastasis: dissection of Ras signaling pathways. J Cell Biol, 156, 299–313.PubMed Janda, E., Lehmann, K., Killisch, I., Jechlinger, M., Herzig, M., & Downward, J. (2002). Ras and TGF[beta] cooperatively regulate epithelial cell plasticity and metastasis: dissection of Ras signaling pathways. J Cell Biol, 156, 299–313.PubMed
15.
Zurück zum Zitat Bakin, A. V., Tomlinson, A. K., Bhowmick, N. A., Moses, H. L., & Arteaga, C. L. (2000). Phosphatidylinositol 3-kinase function is required for transforming growth factor beta-mediated epithelial to mesenchymal transition and cell migration. J Biol Chem, 275, 36803–36810.PubMed Bakin, A. V., Tomlinson, A. K., Bhowmick, N. A., Moses, H. L., & Arteaga, C. L. (2000). Phosphatidylinositol 3-kinase function is required for transforming growth factor beta-mediated epithelial to mesenchymal transition and cell migration. J Biol Chem, 275, 36803–36810.PubMed
16.
Zurück zum Zitat Lee, Y. I., Kwon, Y. J., & Joo, C. K. (2004). Integrin-linked kinase function is required for transforming growth factor beta-mediated epithelial to mesenchymal transition. Biochem Biophys Res Commun, 316, 997–1001.PubMed Lee, Y. I., Kwon, Y. J., & Joo, C. K. (2004). Integrin-linked kinase function is required for transforming growth factor beta-mediated epithelial to mesenchymal transition. Biochem Biophys Res Commun, 316, 997–1001.PubMed
17.
Zurück zum Zitat Zavadil, J., Cermak, L., Soto-Nieves, N., & Bottinger, E. P. (2004). Integration of TGF-beta/Smad and Jagged1/Notch signalling in epithelial-to-mesenchymal transition. EMBO J, 23, 1155–1165.PubMed Zavadil, J., Cermak, L., Soto-Nieves, N., & Bottinger, E. P. (2004). Integration of TGF-beta/Smad and Jagged1/Notch signalling in epithelial-to-mesenchymal transition. EMBO J, 23, 1155–1165.PubMed
18.
Zurück zum Zitat Gregory, P. A., Bert, A. G., Paterson, E. L., Barry, S. C., Tsykin, A., & Farshid, G. (2008). The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nat Cell Biol, 10, 593–601.PubMed Gregory, P. A., Bert, A. G., Paterson, E. L., Barry, S. C., Tsykin, A., & Farshid, G. (2008). The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nat Cell Biol, 10, 593–601.PubMed
19.
Zurück zum Zitat Sarrio, D., Rodriguez-Pinilla, S. M., Hardisson, D., Cano, A., Moreno-Bueno, G., & Palacios, J. (2008). Epithelial-mesenchymal transition in breast cancer relates to the basal-like phenotype. Cancer Res, 68, 989–997.PubMed Sarrio, D., Rodriguez-Pinilla, S. M., Hardisson, D., Cano, A., Moreno-Bueno, G., & Palacios, J. (2008). Epithelial-mesenchymal transition in breast cancer relates to the basal-like phenotype. Cancer Res, 68, 989–997.PubMed
20.
Zurück zum Zitat Brabletz, T., Hlubek, F., Spaderna, S., Schmalhofer, O., Hiendlmeyer, E., & Jung, A. (2005). Invasion and metastasis in colorectal cancer: epithelial-mesenchymal transition, mesenchymal-epithelial transition, stem cells and beta-catenin. Cells Tissues Organs, 179(1–2), 56–65.PubMed Brabletz, T., Hlubek, F., Spaderna, S., Schmalhofer, O., Hiendlmeyer, E., & Jung, A. (2005). Invasion and metastasis in colorectal cancer: epithelial-mesenchymal transition, mesenchymal-epithelial transition, stem cells and beta-catenin. Cells Tissues Organs, 179(1–2), 56–65.PubMed
21.
Zurück zum Zitat Tarin, D., Thompson, E. W., & Newgreen, D. F. (2005). The fallacy of epithelial mesenchymal transition in neoplasia. Cancer Res, 65, 5996–6000 discussion 6000-1.PubMed Tarin, D., Thompson, E. W., & Newgreen, D. F. (2005). The fallacy of epithelial mesenchymal transition in neoplasia. Cancer Res, 65, 5996–6000 discussion 6000-1.PubMed
22.
Zurück zum Zitat Friedl, P. (2004). Prespecification and plasticity: shifting mechanisms of cell migration. Curr Opin Cell Biol, 16, 14–23.PubMed Friedl, P. (2004). Prespecification and plasticity: shifting mechanisms of cell migration. Curr Opin Cell Biol, 16, 14–23.PubMed
23.
Zurück zum Zitat Wicki, A., Lehembre, F., Wick, N., Hantusch, B., Kerjaschki, D., & Christofori, G. (2006). Tumor invasion in the absence of epithelial-mesenchymal transition: podoplanin-mediated remodeling of the actin cytoskeleton. Cancer Cell, 9, 261–272.PubMed Wicki, A., Lehembre, F., Wick, N., Hantusch, B., Kerjaschki, D., & Christofori, G. (2006). Tumor invasion in the absence of epithelial-mesenchymal transition: podoplanin-mediated remodeling of the actin cytoskeleton. Cancer Cell, 9, 261–272.PubMed
24.
Zurück zum Zitat Yamada, S., Pokutta, S., Drees, F., Weis, W. I., & Nelson, W. J. (2005). Deconstructing the cadherin-catenin-actin complex. Cell, 123, 889–901.PubMed Yamada, S., Pokutta, S., Drees, F., Weis, W. I., & Nelson, W. J. (2005). Deconstructing the cadherin-catenin-actin complex. Cell, 123, 889–901.PubMed
25.
Zurück zum Zitat Cavey, M., Rauzi, M., Lenne, P. F., & Lecuit, T. (2008). A two-tiered mechanism for stabilization and immobilization of E-cadherin. Nature, 453, 751–756.PubMed Cavey, M., Rauzi, M., Lenne, P. F., & Lecuit, T. (2008). A two-tiered mechanism for stabilization and immobilization of E-cadherin. Nature, 453, 751–756.PubMed
26.
Zurück zum Zitat Abe, K., & Takeichi, M. (2008). EPLIN mediates linkage of the cadherin catenin complex to F-actin and stabilizes the circumferential actin belt. Proc Natl Acad Sci U S A, 105, 13–19.PubMed Abe, K., & Takeichi, M. (2008). EPLIN mediates linkage of the cadherin catenin complex to F-actin and stabilizes the circumferential actin belt. Proc Natl Acad Sci U S A, 105, 13–19.PubMed
27.
Zurück zum Zitat Stehbens, S. J., Paterson, A. D., Crampton, M. S., Shewan, A. M., Ferguson, C., Akhmanova, A., et al. (2006). Dynamic microtubules regulate the local concentration of E-cadherin at cell-cell contacts. J Cell Sci, 119(Pt 9), 1801–1811.PubMed Stehbens, S. J., Paterson, A. D., Crampton, M. S., Shewan, A. M., Ferguson, C., Akhmanova, A., et al. (2006). Dynamic microtubules regulate the local concentration of E-cadherin at cell-cell contacts. J Cell Sci, 119(Pt 9), 1801–1811.PubMed
28.
Zurück zum Zitat Ireton, R. C., Davis, M. A., van Hengel, J., Mariner, D. J., Barnes, K., & Thoreson, M. A. (2002). A novel role for p120 catenin in E-cadherin function. J Cell Biol, 159(3), 465–476.PubMed Ireton, R. C., Davis, M. A., van Hengel, J., Mariner, D. J., Barnes, K., & Thoreson, M. A. (2002). A novel role for p120 catenin in E-cadherin function. J Cell Biol, 159(3), 465–476.PubMed
29.
Zurück zum Zitat Davis, M. A., Ireton, R. C., & Reynolds, A. B. (2003). A core function for p120-catenin in cadherin turnover. J Cell Biol, 163, 525–534.PubMed Davis, M. A., Ireton, R. C., & Reynolds, A. B. (2003). A core function for p120-catenin in cadherin turnover. J Cell Biol, 163, 525–534.PubMed
30.
Zurück zum Zitat Thoreson, M. A., Anastasiadis, P. Z., Daniel, J. M., Ireton, R. C., Wheelock, M. J., Johnson, K. R., et al. (2000). Selective uncoupling of p120(ctn) from E-cadherin disrupts strong adhesion. J Cell Biol, 148(1), 189–202.PubMed Thoreson, M. A., Anastasiadis, P. Z., Daniel, J. M., Ireton, R. C., Wheelock, M. J., Johnson, K. R., et al. (2000). Selective uncoupling of p120(ctn) from E-cadherin disrupts strong adhesion. J Cell Biol, 148(1), 189–202.PubMed
31.
Zurück zum Zitat Wildenberg, G. A., Dohn, M. R., Carnahan, R. H., Davis, M. A., Lobdell, N. A., Settleman, J., et al. (2006). p120-catenin and p190RhoGAP regulate cell-cell adhesion by coordinating antagonism between Rac and Rho. Cell, 127, 1027–1039.PubMed Wildenberg, G. A., Dohn, M. R., Carnahan, R. H., Davis, M. A., Lobdell, N. A., Settleman, J., et al. (2006). p120-catenin and p190RhoGAP regulate cell-cell adhesion by coordinating antagonism between Rac and Rho. Cell, 127, 1027–1039.PubMed
32.
Zurück zum Zitat Noren, N. K., Niessen, C. M., Gumbiner, B. M., & Burridge, K. (2001). Cadherin engagement regulates Rho family GTPases. J Biol Chem, 276, 33305–33308.PubMed Noren, N. K., Niessen, C. M., Gumbiner, B. M., & Burridge, K. (2001). Cadherin engagement regulates Rho family GTPases. J Biol Chem, 276, 33305–33308.PubMed
33.
Zurück zum Zitat Noren, N. K., Liu, B. P., Burridge, K., & Kreft, B. (2000). p120 catenin regulates the actin cytoskeleton via Rho family GTPases. J Cell Biol, 150, 567–580.PubMed Noren, N. K., Liu, B. P., Burridge, K., & Kreft, B. (2000). p120 catenin regulates the actin cytoskeleton via Rho family GTPases. J Cell Biol, 150, 567–580.PubMed
34.
Zurück zum Zitat Comoglio, P. M., Boccaccio, C., & Trusolino, L. (2003). Interactions between growth factor receptors and adhesion molecules: breaking the rules. Curr Opin Cell Biol, 15, 565–571.PubMed Comoglio, P. M., Boccaccio, C., & Trusolino, L. (2003). Interactions between growth factor receptors and adhesion molecules: breaking the rules. Curr Opin Cell Biol, 15, 565–571.PubMed
35.
Zurück zum Zitat Chattopadhyay, N., Wang, Z., Ashman, L. K., Brady-Kalnay, S. M., & Kreidberg, J. A. (2003). alpha3beta1 integrin-CD151, a component of the cadherin-catenin complex, regulates PTPmu expression and cell-cell adhesion. J Cell Biol, 163, 1351–1362.PubMed Chattopadhyay, N., Wang, Z., Ashman, L. K., Brady-Kalnay, S. M., & Kreidberg, J. A. (2003). alpha3beta1 integrin-CD151, a component of the cadherin-catenin complex, regulates PTPmu expression and cell-cell adhesion. J Cell Biol, 163, 1351–1362.PubMed
36.
Zurück zum Zitat Vasioukhin, V., Baue, C., Yin, M., & Fuchs, E. (2000). Directed actin polymerization is the driving force for epithelial cell-cell adhesion. Cell, 100, 209–219.PubMed Vasioukhin, V., Baue, C., Yin, M., & Fuchs, E. (2000). Directed actin polymerization is the driving force for epithelial cell-cell adhesion. Cell, 100, 209–219.PubMed
37.
Zurück zum Zitat Shigeta, M., Sanzen, N., Ozawa, M., Gu, J., Hasegawa, H., & Sekiguchi, K. (2003). CD151 regulates epithelial cell-cell adhesion through PKC- and Cdc42-dependent actin cytoskeletal reorganization. J Cell Biol, 163, 165–176.PubMed Shigeta, M., Sanzen, N., Ozawa, M., Gu, J., Hasegawa, H., & Sekiguchi, K. (2003). CD151 regulates epithelial cell-cell adhesion through PKC- and Cdc42-dependent actin cytoskeletal reorganization. J Cell Biol, 163, 165–176.PubMed
38.
Zurück zum Zitat Helwani, F. M., Kovacs, E. M., Paterson, A. D., Verma, S., Ali, R. G., & Fanning, A. S. (2004). Cortactin is necessary for E-cadherin-mediated contact formation and actin reorganization. J Cell Biol, 164, 899–910.PubMed Helwani, F. M., Kovacs, E. M., Paterson, A. D., Verma, S., Ali, R. G., & Fanning, A. S. (2004). Cortactin is necessary for E-cadherin-mediated contact formation and actin reorganization. J Cell Biol, 164, 899–910.PubMed
39.
Zurück zum Zitat Canonici, A., Steelant, W., Rigot, V., Khomitch-Baud, A., Boutaghou-Cherid, H., Bruyneel, E., et al. (2008). Insulin-like growth factor-I receptor, E-cadherin and alpha v integrin form a dynamic complex under the control of alpha-catenin. Int J Cancer, 122, 572–582.PubMed Canonici, A., Steelant, W., Rigot, V., Khomitch-Baud, A., Boutaghou-Cherid, H., Bruyneel, E., et al. (2008). Insulin-like growth factor-I receptor, E-cadherin and alpha v integrin form a dynamic complex under the control of alpha-catenin. Int J Cancer, 122, 572–582.PubMed
40.
Zurück zum Zitat Reshetnikova, G., Troyanovsky, S., & Rimm, D. L. (2007). Definition of a direct extracellular interaction between Met and E-cadherin. Cell Biol Int, 31, 366–373.PubMed Reshetnikova, G., Troyanovsky, S., & Rimm, D. L. (2007). Definition of a direct extracellular interaction between Met and E-cadherin. Cell Biol Int, 31, 366–373.PubMed
41.
Zurück zum Zitat Bissell, M. J., & Radisky, D. (2001). Putting tumours in context. Nat Rev Cancer, 1, 46–54.PubMed Bissell, M. J., & Radisky, D. (2001). Putting tumours in context. Nat Rev Cancer, 1, 46–54.PubMed
42.
Zurück zum Zitat Cavallaro, U., & Christofori, G. (2004). Cell adhesion and signalling by cadherins and Ig-CAMs in cancer. Nat Rev Cancer, 4, 118–132.PubMed Cavallaro, U., & Christofori, G. (2004). Cell adhesion and signalling by cadherins and Ig-CAMs in cancer. Nat Rev Cancer, 4, 118–132.PubMed
43.
Zurück zum Zitat Perl, A. K., Wilgenbus, P., Dahl, U., Semb, H., & Christofori, G. (1998). A causal role for E-cadherin in the transition from adenoma to carcinoma. Nature, 392, 190–193.PubMed Perl, A. K., Wilgenbus, P., Dahl, U., Semb, H., & Christofori, G. (1998). A causal role for E-cadherin in the transition from adenoma to carcinoma. Nature, 392, 190–193.PubMed
44.
Zurück zum Zitat Peinado, H., Olmeda, D., & Cano, A. (2007). Snail, Zeb and bHLH factors in tumour progression: an alliance against the epithelial phenotype? Nat Rev Cancer, 7, 415–428.PubMed Peinado, H., Olmeda, D., & Cano, A. (2007). Snail, Zeb and bHLH factors in tumour progression: an alliance against the epithelial phenotype? Nat Rev Cancer, 7, 415–428.PubMed
45.
Zurück zum Zitat Kouzarides, T. (2007). Chromatin modifications and their function. Cell, 128, 693–705.PubMed Kouzarides, T. (2007). Chromatin modifications and their function. Cell, 128, 693–705.PubMed
46.
Zurück zum Zitat Jenuwein, T., & Allis, C. D. (2001). Translating the histone code. Science, 293, 1074–1080.PubMed Jenuwein, T., & Allis, C. D. (2001). Translating the histone code. Science, 293, 1074–1080.PubMed
47.
Zurück zum Zitat Zhang, Y., & Reinberg, D. (2001). Transcription regulation by histone methylation: interplay between different covalent modifications of the core histone tails. Genes Dev, 15, 2343–2360.PubMed Zhang, Y., & Reinberg, D. (2001). Transcription regulation by histone methylation: interplay between different covalent modifications of the core histone tails. Genes Dev, 15, 2343–2360.PubMed
48.
Zurück zum Zitat Herranz, N., Pasini, D., Diaz, V. M., Franci, C., Gutierrez, A., & Dave, N. (2008). Polycomb complex 2 is required for E-cadherin repression by the Snail1 transcription factor. Mol Cell Biol, 28(15), 4772–4781.PubMed Herranz, N., Pasini, D., Diaz, V. M., Franci, C., Gutierrez, A., & Dave, N. (2008). Polycomb complex 2 is required for E-cadherin repression by the Snail1 transcription factor. Mol Cell Biol, 28(15), 4772–4781.PubMed
49.
Zurück zum Zitat Hou, Z., Peng, H., Ayyanathan, K., Yan, K. P., Langer, E. M., & Longmore, G. D. (2008). The LIM protein AJUBA recruits protein arginine methyltransferase 5 to mediate SNAIL-dependent transcriptional repression. Mol Cell Biol, 28, 3198–3207.PubMed Hou, Z., Peng, H., Ayyanathan, K., Yan, K. P., Langer, E. M., & Longmore, G. D. (2008). The LIM protein AJUBA recruits protein arginine methyltransferase 5 to mediate SNAIL-dependent transcriptional repression. Mol Cell Biol, 28, 3198–3207.PubMed
50.
Zurück zum Zitat Berger, S. L. (2007). The complex language of chromatin regulation during transcription. Nature, 447, 407–412.PubMed Berger, S. L. (2007). The complex language of chromatin regulation during transcription. Nature, 447, 407–412.PubMed
51.
Zurück zum Zitat Zhu, W., Leber, B., & Andrews, D. W. (2001). Cytoplasmic O-glycosylation prevents cell surface transport of E-cadherin during apoptosis. EMBO J, 20, 5999–6007.PubMed Zhu, W., Leber, B., & Andrews, D. W. (2001). Cytoplasmic O-glycosylation prevents cell surface transport of E-cadherin during apoptosis. EMBO J, 20, 5999–6007.PubMed
52.
Zurück zum Zitat Lochter, A., Galosy, S., Muschler, J., Freedman, N., Werb, Z., & Bissell, M. J. (1997). Matrix metalloproteinase stromelysin-1 triggers a cascade of molecular alterations that leads to stable epithelial-to-mesenchymal conversion and a premalignant phenotype in mammary epithelial cells. J Cell Biol, 139, 1861–1872.PubMed Lochter, A., Galosy, S., Muschler, J., Freedman, N., Werb, Z., & Bissell, M. J. (1997). Matrix metalloproteinase stromelysin-1 triggers a cascade of molecular alterations that leads to stable epithelial-to-mesenchymal conversion and a premalignant phenotype in mammary epithelial cells. J Cell Biol, 139, 1861–1872.PubMed
53.
Zurück zum Zitat Marambaud, P., Shioi, J., Serban, G., Georgakopoulos, A., Sarner, S., & Nagy, V. (2002). A presenilin-1/gamma-secretase cleavage releases the E-cadherin intracellular domain and regulates disassembly of adherens junctions. EMBO J, 21, 1948–1956.PubMed Marambaud, P., Shioi, J., Serban, G., Georgakopoulos, A., Sarner, S., & Nagy, V. (2002). A presenilin-1/gamma-secretase cleavage releases the E-cadherin intracellular domain and regulates disassembly of adherens junctions. EMBO J, 21, 1948–1956.PubMed
54.
Zurück zum Zitat Maretzky, T., Reiss, K., Ludwig, A., Buchholz, J., Scholz, F., & Proksch, E. (2005). ADAM10 mediates E-cadherin shedding and regulates epithelial cell-cell adhesion, migration, and beta-catenin translocation. Proc Natl Acad Sci U S A, 102, 9182–9187.PubMed Maretzky, T., Reiss, K., Ludwig, A., Buchholz, J., Scholz, F., & Proksch, E. (2005). ADAM10 mediates E-cadherin shedding and regulates epithelial cell-cell adhesion, migration, and beta-catenin translocation. Proc Natl Acad Sci U S A, 102, 9182–9187.PubMed
55.
Zurück zum Zitat Steinhusen, U., Weiske, J., Badock, V., Tauber, R., Bommert, K., & Huber, O. (2001). Cleavage and shedding of E-cadherin after induction of apoptosis. J Biol Chem, 276, 4972–4980.PubMed Steinhusen, U., Weiske, J., Badock, V., Tauber, R., Bommert, K., & Huber, O. (2001). Cleavage and shedding of E-cadherin after induction of apoptosis. J Biol Chem, 276, 4972–4980.PubMed
56.
Zurück zum Zitat Ferber, E. C., Kajita, M., Wadlow, A., Tobiansky, L., Niessen, C., & Ariga, H. (2008). A role for the cleaved cytoplasmic domain of E-cadherin in the nucleus. J Biol Chem, 283, 12691–12700.PubMed Ferber, E. C., Kajita, M., Wadlow, A., Tobiansky, L., Niessen, C., & Ariga, H. (2008). A role for the cleaved cytoplasmic domain of E-cadherin in the nucleus. J Biol Chem, 283, 12691–12700.PubMed
57.
Zurück zum Zitat Gumbiner, B. M. (2000). Regulation of cadherin adhesive activity. J Cell Biol, 148, 399–404.PubMed Gumbiner, B. M. (2000). Regulation of cadherin adhesive activity. J Cell Biol, 148, 399–404.PubMed
58.
Zurück zum Zitat Fujita, Y., Krause, G., Scheffner, M., Zechner, D., Leddy, H. E., & Behrens, J. (2002). Hakai, a c-Cbl-like protein, ubiquitinates and induces endocytosis of the E-cadherin complex. Nat Cell Biol, 4, 222–231.PubMed Fujita, Y., Krause, G., Scheffner, M., Zechner, D., Leddy, H. E., & Behrens, J. (2002). Hakai, a c-Cbl-like protein, ubiquitinates and induces endocytosis of the E-cadherin complex. Nat Cell Biol, 4, 222–231.PubMed
59.
Zurück zum Zitat Koenig, A., Mueller, C., Hasel, C., Adler, G., & Menke, A. (2006). Collagen type I induces disruption of E-cadherin-mediated cell-cell contacts and promotes proliferation of pancreatic carcinoma cells. Cancer Res, 66, 4662–4671.PubMed Koenig, A., Mueller, C., Hasel, C., Adler, G., & Menke, A. (2006). Collagen type I induces disruption of E-cadherin-mediated cell-cell contacts and promotes proliferation of pancreatic carcinoma cells. Cancer Res, 66, 4662–4671.PubMed
60.
Zurück zum Zitat Janda, E., Nevolo, M., Lehmann, K., Downward, J., Beug, H., & Grieco, M. (2006). Raf plus TGFbeta-dependent EMT is initiated by endocytosis and lysosomal degradation of E-cadherin. Oncogene, 25, 7117–7130.PubMed Janda, E., Nevolo, M., Lehmann, K., Downward, J., Beug, H., & Grieco, M. (2006). Raf plus TGFbeta-dependent EMT is initiated by endocytosis and lysosomal degradation of E-cadherin. Oncogene, 25, 7117–7130.PubMed
61.
Zurück zum Zitat Lu, Z., Ghosh, S., Wang, Z., & Hunter, T. (2003). Downregulation of caveolin-1 function by EGF leads to the loss of E-cadherin, increased transcriptional activity of beta-catenin, and enhanced tumor cell invasion. Cancer Cell, 4, 499–515.PubMed Lu, Z., Ghosh, S., Wang, Z., & Hunter, T. (2003). Downregulation of caveolin-1 function by EGF leads to the loss of E-cadherin, increased transcriptional activity of beta-catenin, and enhanced tumor cell invasion. Cancer Cell, 4, 499–515.PubMed
62.
Zurück zum Zitat Akhtar, N., & Hotchin, N. A. (2001). RAC1 regulates adherens junctions through endocytosis of E-cadherin. Mol Biol Cell, 12, 847–862.PubMed Akhtar, N., & Hotchin, N. A. (2001). RAC1 regulates adherens junctions through endocytosis of E-cadherin. Mol Biol Cell, 12, 847–862.PubMed
63.
Zurück zum Zitat Steeg, P. S., Bevilacqua, G., Kopper, L., Thorgeirsson, U. P., Talmadge, J. E., & Liotta, L. A. (1988). Evidence for a novel gene associated with low tumor metastatic potential. J Natl Cancer Inst, 80, 200–204.PubMed Steeg, P. S., Bevilacqua, G., Kopper, L., Thorgeirsson, U. P., Talmadge, J. E., & Liotta, L. A. (1988). Evidence for a novel gene associated with low tumor metastatic potential. J Natl Cancer Inst, 80, 200–204.PubMed
64.
Zurück zum Zitat Palacios, F., Schweitzer, J. K., Boshans, R. L., D, , & Souza-Schorey, C. (2002). ARF6-GTP recruits Nm23-H1 to facilitate dynamin-mediated endocytosis during adherens junctions disassembly. Nat Cell Biol, 4, 929–936.PubMed Palacios, F., Schweitzer, J. K., Boshans, R. L., D, , & Souza-Schorey, C. (2002). ARF6-GTP recruits Nm23-H1 to facilitate dynamin-mediated endocytosis during adherens junctions disassembly. Nat Cell Biol, 4, 929–936.PubMed
65.
Zurück zum Zitat Kon, S., Tanabe, K., Watanabe, T., Sabe, H., & Satake, M. (2008). Clathrin dependent endocytosis of E-cadherin is regulated by the Arf6GAP isoform SMAP1. Exp Cell Res, 314, 1415–1428.PubMed Kon, S., Tanabe, K., Watanabe, T., Sabe, H., & Satake, M. (2008). Clathrin dependent endocytosis of E-cadherin is regulated by the Arf6GAP isoform SMAP1. Exp Cell Res, 314, 1415–1428.PubMed
66.
Zurück zum Zitat Tanabe, K., Torii, T., Natsume, W., Braesch-Andersen, S., Watanabe, T., & Satake, M. (2005). A novel GTPase-activating protein for ARF6 directly interacts with clathrin and regulates clathrin-dependent endocytosis. Mol Biol Cell, 16, 1617–1628.PubMed Tanabe, K., Torii, T., Natsume, W., Braesch-Andersen, S., Watanabe, T., & Satake, M. (2005). A novel GTPase-activating protein for ARF6 directly interacts with clathrin and regulates clathrin-dependent endocytosis. Mol Biol Cell, 16, 1617–1628.PubMed
67.
Zurück zum Zitat Clevers, H. (2006). Wnt/beta-catenin signaling in development and disease. Cell, 127, 469–480.PubMed Clevers, H. (2006). Wnt/beta-catenin signaling in development and disease. Cell, 127, 469–480.PubMed
68.
Zurück zum Zitat Arce, L., Yokoyama, N. N., & Waterman, M. L. (2006). Diversity of LEF/TCF action in development and disease. Oncogene, 25, 7492–7504.PubMed Arce, L., Yokoyama, N. N., & Waterman, M. L. (2006). Diversity of LEF/TCF action in development and disease. Oncogene, 25, 7492–7504.PubMed
69.
Zurück zum Zitat Wong, N. A., & Pignatelli, M. (2002). Beta-catenin—a linchpin in colorectal carcinogenesis? Am J Pathol, 160, 389–401.PubMed Wong, N. A., & Pignatelli, M. (2002). Beta-catenin—a linchpin in colorectal carcinogenesis? Am J Pathol, 160, 389–401.PubMed
70.
Zurück zum Zitat Vignjevic, D., Kojima, S., Aratyn, Y., Danciu, O., Svitkina, T., & Borisy, G. G. (2006). Role of fascin in filopodial protrusion. J Cell Biol, 174, 863–875.PubMed Vignjevic, D., Kojima, S., Aratyn, Y., Danciu, O., Svitkina, T., & Borisy, G. G. (2006). Role of fascin in filopodial protrusion. J Cell Biol, 174, 863–875.PubMed
71.
Zurück zum Zitat Vignjevic, D., Schoumacher, M., Gavert, N., Janssen, K. P., Jih, G., & Lae, M. (2007). Fascin, a novel target of beta-catenin-TCF signaling, is expressed at the invasive front of human colon cancer. Cancer Res, 67, 6844–6853.PubMed Vignjevic, D., Schoumacher, M., Gavert, N., Janssen, K. P., Jih, G., & Lae, M. (2007). Fascin, a novel target of beta-catenin-TCF signaling, is expressed at the invasive front of human colon cancer. Cancer Res, 67, 6844–6853.PubMed
72.
Zurück zum Zitat van, Roy, F. M., & McCrea, P. D. (2005). A role for Kaiso-p120ctn complexes in cancer? Nat Rev Cancer, 5, 956–964.PubMed van, Roy, F. M., & McCrea, P. D. (2005). A role for Kaiso-p120ctn complexes in cancer? Nat Rev Cancer, 5, 956–964.PubMed
73.
Zurück zum Zitat Nieman, M. T., Prudoff, R. S., Johnson, K. R., & Wheelock, M. J. (1999). N-cadherin promotes motility in human breast cancer cells regardless of their E-cadherin expression. J Cell Biol, 147, 631–644.PubMed Nieman, M. T., Prudoff, R. S., Johnson, K. R., & Wheelock, M. J. (1999). N-cadherin promotes motility in human breast cancer cells regardless of their E-cadherin expression. J Cell Biol, 147, 631–644.PubMed
74.
Zurück zum Zitat Hulit, J., Suyama, K., Chung, S., Keren, R., Agiostratidou, G., Shan, W., & Dong, X. (2007). N-cadherin signaling potentiates mammary tumor metastasis via enhanced extracellular signal-regulated kinase activation. Cancer Res, 67, 3106–3116.PubMed Hulit, J., Suyama, K., Chung, S., Keren, R., Agiostratidou, G., Shan, W., & Dong, X. (2007). N-cadherin signaling potentiates mammary tumor metastasis via enhanced extracellular signal-regulated kinase activation. Cancer Res, 67, 3106–3116.PubMed
75.
Zurück zum Zitat Gravdal, K., Halvorsen, O. J., Haukaas, S. A., & Akslen, L. A. (2007). A switch from E-cadherin to N-cadherin expression indicates epithelial to mesenchymal transition and is of strong and independent iportance for the progress of prostate cancer. Clin Cancer Res, 13, 7003–7011.PubMed Gravdal, K., Halvorsen, O. J., Haukaas, S. A., & Akslen, L. A. (2007). A switch from E-cadherin to N-cadherin expression indicates epithelial to mesenchymal transition and is of strong and independent iportance for the progress of prostate cancer. Clin Cancer Res, 13, 7003–7011.PubMed
76.
Zurück zum Zitat Hazan, R. B., Qiao, R., Keren, R., Badano, I., & Suyama, K. (2004). Cadherin switch in tumor progression. Ann N Y Acad Sci, 1014, 155–163.PubMed Hazan, R. B., Qiao, R., Keren, R., Badano, I., & Suyama, K. (2004). Cadherin switch in tumor progression. Ann N Y Acad Sci, 1014, 155–163.PubMed
77.
Zurück zum Zitat Shintani, Y., Fukumoto, Y., Chaika, N., Svoboda, R., Wheelock, M. J., & Johnson, K. R. (2008). Collagen I-mediated up-regulation of N-cadherin requires cooperative signals from integrins and discoidin domain receptor 1. J Cell Biol, 180, 1277–1289.PubMed Shintani, Y., Fukumoto, Y., Chaika, N., Svoboda, R., Wheelock, M. J., & Johnson, K. R. (2008). Collagen I-mediated up-regulation of N-cadherin requires cooperative signals from integrins and discoidin domain receptor 1. J Cell Biol, 180, 1277–1289.PubMed
78.
Zurück zum Zitat Alexander, N. R., Tran, N. L., Rekapally, H., Summers, C. E., Glackin, C., & Heimark, R. L. (2006). N-cadherin gene expression in prostate carcinoma is modulated by integrin-dependent nuclear translocation of Twist1. Cancer Res, 66, 3365–3369.PubMed Alexander, N. R., Tran, N. L., Rekapally, H., Summers, C. E., Glackin, C., & Heimark, R. L. (2006). N-cadherin gene expression in prostate carcinoma is modulated by integrin-dependent nuclear translocation of Twist1. Cancer Res, 66, 3365–3369.PubMed
79.
Zurück zum Zitat Yang, Z., Zhang, X., Gang, H., Li, X., Li, Z., & Wang, T. (2007). Up-regulation of gastric cancer cell invasion by Twist is accompanied by N-cadherin and fibronectin expression. Biochem Biophys Res Commun, 358, 925–930.PubMed Yang, Z., Zhang, X., Gang, H., Li, X., Li, Z., & Wang, T. (2007). Up-regulation of gastric cancer cell invasion by Twist is accompanied by N-cadherin and fibronectin expression. Biochem Biophys Res Commun, 358, 925–930.PubMed
80.
Zurück zum Zitat Niu, R. F., Zhang, L., Xi, G. M., Wei, X. Y., Yang, Y., & Shi, Y. R. (2007). Up-regulation of Twist induces angiogenesis and correlates with metastasis in hepatocellular carcinoma. J Exp Clin Cancer Res, 26, 385–394.PubMed Niu, R. F., Zhang, L., Xi, G. M., Wei, X. Y., Yang, Y., & Shi, Y. R. (2007). Up-regulation of Twist induces angiogenesis and correlates with metastasis in hepatocellular carcinoma. J Exp Clin Cancer Res, 26, 385–394.PubMed
81.
Zurück zum Zitat Bard, L., Boscher, C., Lambert, M., Mege, R. M., Choquet, D., & Thoumine, O. (2008). A molecular clutch between the actin flow and N-cadherin adhesions drives growth cone migration. J Neurosci, 28, 5879–5890.PubMed Bard, L., Boscher, C., Lambert, M., Mege, R. M., Choquet, D., & Thoumine, O. (2008). A molecular clutch between the actin flow and N-cadherin adhesions drives growth cone migration. J Neurosci, 28, 5879–5890.PubMed
82.
Zurück zum Zitat El, Sayegh, T. Y., Arora, P. D., Fan, L., Laschinger, C. A., Greer, P. A., & McCulloch, C. A. (2005). Phosphorylation of N-cadherin-associated cortactin by Fer kinase regulates N-cadherin mobility and intercellular adhesion strength. Mol Biol Cell, 16, 5514–5527.PubMed El, Sayegh, T. Y., Arora, P. D., Fan, L., Laschinger, C. A., Greer, P. A., & McCulloch, C. A. (2005). Phosphorylation of N-cadherin-associated cortactin by Fer kinase regulates N-cadherin mobility and intercellular adhesion strength. Mol Biol Cell, 16, 5514–5527.PubMed
83.
Zurück zum Zitat Kim, L., & Wong, T. W. (1995). The cytoplasmic tyrosine kinase FER is associated with the catenin-like substrate pp120 and is activated by growth factors. Mol Cell Biol, 15, 4553–4561.PubMed Kim, L., & Wong, T. W. (1995). The cytoplasmic tyrosine kinase FER is associated with the catenin-like substrate pp120 and is activated by growth factors. Mol Cell Biol, 15, 4553–4561.PubMed
84.
Zurück zum Zitat Comunale, F., Causeret, M., Favard, C., Cau, J., Taulet, N., & Charrasse, S. (2007). Rac1 and RhoA GTPases have antagonistic functions during N-cadherin-dependent cell-cell contact formation in C2C12 myoblasts. Biol Cell, 99, 503–517.PubMed Comunale, F., Causeret, M., Favard, C., Cau, J., Taulet, N., & Charrasse, S. (2007). Rac1 and RhoA GTPases have antagonistic functions during N-cadherin-dependent cell-cell contact formation in C2C12 myoblasts. Biol Cell, 99, 503–517.PubMed
85.
Zurück zum Zitat Xu, G., Craig, A. W., Greer, P., Miller, M., Anastasiadis, P. Z., & Lilien, J. (2004). Continuous association of cadherin with beta-catenin requires the non-receptor tyrosine-kinase Fer. J Cell Sci, 117, 3207–3219.PubMed Xu, G., Craig, A. W., Greer, P., Miller, M., Anastasiadis, P. Z., & Lilien, J. (2004). Continuous association of cadherin with beta-catenin requires the non-receptor tyrosine-kinase Fer. J Cell Sci, 117, 3207–3219.PubMed
86.
Zurück zum Zitat Xu, G., Arregui, C., Lilien, J., & Balsamo, J. (2002). PTP1B modulates the association of beta-catenin with N-cadherin through binding to an adjacent and partially overlapping target site. J Biol Chem, 277, 49989–49997.PubMed Xu, G., Arregui, C., Lilien, J., & Balsamo, J. (2002). PTP1B modulates the association of beta-catenin with N-cadherin through binding to an adjacent and partially overlapping target site. J Biol Chem, 277, 49989–49997.PubMed
87.
Zurück zum Zitat Theisen, C. S., Wahl 3rd, J. K., Johnson, K. R., & Wheelock, M. J. (2007). NHERF links the N-cadherin/catenin complex to the platelet-derived growth factor receptor to modulate the actin cytoskeleton and regulate cell motility. Mol Biol Cell, 18, 1220–1232.PubMed Theisen, C. S., Wahl 3rd, J. K., Johnson, K. R., & Wheelock, M. J. (2007). NHERF links the N-cadherin/catenin complex to the platelet-derived growth factor receptor to modulate the actin cytoskeleton and regulate cell motility. Mol Biol Cell, 18, 1220–1232.PubMed
88.
Zurück zum Zitat Heldin, C. H., Ostman, A., & Ronnstrand, L. (1998). Signal transduction via platelet-derived growth factor receptors. Biochim Biophys Acta, 1378, F79–113.PubMed Heldin, C. H., Ostman, A., & Ronnstrand, L. (1998). Signal transduction via platelet-derived growth factor receptors. Biochim Biophys Acta, 1378, F79–113.PubMed
89.
Zurück zum Zitat Kong, D., Wang, Z., Sarkar, S. H., Li, Y., Banerjee, S., & Saliganan, A. (2008). Platelet-derived growth factor-D overexpression contributes to epithelial-mesenchymal transition of PC3 prostate cancer cells. Stem Cells, 26, 1425–1435.PubMed Kong, D., Wang, Z., Sarkar, S. H., Li, Y., Banerjee, S., & Saliganan, A. (2008). Platelet-derived growth factor-D overexpression contributes to epithelial-mesenchymal transition of PC3 prostate cancer cells. Stem Cells, 26, 1425–1435.PubMed
90.
Zurück zum Zitat Sander, E. E., ten Klooster, J. P., van Delft, S., van der Kammen, R. A., & Collard, J. G. (1999). Rac downregulates Rho activity: reciprocal balance between both GTPases determines cellular morphology and migratory behavior. J Cell Biol, 147, 1009–1022.PubMed Sander, E. E., ten Klooster, J. P., van Delft, S., van der Kammen, R. A., & Collard, J. G. (1999). Rac downregulates Rho activity: reciprocal balance between both GTPases determines cellular morphology and migratory behavior. J Cell Biol, 147, 1009–1022.PubMed
91.
Zurück zum Zitat Pertz, O., Hodgson, L., Klemke, R. L., & Hahn, K. M. (2006). Spatiotemporal dynamics of RhoA activity in migrating cells. Nature, 440, 1069–1072.PubMed Pertz, O., Hodgson, L., Klemke, R. L., & Hahn, K. M. (2006). Spatiotemporal dynamics of RhoA activity in migrating cells. Nature, 440, 1069–1072.PubMed
92.
Zurück zum Zitat Ridley, A. J., Paterson, H. F., Johnston, C. L., Diekmann, D., & Hall, A. (1992). The small GTP-binding protein rac regulates growth factor-induced membrane ruffling. Cell, 70, 401–410.PubMed Ridley, A. J., Paterson, H. F., Johnston, C. L., Diekmann, D., & Hall, A. (1992). The small GTP-binding protein rac regulates growth factor-induced membrane ruffling. Cell, 70, 401–410.PubMed
93.
Zurück zum Zitat Nimnual, A. S., Taylor, L. J., & Bar-Sagi, D. (2003). Redox-dependent downregulation of Rho by Rac. Nat Cell Biol, 5, 236–241.PubMed Nimnual, A. S., Taylor, L. J., & Bar-Sagi, D. (2003). Redox-dependent downregulation of Rho by Rac. Nat Cell Biol, 5, 236–241.PubMed
94.
Zurück zum Zitat Anastasiadis, P. Z., Moon, S. Y., Thoreson, M. A., Mariner, D. J., Crawford, H. C., Zheng, Y., et al. (2000). Inhibition of RhoA by p120 catenin. Nat Cell Biol, 2, 637–644.PubMed Anastasiadis, P. Z., Moon, S. Y., Thoreson, M. A., Mariner, D. J., Crawford, H. C., Zheng, Y., et al. (2000). Inhibition of RhoA by p120 catenin. Nat Cell Biol, 2, 637–644.PubMed
95.
Zurück zum Zitat Cavallaro, U., Niedermeyer, J., Fuxa, M., & Christofori, G. (2001). N-CAM modulates tumour-cell adhesion to matrix by inducing FGF-receptor signalling. Nat Cell Biol, 3, 650–657.PubMed Cavallaro, U., Niedermeyer, J., Fuxa, M., & Christofori, G. (2001). N-CAM modulates tumour-cell adhesion to matrix by inducing FGF-receptor signalling. Nat Cell Biol, 3, 650–657.PubMed
96.
Zurück zum Zitat Williams, E. J., Williams, G., Howell, F. V., Skaper, S. D., Walsh, F. S., & Doherty, P. (2001). Identification of an N-cadherin motif that can interact with the fibroblast growth factor receptor and is required for axonal growth. J Biol Chem, 276, 43879–43886.PubMed Williams, E. J., Williams, G., Howell, F. V., Skaper, S. D., Walsh, F. S., & Doherty, P. (2001). Identification of an N-cadherin motif that can interact with the fibroblast growth factor receptor and is required for axonal growth. J Biol Chem, 276, 43879–43886.PubMed
97.
Zurück zum Zitat Hazan, R. B., Phillips, G. R., Qiao, R. F., Norton, L., & Aaronson, S. A. (2000). Exogenous expression of N-cadherin in breast cancer cells induces cell migration, invasion, and metastasis. J Cell Biol, 148, 779–790.PubMed Hazan, R. B., Phillips, G. R., Qiao, R. F., Norton, L., & Aaronson, S. A. (2000). Exogenous expression of N-cadherin in breast cancer cells induces cell migration, invasion, and metastasis. J Cell Biol, 148, 779–790.PubMed
98.
Zurück zum Zitat Suyama, K., Shapiro, I., Guttman, M., & Hazan, R. B. (2002). A signaling pathway leading to metastasis is controlled by N-cadherin and the FGF receptor. Cancer Cell, 2, 301–314.PubMed Suyama, K., Shapiro, I., Guttman, M., & Hazan, R. B. (2002). A signaling pathway leading to metastasis is controlled by N-cadherin and the FGF receptor. Cancer Cell, 2, 301–314.PubMed
99.
Zurück zum Zitat Francavilla, C., Loeffler, S., Piccini, D., Kren, A., Christofori, G., & Cavallaro, U. (2007). Neural cell adhesion molecule regulates the cellular response to fibroblast growth factor. J Cell Sci, 120, 4388–4394.PubMed Francavilla, C., Loeffler, S., Piccini, D., Kren, A., Christofori, G., & Cavallaro, U. (2007). Neural cell adhesion molecule regulates the cellular response to fibroblast growth factor. J Cell Sci, 120, 4388–4394.PubMed
100.
Zurück zum Zitat Sanchez-Heras, E., Howell, F. V., Williams, G., & Doherty, P. (2006). The fibroblast growth factor receptor acid box is essential for interactions with N-cadherin and all of the major isoforms of neural cell adhesion molecule. J Biol Chem, 281, 35208–35216.PubMed Sanchez-Heras, E., Howell, F. V., Williams, G., & Doherty, P. (2006). The fibroblast growth factor receptor acid box is essential for interactions with N-cadherin and all of the major isoforms of neural cell adhesion molecule. J Biol Chem, 281, 35208–35216.PubMed
101.
Zurück zum Zitat Christofori, G. (2006). New signals from the invasive front. Nature, 441, 444–450.PubMed Christofori, G. (2006). New signals from the invasive front. Nature, 441, 444–450.PubMed
102.
Zurück zum Zitat Marambaud, P., Wen, P. H., Dutt, A., Shioi, J., Takashima, A., & Siman, R. (2003). A CBP binding transcriptional repressor produced by the PS1/epsilon-cleavage of N-cadherin is inhibited by PS1 FAD mutations. Cell, 114, 635–645.PubMed Marambaud, P., Wen, P. H., Dutt, A., Shioi, J., Takashima, A., & Siman, R. (2003). A CBP binding transcriptional repressor produced by the PS1/epsilon-cleavage of N-cadherin is inhibited by PS1 FAD mutations. Cell, 114, 635–645.PubMed
103.
Zurück zum Zitat Shoval, I., Ludwig, A., & Kalcheim, C. (2007). Antagonistic roles of full-length N-cadherin and its soluble BMP cleavage product in neural crest delamination. Development, 134, 491–501.PubMed Shoval, I., Ludwig, A., & Kalcheim, C. (2007). Antagonistic roles of full-length N-cadherin and its soluble BMP cleavage product in neural crest delamination. Development, 134, 491–501.PubMed
104.
Zurück zum Zitat Uemura, K., Kihara, T., Kuzuya, A., Okawa, K., Nishimoto, T., Bito, H., & Ninomiya, H. (2006). Activity-dependent regulation of beta-catenin via epsilon-cleavage of N-cadherin. Biochem Biophys Res Commun, 345, 951–958.PubMed Uemura, K., Kihara, T., Kuzuya, A., Okawa, K., Nishimoto, T., Bito, H., & Ninomiya, H. (2006). Activity-dependent regulation of beta-catenin via epsilon-cleavage of N-cadherin. Biochem Biophys Res Commun, 345, 951–958.PubMed
105.
Zurück zum Zitat Tadokoro, S., Shattil, S. J., Eto, K., Tai, V., Liddington, R. C., dePereda, J. M., et al. (2003). Talin binding to integrin beta tails: a final common step in integrin activation. Science, 302, 103–106.PubMed Tadokoro, S., Shattil, S. J., Eto, K., Tai, V., Liddington, R. C., dePereda, J. M., et al. (2003). Talin binding to integrin beta tails: a final common step in integrin activation. Science, 302, 103–106.PubMed
106.
Zurück zum Zitat Deryugina, E. I., Bourdon, M. A., Jungwirth, K., Smith, J. W., & Strongin, A. Y. (2000). Functional activation of integrin alpha V beta 3 in tumor cells expressing membrane-type 1 matrix metalloproteinase. Int J Cancer, 86, 15–23.PubMed Deryugina, E. I., Bourdon, M. A., Jungwirth, K., Smith, J. W., & Strongin, A. Y. (2000). Functional activation of integrin alpha V beta 3 in tumor cells expressing membrane-type 1 matrix metalloproteinase. Int J Cancer, 86, 15–23.PubMed
107.
Zurück zum Zitat Legate, K. R., Montanez, E., Kudlacek, O., & Fassler, R. (2006). ILK, PINCH and parvin: the tIPP of integrin signalling. Nat Rev Mol Cell Biol, 7, 20–31.PubMed Legate, K. R., Montanez, E., Kudlacek, O., & Fassler, R. (2006). ILK, PINCH and parvin: the tIPP of integrin signalling. Nat Rev Mol Cell Biol, 7, 20–31.PubMed
108.
Zurück zum Zitat Mercurio, A. M., & Rabinovitz, I. (2001). Towards a mechanistic understanding of tumor invasion-lessons from the alpha6beta 4 integrin. Semin Cancer Biol, 11, 129–141.PubMed Mercurio, A. M., & Rabinovitz, I. (2001). Towards a mechanistic understanding of tumor invasion-lessons from the alpha6beta 4 integrin. Semin Cancer Biol, 11, 129–141.PubMed
109.
Zurück zum Zitat Trusolino, L., Bertotti, A., & Comoglio, P. M. (2001). A signaling adapter function for alpha 6beta 4 integrin in the control of HGF-dependent invasive growth. Cell, 107, 643–654.PubMed Trusolino, L., Bertotti, A., & Comoglio, P. M. (2001). A signaling adapter function for alpha 6beta 4 integrin in the control of HGF-dependent invasive growth. Cell, 107, 643–654.PubMed
110.
Zurück zum Zitat Mariotti, A., Kedeshian, P. A., Dans, M., Curatola, A. M., Gagnoux-Palacios, L., & Giancotti, F. G. (2001). EGF-R signaling through Fyn kinase disrupts the function of integrin alpha6beta4 at hemidesmosomes: role in epithelial cell migration and carcinoma invasion. J Cell Biol, 155, 447–458.PubMed Mariotti, A., Kedeshian, P. A., Dans, M., Curatola, A. M., Gagnoux-Palacios, L., & Giancotti, F. G. (2001). EGF-R signaling through Fyn kinase disrupts the function of integrin alpha6beta4 at hemidesmosomes: role in epithelial cell migration and carcinoma invasion. J Cell Biol, 155, 447–458.PubMed
111.
Zurück zum Zitat Gambaletta, D., Marchetti, A., Benedetti, L., Mercurio, A. M., Sacchi, A., & Falcioni, R. (2000). Cooperative signaling between alpha (6)beta(4) integrin and ErbB-2 receptor is required to promote phosphatidylinositol 3-kinase-dependent invasion. J Biol Chem, 275, 10604–10610.PubMed Gambaletta, D., Marchetti, A., Benedetti, L., Mercurio, A. M., Sacchi, A., & Falcioni, R. (2000). Cooperative signaling between alpha (6)beta(4) integrin and ErbB-2 receptor is required to promote phosphatidylinositol 3-kinase-dependent invasion. J Biol Chem, 275, 10604–10610.PubMed
112.
Zurück zum Zitat Ivaska, J., Reunanen, H., Westermarck, J., Koivisto, L., Kahari, V. M., & Heino, J. (1999). Integrin alpha2beta1 mediates isoform-specific activation of p38 and upregulation of collagen gene transcription by a mechanism involving the alpha2 cytoplasmic tail. J Cell Biol, 147, 401–416.PubMed Ivaska, J., Reunanen, H., Westermarck, J., Koivisto, L., Kahari, V. M., & Heino, J. (1999). Integrin alpha2beta1 mediates isoform-specific activation of p38 and upregulation of collagen gene transcription by a mechanism involving the alpha2 cytoplasmic tail. J Cell Biol, 147, 401–416.PubMed
113.
Zurück zum Zitat Ellinger-Ziegelbauer, H., Kelly, K., & Siebenlist, U. (1999). Cell cycle arrest and reversion of Ras-induced transformation by a conditionally activated form of mitogen-activated protein kinase kinase kinase 3. Mol Cell Biol, 19, 3857–3868.PubMed Ellinger-Ziegelbauer, H., Kelly, K., & Siebenlist, U. (1999). Cell cycle arrest and reversion of Ras-induced transformation by a conditionally activated form of mitogen-activated protein kinase kinase kinase 3. Mol Cell Biol, 19, 3857–3868.PubMed
114.
Zurück zum Zitat Munger, J. S., Huang, X., Kawakatsu, H., Griffiths, M. J., Dalton, S. L., & Wu, J. (1999). The integrin alpha v beta 6 binds and activates latent TGF beta 1: a mechanism for regulating pulmonary inflammation and fibrosis. Cell, 96, 319–328.PubMed Munger, J. S., Huang, X., Kawakatsu, H., Griffiths, M. J., Dalton, S. L., & Wu, J. (1999). The integrin alpha v beta 6 binds and activates latent TGF beta 1: a mechanism for regulating pulmonary inflammation and fibrosis. Cell, 96, 319–328.PubMed
115.
Zurück zum Zitat Mu, D., Cambier, S., Fjellbirkeland, L., Baron, J. L., Munger, J. S., & Kawakatsu, H. (2002). The integrin alpha(v)beta8 mediates epithelial homeostasis through MT1-MMP-dependent activation of TGF-beta1. J Cell Biol, 157, 493–507.PubMed Mu, D., Cambier, S., Fjellbirkeland, L., Baron, J. L., Munger, J. S., & Kawakatsu, H. (2002). The integrin alpha(v)beta8 mediates epithelial homeostasis through MT1-MMP-dependent activation of TGF-beta1. J Cell Biol, 157, 493–507.PubMed
116.
Zurück zum Zitat Wipff, P. J., & Hinz, B. (2008). Integrins and the activation of latent transforming growth factor beta1—An intimate relationship. Eur J Cell Biol, 87(8–9), 601–615.PubMed Wipff, P. J., & Hinz, B. (2008). Integrins and the activation of latent transforming growth factor beta1—An intimate relationship. Eur J Cell Biol, 87(8–9), 601–615.PubMed
117.
Zurück zum Zitat Haraguchi, M., Okubo, T., Miyashita, Y., Miyamoto, Y., Hayashi, M., & Crotti, T. N. (2008). Snail regulates cell-matrix adhesion by regulation of the expression of integrins and basement membrane proteins. J Biol Chem, 283(35), 23514–23523.PubMed Haraguchi, M., Okubo, T., Miyashita, Y., Miyamoto, Y., Hayashi, M., & Crotti, T. N. (2008). Snail regulates cell-matrix adhesion by regulation of the expression of integrins and basement membrane proteins. J Biol Chem, 283(35), 23514–23523.PubMed
118.
Zurück zum Zitat Sharma, M., & Henderson, B. R. (2007). IQ-domain GTPase-activating protein 1 regulates beta-catenin at membrane ruffles and its role in macropinocytosis of N-cadherin and adenomatous polyposis coli. J Biol Chem, 282, 8545–8556.PubMed Sharma, M., & Henderson, B. R. (2007). IQ-domain GTPase-activating protein 1 regulates beta-catenin at membrane ruffles and its role in macropinocytosis of N-cadherin and adenomatous polyposis coli. J Biol Chem, 282, 8545–8556.PubMed
119.
Zurück zum Zitat Ellerbroek, S. M., Wu, Y. I., Overall, C. M., & Stack, M. S. (2001). Functional interplay between type I collagen and cell surface matrix metalloproteinase activity. J Biol Chem, 276, 24833–24842.PubMed Ellerbroek, S. M., Wu, Y. I., Overall, C. M., & Stack, M. S. (2001). Functional interplay between type I collagen and cell surface matrix metalloproteinase activity. J Biol Chem, 276, 24833–24842.PubMed
120.
Zurück zum Zitat Wolf, K., Muller, R., Borgmann, S., Brocker, E. B., & Friedl, P. (2003). Amoeboid shape change and contact guidance: T-lymphocyte crawling through fibrillar collagen is independent of matrix remodeling by MMPs and other proteases. Blood, 102, 3262–3269.PubMed Wolf, K., Muller, R., Borgmann, S., Brocker, E. B., & Friedl, P. (2003). Amoeboid shape change and contact guidance: T-lymphocyte crawling through fibrillar collagen is independent of matrix remodeling by MMPs and other proteases. Blood, 102, 3262–3269.PubMed
121.
Zurück zum Zitat Cao, J., Chiarelli, C., Richman, O., Zarrabi, K., Kozarekar, P., & Zucker, S. (2008). Membrane type 1 matrix metalloproteinase induces epithelial-to-mesenchymal transition in prostate cancer. J Biol Chem, 283, 6232–6240.PubMed Cao, J., Chiarelli, C., Richman, O., Zarrabi, K., Kozarekar, P., & Zucker, S. (2008). Membrane type 1 matrix metalloproteinase induces epithelial-to-mesenchymal transition in prostate cancer. J Biol Chem, 283, 6232–6240.PubMed
122.
Zurück zum Zitat Pulyaeva, H., Bueno, J., Polette, M., Birembaut, P., Sato, H., & Seiki, M. (1997). MT1-MMP correlates with MMP-2 activation potential seen after epithelial to mesenchymal transition in human breast carcinoma cells. Clin Exp Metastasis, 15, 111–120.PubMed Pulyaeva, H., Bueno, J., Polette, M., Birembaut, P., Sato, H., & Seiki, M. (1997). MT1-MMP correlates with MMP-2 activation potential seen after epithelial to mesenchymal transition in human breast carcinoma cells. Clin Exp Metastasis, 15, 111–120.PubMed
123.
Zurück zum Zitat Bhowmick, N. A., Zent, R., Ghiassi, M., McDonnell, M., & Moses, H. L. (2001). Integrin beta 1 signaling is necessary for transforming growth factor-beta activation of p38MAPK and epithelial plasticity. J Biol Chem, 276, 46707–46713.PubMed Bhowmick, N. A., Zent, R., Ghiassi, M., McDonnell, M., & Moses, H. L. (2001). Integrin beta 1 signaling is necessary for transforming growth factor-beta activation of p38MAPK and epithelial plasticity. J Biol Chem, 276, 46707–46713.PubMed
124.
Zurück zum Zitat Bravo-Cordero, J. J., Marrero-Diaz, R., Megias, D., Genis, L., Garcia-Grande, A., & Garcia, M. A. (2007). MT1-MMP proinvasive activity is regulated by a novel Rab8-dependent exocytic pathway. EMBO J, 26, 1499–1510.PubMed Bravo-Cordero, J. J., Marrero-Diaz, R., Megias, D., Genis, L., Garcia-Grande, A., & Garcia, M. A. (2007). MT1-MMP proinvasive activity is regulated by a novel Rab8-dependent exocytic pathway. EMBO J, 26, 1499–1510.PubMed
125.
Zurück zum Zitat Sheppard, D. (2005). Integrin-mediated activation of latent transforming growth factor beta. Cancer Metastasis Rev, 24, 395–402.PubMed Sheppard, D. (2005). Integrin-mediated activation of latent transforming growth factor beta. Cancer Metastasis Rev, 24, 395–402.PubMed
126.
Zurück zum Zitat Roberts, A. B., & Wakefield, L. M. (2003). The two faces of transforming growth factor beta in carcinogenesis. Proc Natl Acad Sci U S A, 100, 8621–8623.PubMed Roberts, A. B., & Wakefield, L. M. (2003). The two faces of transforming growth factor beta in carcinogenesis. Proc Natl Acad Sci U S A, 100, 8621–8623.PubMed
127.
Zurück zum Zitat Bates, R. C. (2005). Colorectal cancer progression: integrin alphavbeta6 and the epithelial-mesenchymal transition (EMT). Cell Cycle, 4, 1350–1352.PubMed Bates, R. C. (2005). Colorectal cancer progression: integrin alphavbeta6 and the epithelial-mesenchymal transition (EMT). Cell Cycle, 4, 1350–1352.PubMed
128.
Zurück zum Zitat Bates, R. C., Bellovin, D. I., Brown, C., Maynard, E., Wu, B., & Kawakatsu, H. (2005). Transcriptional activation of integrin beta6 during the epithelial-mesenchymal transition defines a novel prognostic indicator of aggressive colon carcinoma. J Clin Invest, 115, 339–347.PubMed Bates, R. C., Bellovin, D. I., Brown, C., Maynard, E., Wu, B., & Kawakatsu, H. (2005). Transcriptional activation of integrin beta6 during the epithelial-mesenchymal transition defines a novel prognostic indicator of aggressive colon carcinoma. J Clin Invest, 115, 339–347.PubMed
129.
Zurück zum Zitat Araya, J., Cambier, S., Morris, A., Finkbeiner, W., & Nishimura, S. L. (2006). Integrin-mediated transforming growth factor-beta activation regulates homeostasis of the pulmonary epithelial-mesenchymal trophic unit. Am J Pathol, 169, 405–415.PubMed Araya, J., Cambier, S., Morris, A., Finkbeiner, W., & Nishimura, S. L. (2006). Integrin-mediated transforming growth factor-beta activation regulates homeostasis of the pulmonary epithelial-mesenchymal trophic unit. Am J Pathol, 169, 405–415.PubMed
130.
Zurück zum Zitat Li, Y., Dai, C., Wu, C., & Liu, Y. (2007). PINCH-1 promotes tubular epithelial-to-mesenchymal transition by interacting with integrin-linked kinase. J Am Soc Nephrol, 18, 2534–2543.PubMed Li, Y., Dai, C., Wu, C., & Liu, Y. (2007). PINCH-1 promotes tubular epithelial-to-mesenchymal transition by interacting with integrin-linked kinase. J Am Soc Nephrol, 18, 2534–2543.PubMed
131.
Zurück zum Zitat Bagnato, A., & Rosano, L. (2007). Epithelial-mesenchymal transition in ovarian cancer progression: a crucial role for the endothelin axis. Cells Tissues Organs, 185, 85–94.PubMed Bagnato, A., & Rosano, L. (2007). Epithelial-mesenchymal transition in ovarian cancer progression: a crucial role for the endothelin axis. Cells Tissues Organs, 185, 85–94.PubMed
132.
Zurück zum Zitat Oloumi, A., McPhee, T., & Dedhar, S. (2004). Regulation of E-cadherin expression and beta-catenin/Tcf transcriptional activity by the integrin-linked kinase. Biochim Biophys Acta, 1691, 1–15.PubMed Oloumi, A., McPhee, T., & Dedhar, S. (2004). Regulation of E-cadherin expression and beta-catenin/Tcf transcriptional activity by the integrin-linked kinase. Biochim Biophys Acta, 1691, 1–15.PubMed
133.
Zurück zum Zitat Etienne-Manneville, S., & Hall, A. (2002). Rho GTPases in cell biology. Nature, 420, 629–635.PubMed Etienne-Manneville, S., & Hall, A. (2002). Rho GTPases in cell biology. Nature, 420, 629–635.PubMed
134.
Zurück zum Zitat Burridge, K. (2004). Wennerberg, K. Rho and Rac take center stage. Cell, 116, 167–179.PubMed Burridge, K. (2004). Wennerberg, K. Rho and Rac take center stage. Cell, 116, 167–179.PubMed
135.
Zurück zum Zitat Sahai, E., & Marshall, C. J. (2002). RHO-GTPases and cancer. Nat Rev Cancer, 2, 133–142.PubMed Sahai, E., & Marshall, C. J. (2002). RHO-GTPases and cancer. Nat Rev Cancer, 2, 133–142.PubMed
136.
Zurück zum Zitat Hall, A. (2005). Rho GTPases and the control of cell behaviour. Biochem Soc Trans, 33, 891–895.PubMed Hall, A. (2005). Rho GTPases and the control of cell behaviour. Biochem Soc Trans, 33, 891–895.PubMed
137.
Zurück zum Zitat Ridley, A. J. (2006). Rho GTPases and actin dynamics in membrane protrusions and vesicle trafficking. Trends Cell Biol, 16, 522–529.PubMed Ridley, A. J. (2006). Rho GTPases and actin dynamics in membrane protrusions and vesicle trafficking. Trends Cell Biol, 16, 522–529.PubMed
138.
Zurück zum Zitat Lozano, E., Betson, M., & Braga, V. M. (2003). Tumor progression: Small GTPases and loss of cell-cell adhesion. Bioessays, 25, 452–463.PubMed Lozano, E., Betson, M., & Braga, V. M. (2003). Tumor progression: Small GTPases and loss of cell-cell adhesion. Bioessays, 25, 452–463.PubMed
139.
Zurück zum Zitat Cozzolino, M., Stagni, V., Spinardi, L., Campioni, N., Fiorentini, C., & Salvati, E. (2003). p120 Catenin is required for growth factor-dependent cell motility and scattering in epithelial cells. Mol Biol Cell, 14, 1964–1977.PubMed Cozzolino, M., Stagni, V., Spinardi, L., Campioni, N., Fiorentini, C., & Salvati, E. (2003). p120 Catenin is required for growth factor-dependent cell motility and scattering in epithelial cells. Mol Biol Cell, 14, 1964–1977.PubMed
140.
Zurück zum Zitat Anastasiadis, P. Z. (2007). p120-ctn: A nexus for contextual signaling via Rho GTPases. Biochim Biophys Acta, 1773, 34–46.PubMed Anastasiadis, P. Z. (2007). p120-ctn: A nexus for contextual signaling via Rho GTPases. Biochim Biophys Acta, 1773, 34–46.PubMed
141.
Zurück zum Zitat Bellovin, D. I., Bates, R. C., Muzikansky, A., Rimm, D. L., & Mercurio, A. M. (2005). Altered localization of p120 catenin during epithelial to mesenchymal transition of colon carcinoma is prognostic for aggressive disease. Cancer Res, 65, 10938–10945.PubMed Bellovin, D. I., Bates, R. C., Muzikansky, A., Rimm, D. L., & Mercurio, A. M. (2005). Altered localization of p120 catenin during epithelial to mesenchymal transition of colon carcinoma is prognostic for aggressive disease. Cancer Res, 65, 10938–10945.PubMed
142.
Zurück zum Zitat Zondag, G. C., Evers, E. E., ten Klooster, J. P., Janssen, L., van der Kammen, R. A., & Collard, J. G. (2000). Oncogenic Ras downregulates Rac activity, which leads to increased Rho activity and epithelial-mesenchymal transition. J Cell Biol, 149, 775–782.PubMed Zondag, G. C., Evers, E. E., ten Klooster, J. P., Janssen, L., van der Kammen, R. A., & Collard, J. G. (2000). Oncogenic Ras downregulates Rac activity, which leads to increased Rho activity and epithelial-mesenchymal transition. J Cell Biol, 149, 775–782.PubMed
143.
Zurück zum Zitat Radisky, D. C., Levy, D. D., Littlepage, L. E., Liu, H., Nelson, C. M., & Fata, J. E. (2005). Rac1b and reactive oxygen species mediate MMP-3-induced EMT and genomic instability. Nature, 436, 123–127.PubMed Radisky, D. C., Levy, D. D., Littlepage, L. E., Liu, H., Nelson, C. M., & Fata, J. E. (2005). Rac1b and reactive oxygen species mediate MMP-3-induced EMT and genomic instability. Nature, 436, 123–127.PubMed
144.
Zurück zum Zitat Clark, E. A., Golub, T. R., Lander, E. S., & Hynes, R. O. (2000). Genomic analysis of metastasis reveals an essential role for Rock. Nature, 406, 532–535.PubMed Clark, E. A., Golub, T. R., Lander, E. S., & Hynes, R. O. (2000). Genomic analysis of metastasis reveals an essential role for Rock. Nature, 406, 532–535.PubMed
145.
Zurück zum Zitat Hakem, A., Sanchez-Sweatman, O., You-Ten, A., Duncan, G., Wakeham, A., & Khokha, R. (2005). Rock is dispensable for embryogenesis and tumor initiation but essential for metastasis. Genes Dev, 19, 1974–1979.PubMed Hakem, A., Sanchez-Sweatman, O., You-Ten, A., Duncan, G., Wakeham, A., & Khokha, R. (2005). Rock is dispensable for embryogenesis and tumor initiation but essential for metastasis. Genes Dev, 19, 1974–1979.PubMed
146.
Zurück zum Zitat Nakaya, Y., Sukowati, E. W., Wu, Y., & Sheng, G. (2008). RhoA and microtubule dynamics control cell-basement membrane interaction in EMT during gastrulation. Nat Cell Biol, 10, 765–775.PubMed Nakaya, Y., Sukowati, E. W., Wu, Y., & Sheng, G. (2008). RhoA and microtubule dynamics control cell-basement membrane interaction in EMT during gastrulation. Nat Cell Biol, 10, 765–775.PubMed
147.
Zurück zum Zitat Hordijk, P. L., ten, Klooster, J. P., van, der, Kammen, R. A., Michiels, F., Oomen, L. C., & Collard, J. G. (1997). Inhibition of invasion of epithelial cells by Tiam1-Rac signaling. Science, 278, 1464–1466.PubMed Hordijk, P. L., ten, Klooster, J. P., van, der, Kammen, R. A., Michiels, F., Oomen, L. C., & Collard, J. G. (1997). Inhibition of invasion of epithelial cells by Tiam1-Rac signaling. Science, 278, 1464–1466.PubMed
148.
Zurück zum Zitat Malliri, A., van, Es, S., Huveneers, S., & Collard, J. G. (2004). The Rac exchange factor Tiam1 is required for the establishment and maintenance of cadherin-based adhesions. J Biol Chem, 279, 30092–30098.PubMed Malliri, A., van, Es, S., Huveneers, S., & Collard, J. G. (2004). The Rac exchange factor Tiam1 is required for the establishment and maintenance of cadherin-based adhesions. J Biol Chem, 279, 30092–30098.PubMed
149.
Zurück zum Zitat Malliri, A., van der Kammen, R. A., Clark, K., van der Valk, M., Michiels, F., & Collard, J. G. (2002). Mice deficient in the Rac activator Tiam1 are resistant to Ras-induced skin tumours. Nature, 417, 867–871.PubMed Malliri, A., van der Kammen, R. A., Clark, K., van der Valk, M., Michiels, F., & Collard, J. G. (2002). Mice deficient in the Rac activator Tiam1 are resistant to Ras-induced skin tumours. Nature, 417, 867–871.PubMed
150.
Zurück zum Zitat Krueger, E. W., Orth, J. D., Cao, H., & McNiven, M. A. (2003). A dynamin-cortactin-Arp2/3 complex mediates actin reorganization in growth factor-stimulated cells. Mol Biol Cell, 14, 1085–1096.PubMed Krueger, E. W., Orth, J. D., Cao, H., & McNiven, M. A. (2003). A dynamin-cortactin-Arp2/3 complex mediates actin reorganization in growth factor-stimulated cells. Mol Biol Cell, 14, 1085–1096.PubMed
151.
Zurück zum Zitat Ballestrem, C., Wehrle-Haller, B., & Imhof, B. A. (1998). Actin dynamics in living mammalian cells. J Cell Sci, 111, 1649–1658.PubMed Ballestrem, C., Wehrle-Haller, B., & Imhof, B. A. (1998). Actin dynamics in living mammalian cells. J Cell Sci, 111, 1649–1658.PubMed
152.
Zurück zum Zitat Suetsugu, S., Yamazaki, D., Kurisu, S., & Takenawa, T. (2003). Differential roles of WAVE1 and WAVE2 in dorsal and peripheral ruffle formation for fibroblast cell migration. Dev Cell, 5, 595–609.PubMed Suetsugu, S., Yamazaki, D., Kurisu, S., & Takenawa, T. (2003). Differential roles of WAVE1 and WAVE2 in dorsal and peripheral ruffle formation for fibroblast cell migration. Dev Cell, 5, 595–609.PubMed
153.
Zurück zum Zitat Orth, J. D., & McNiven, M. A. (2006). Get off my back! Rapid receptor internalization through circular dorsal ruffles. Cancer Res, 66, 11094–11096.PubMed Orth, J. D., & McNiven, M. A. (2006). Get off my back! Rapid receptor internalization through circular dorsal ruffles. Cancer Res, 66, 11094–11096.PubMed
154.
Zurück zum Zitat Vieira, A. V., Lamaze, C., & Schmid, S. L. (1996). Control of EGF receptor signaling by clathrin-mediated endocytosis. Science, 274, 2086–2089.PubMed Vieira, A. V., Lamaze, C., & Schmid, S. L. (1996). Control of EGF receptor signaling by clathrin-mediated endocytosis. Science, 274, 2086–2089.PubMed
155.
Zurück zum Zitat Dharmawardhane, S., Schurmann, A., Sells, M. A., Chernoff, J., Schmid, S. L., & Bokoch, G. M. (2000). Regulation of macropinocytosis by p21-activated kinase-1. Mol Biol Cell, 11, 3341–3352.PubMed Dharmawardhane, S., Schurmann, A., Sells, M. A., Chernoff, J., Schmid, S. L., & Bokoch, G. M. (2000). Regulation of macropinocytosis by p21-activated kinase-1. Mol Biol Cell, 11, 3341–3352.PubMed
156.
Zurück zum Zitat Plattner, R., Kadlec, L., DeMali, K. A., Kazlauskas, A., & Pendergast, A. M. (1999). c-Abl is activated by growth factors and Src family kinases and has a role in the cellular response to PDGF. Genes Dev, 13, 2400–2411.PubMed Plattner, R., Kadlec, L., DeMali, K. A., Kazlauskas, A., & Pendergast, A. M. (1999). c-Abl is activated by growth factors and Src family kinases and has a role in the cellular response to PDGF. Genes Dev, 13, 2400–2411.PubMed
157.
Zurück zum Zitat Yang, Y., Pan, X., Lei, W., Wang, J., Shi, J., Li, F., & Song, J. (2006). Regulation of transforming growth factor-beta 1-induced apoptosis and epithelial-to-mesenchymal transition by protein kinase A and signal transducers and activators of transcription 3. Cancer Res, 66, 8617–8624.PubMed Yang, Y., Pan, X., Lei, W., Wang, J., Shi, J., Li, F., & Song, J. (2006). Regulation of transforming growth factor-beta 1-induced apoptosis and epithelial-to-mesenchymal transition by protein kinase A and signal transducers and activators of transcription 3. Cancer Res, 66, 8617–8624.PubMed
158.
Zurück zum Zitat Finn, R. S., Dering, J., Ginther, C., Wilson, C. A., Glaspy, P., & Tchekmedyian, N. (2007). Dasatinib, an orally active small molecule inhibitor of both the src and abl kinases, selectively inhibits growth of basal-type/“triple-negative” breast cancer cell lines growing in vitro. Breast Cancer Res Treat, 105, 319–326.PubMed Finn, R. S., Dering, J., Ginther, C., Wilson, C. A., Glaspy, P., & Tchekmedyian, N. (2007). Dasatinib, an orally active small molecule inhibitor of both the src and abl kinases, selectively inhibits growth of basal-type/“triple-negative” breast cancer cell lines growing in vitro. Breast Cancer Res Treat, 105, 319–326.PubMed
159.
Zurück zum Zitat Srinivasan, D., & Plattner, R. (2006). Activation of Abl tyrosine kinases promotes invasion of aggressive breast cancer cells. Cancer Res, 66, 5648–5655.PubMed Srinivasan, D., & Plattner, R. (2006). Activation of Abl tyrosine kinases promotes invasion of aggressive breast cancer cells. Cancer Res, 66, 5648–5655.PubMed
160.
Zurück zum Zitat Watanabe, T., Wang, S., Noritake, J., Sato, K., Fukata, M., & Takefuji, M. (2004). Interaction with IQGAP1 links APC to Rac1, Cdc42, and actin filaments during cell polarization and migration. Dev Cell, 7, 871–883.PubMed Watanabe, T., Wang, S., Noritake, J., Sato, K., Fukata, M., & Takefuji, M. (2004). Interaction with IQGAP1 links APC to Rac1, Cdc42, and actin filaments during cell polarization and migration. Dev Cell, 7, 871–883.PubMed
161.
Zurück zum Zitat Etienne-Manneville, S., & Hall, A. (2003). Cdc42 regulates GSK-3beta and adenomatous polyposis coli to control cell polarity. Nature, 421, 753–756.PubMed Etienne-Manneville, S., & Hall, A. (2003). Cdc42 regulates GSK-3beta and adenomatous polyposis coli to control cell polarity. Nature, 421, 753–756.PubMed
162.
Zurück zum Zitat Sharma, M., Leung, L., Brocardo, M., Henderson, J., Flegg, C., & Henderson, B. R. (2006). Membrane localization of adenomatous polyposis coli protein at cellular protrusions: targeting sequences and regulation by beta-catenin. J Biol Chem, 281, 17140–17149.PubMed Sharma, M., Leung, L., Brocardo, M., Henderson, J., Flegg, C., & Henderson, B. R. (2006). Membrane localization of adenomatous polyposis coli protein at cellular protrusions: targeting sequences and regulation by beta-catenin. J Biol Chem, 281, 17140–17149.PubMed
163.
Zurück zum Zitat Goicoechea, S. M., Arneman, D., & Otey, C. A. (2008). The role of palladin in actin organization and cell motility. Eur J Cell Biol, 87(8–9), 517–525.PubMed Goicoechea, S. M., Arneman, D., & Otey, C. A. (2008). The role of palladin in actin organization and cell motility. Eur J Cell Biol, 87(8–9), 517–525.PubMed
164.
Zurück zum Zitat Goicoechea, S., Arneman, D., Disanza, A., Garcia-Mata, R., Scita, G., & Otey, C. A. (2006). Palladin binds to Eps8 and enhances the formation of dorsal ruffles and podosomes in vascular smooth muscle cells. J Cell Sci, 119, 3316–3324.PubMed Goicoechea, S., Arneman, D., Disanza, A., Garcia-Mata, R., Scita, G., & Otey, C. A. (2006). Palladin binds to Eps8 and enhances the formation of dorsal ruffles and podosomes in vascular smooth muscle cells. J Cell Sci, 119, 3316–3324.PubMed
165.
Zurück zum Zitat Ronty, M., Taivainen, A., Heiska, L., Otey, C., Ehler, E., & Song, W. K. (2007). Palladin interacts with SH3 domains of SPIN90 and Src and is required for Src-induced cytoskeletal remodeling. Exp Cell Res, 313, 2575–2585.PubMed Ronty, M., Taivainen, A., Heiska, L., Otey, C., Ehler, E., & Song, W. K. (2007). Palladin interacts with SH3 domains of SPIN90 and Src and is required for Src-induced cytoskeletal remodeling. Exp Cell Res, 313, 2575–2585.PubMed
166.
Zurück zum Zitat Griffith, O. L., Melck, A., Jones, S. J., & Wiseman, S. M. (2006). Meta-analysis and meta-review of thyroid cancer gene expression profiling studies identifies important diagnostic biomarkers. J Clin Oncol, 24, 5043–5051.PubMed Griffith, O. L., Melck, A., Jones, S. J., & Wiseman, S. M. (2006). Meta-analysis and meta-review of thyroid cancer gene expression profiling studies identifies important diagnostic biomarkers. J Clin Oncol, 24, 5043–5051.PubMed
167.
Zurück zum Zitat Matoskova, B., Wong, W. T., Salcini, A. E., Pelicci, P. G., & Di, Fiore, P. P. (1995). Constitutive phosphorylation of eps8 in tumor cell lines: relevance to malignant transformation. Mol Cell Biol, 15, 3805–3812.PubMed Matoskova, B., Wong, W. T., Salcini, A. E., Pelicci, P. G., & Di, Fiore, P. P. (1995). Constitutive phosphorylation of eps8 in tumor cell lines: relevance to malignant transformation. Mol Cell Biol, 15, 3805–3812.PubMed
168.
Zurück zum Zitat Yao, J., Weremowicz, S., Feng, B., Gentleman, R. C., Marks, J. R., & Gelman, R. (2006). Combined cDNA array comparative genomic hybridization and serial analysis of gene expression analysis of breast tumor progression. Cancer Res, 66, 4065–4078.PubMed Yao, J., Weremowicz, S., Feng, B., Gentleman, R. C., Marks, J. R., & Gelman, R. (2006). Combined cDNA array comparative genomic hybridization and serial analysis of gene expression analysis of breast tumor progression. Cancer Res, 66, 4065–4078.PubMed
169.
Zurück zum Zitat Ryu, B., Jones, J., Hollingsworth, M. A., Hruban, R. H., & Kern, S. E. (2001). Invasion-specific genes in malignancy: serial analysis of gene expression comparisons of primary and passaged cancers. Cancer Res, 61, 1833–1838.PubMed Ryu, B., Jones, J., Hollingsworth, M. A., Hruban, R. H., & Kern, S. E. (2001). Invasion-specific genes in malignancy: serial analysis of gene expression comparisons of primary and passaged cancers. Cancer Res, 61, 1833–1838.PubMed
170.
Zurück zum Zitat Wang, W., Goswami, S., Lapidus, K., Wells, A. L., Wyckoff, J. B., & Sahai, E. (2004). Identification and testing of a gene expression signature of invasive carcinoma cells within primary mammary tumors. Cancer Res, 64, 8585–8594.PubMed Wang, W., Goswami, S., Lapidus, K., Wells, A. L., Wyckoff, J. B., & Sahai, E. (2004). Identification and testing of a gene expression signature of invasive carcinoma cells within primary mammary tumors. Cancer Res, 64, 8585–8594.PubMed
171.
Zurück zum Zitat Ronty, M. J., Leivonen, S. K., Hinz, B., Rachlin, A., Otey, C. A., & Kahari, V. M. (2006). Isoform-specific regulation of the actin-organizing protein palladin during TGF-beta1-induced myofibroblast differentiation. J Invest Dermatol, 126, 2387–2396.PubMed Ronty, M. J., Leivonen, S. K., Hinz, B., Rachlin, A., Otey, C. A., & Kahari, V. M. (2006). Isoform-specific regulation of the actin-organizing protein palladin during TGF-beta1-induced myofibroblast differentiation. J Invest Dermatol, 126, 2387–2396.PubMed
172.
Zurück zum Zitat Ibarra, N., Pollitt, A., & Insall, R. H. (2005). Regulation of actin assembly by SCAR/WAVE proteins. Biochem Soc Trans, 33, 1243–1246.PubMed Ibarra, N., Pollitt, A., & Insall, R. H. (2005). Regulation of actin assembly by SCAR/WAVE proteins. Biochem Soc Trans, 33, 1243–1246.PubMed
173.
Zurück zum Zitat LeClainche, C., & Carlier, M. F. (2008). Regulation of actin assembly associated with protrusion and adhesion in cell migration. Physiol Rev, 88, 489–513. LeClainche, C., & Carlier, M. F. (2008). Regulation of actin assembly associated with protrusion and adhesion in cell migration. Physiol Rev, 88, 489–513.
174.
Zurück zum Zitat Innocenti, M., Zucconi, A., Disanza, A., Frittoli, E., Areces, L. B., & Steffen, A. (2004). Abi1 is essential for the formation and activation of a WAVE2 signalling complex. Nat Cell Biol, 6, 319–327.PubMed Innocenti, M., Zucconi, A., Disanza, A., Frittoli, E., Areces, L. B., & Steffen, A. (2004). Abi1 is essential for the formation and activation of a WAVE2 signalling complex. Nat Cell Biol, 6, 319–327.PubMed
175.
Zurück zum Zitat Iwaya, K., Norio, K., & Mukai, K. (2007). Coexpression of Arp2 and WAVE2 predicts poor outcome in invasive breast carcinoma. Mod Pathol, 20, 339–343.PubMed Iwaya, K., Norio, K., & Mukai, K. (2007). Coexpression of Arp2 and WAVE2 predicts poor outcome in invasive breast carcinoma. Mod Pathol, 20, 339–343.PubMed
176.
Zurück zum Zitat Iwaya, K., Oikawa, K., Semba, S., Tsuchiya, B., Mukai, Y., & Otsubo, T. (2007). Correlation between liver metastasis of the colocalization of actin-related protein 2 and 3 complex and WAVE2 in colorectal carcinoma. Cancer Sci, 98, 992–999.PubMed Iwaya, K., Oikawa, K., Semba, S., Tsuchiya, B., Mukai, Y., & Otsubo, T. (2007). Correlation between liver metastasis of the colocalization of actin-related protein 2 and 3 complex and WAVE2 in colorectal carcinoma. Cancer Sci, 98, 992–999.PubMed
177.
Zurück zum Zitat Khoury, H., Dankort, D. L., Sadekova, S., Naujokas, M. A., Muller, W. J., & Park, M. (2001). Distinct tyrosine autophosphorylation sites mediate induction of epithelial mesenchymal like transition by an activated ErbB-2/Neu receptor. Oncogene, 20, 788–799.PubMed Khoury, H., Dankort, D. L., Sadekova, S., Naujokas, M. A., Muller, W. J., & Park, M. (2001). Distinct tyrosine autophosphorylation sites mediate induction of epithelial mesenchymal like transition by an activated ErbB-2/Neu receptor. Oncogene, 20, 788–799.PubMed
178.
Zurück zum Zitat Wang, L., Lee, J. F., Lin, C. Y., & Lee, M. J. (2008). Rho GTPases mediated integrin alpha v beta 3 activation in sphingosine-1-phosphate stimulated chemotaxis of endothelial cells. Histochem Cell Biol, 129, 579–588.PubMed Wang, L., Lee, J. F., Lin, C. Y., & Lee, M. J. (2008). Rho GTPases mediated integrin alpha v beta 3 activation in sphingosine-1-phosphate stimulated chemotaxis of endothelial cells. Histochem Cell Biol, 129, 579–588.PubMed
179.
Zurück zum Zitat Mori, H., Tomari, T., Koshikawa, N., Kajita, M., Itoh, Y., & Sato, H. (2002). CD44 directs membrane-type 1 matrix metalloproteinase to lamellipodia by associating with its hemopexin-like domain. EMBO J, 21, 3949–3959.PubMed Mori, H., Tomari, T., Koshikawa, N., Kajita, M., Itoh, Y., & Sato, H. (2002). CD44 directs membrane-type 1 matrix metalloproteinase to lamellipodia by associating with its hemopexin-like domain. EMBO J, 21, 3949–3959.PubMed
180.
Zurück zum Zitat Coopman, P. J., Do, M. T., Thompson, E. W., & Mueller, S. C. (1998). Phagocytosis of cross-linked gelatin matrix by human breast carcinoma cells correlates with their invasive capacity. Clin Cancer Res, 4, 507–515.PubMed Coopman, P. J., Do, M. T., Thompson, E. W., & Mueller, S. C. (1998). Phagocytosis of cross-linked gelatin matrix by human breast carcinoma cells correlates with their invasive capacity. Clin Cancer Res, 4, 507–515.PubMed
181.
Zurück zum Zitat Wang, W., Wyckoff, J. B., Frohlich, V. C., Oleynikov, Y., Huttelmaier, S., & Zavadil, J. (2002). Single cell behavior in metastatic primary mammary tumors correlated with gene expression patterns revealed by molecular profiling. Cancer Res, 62, 6278–6288.PubMed Wang, W., Wyckoff, J. B., Frohlich, V. C., Oleynikov, Y., Huttelmaier, S., & Zavadil, J. (2002). Single cell behavior in metastatic primary mammary tumors correlated with gene expression patterns revealed by molecular profiling. Cancer Res, 62, 6278–6288.PubMed
182.
Zurück zum Zitat Svitkina, T. M., Bulanova, E. A., Chaga, O. Y., Vignjevic, D. M., Kojima, S., & Vasiliev, J. M. (2003). Mechanism of filopodia initiation by reorganization of a dendritic network. J Cell Biol, 160, 409–421.PubMed Svitkina, T. M., Bulanova, E. A., Chaga, O. Y., Vignjevic, D. M., Kojima, S., & Vasiliev, J. M. (2003). Mechanism of filopodia initiation by reorganization of a dendritic network. J Cell Biol, 160, 409–421.PubMed
183.
Zurück zum Zitat Pelosi, G., Pastorino, U., Pasini, F., Maissoneuve, P., Fraggetta, F., & Iannucci, A. (2003). Independent prognostic value of fascin immunoreactivity in stage I nonsmall cell lung cancer. Br J Cancer, 88, 537–547.PubMed Pelosi, G., Pastorino, U., Pasini, F., Maissoneuve, P., Fraggetta, F., & Iannucci, A. (2003). Independent prognostic value of fascin immunoreactivity in stage I nonsmall cell lung cancer. Br J Cancer, 88, 537–547.PubMed
184.
Zurück zum Zitat Hashimoto, Y., Shimada, Y., Kawamura, J., Yamasaki, S., & Imamura, M. (2004). The prognostic relevance of fascin expression in human gastric carcinoma. Oncology, 67, 262–270.PubMed Hashimoto, Y., Shimada, Y., Kawamura, J., Yamasaki, S., & Imamura, M. (2004). The prognostic relevance of fascin expression in human gastric carcinoma. Oncology, 67, 262–270.PubMed
185.
Zurück zum Zitat Rodriguez-Pinilla, S. M., Sarrio, D., Honrado, E., Hardisson, D., Calero, F., & Benitez, J. (2006). Prognostic significance of basal-like phenotype and fascin expression in node-negative invasive breast carcinomas. Clin Cancer Res, 12, 1533–1539.PubMed Rodriguez-Pinilla, S. M., Sarrio, D., Honrado, E., Hardisson, D., Calero, F., & Benitez, J. (2006). Prognostic significance of basal-like phenotype and fascin expression in node-negative invasive breast carcinomas. Clin Cancer Res, 12, 1533–1539.PubMed
186.
Zurück zum Zitat Mongiu, A. K., Weitzke, E. L., Chaga, O. Y., & Borisy, G. G. (2007). Kinetic-structural analysis of neuronal growth cone veil motility. J Cell Sci, 120, 1113–1125.PubMed Mongiu, A. K., Weitzke, E. L., Chaga, O. Y., & Borisy, G. G. (2007). Kinetic-structural analysis of neuronal growth cone veil motility. J Cell Sci, 120, 1113–1125.PubMed
187.
Zurück zum Zitat Saltel, F., Destaing, O., Bard, F., Eichert, D., & Jurdic, P. (2004). Apatite-mediated actin dynamics in resorbing osteoclasts. Mol Biol Cell, 15, 5231–5241.PubMed Saltel, F., Destaing, O., Bard, F., Eichert, D., & Jurdic, P. (2004). Apatite-mediated actin dynamics in resorbing osteoclasts. Mol Biol Cell, 15, 5231–5241.PubMed
188.
Zurück zum Zitat Linder, S. (2007). The matrix corroded: podosomes and invadopodia in extracellular matrix degradation. Trends Cell Biol, 17, 107–117.PubMed Linder, S. (2007). The matrix corroded: podosomes and invadopodia in extracellular matrix degradation. Trends Cell Biol, 17, 107–117.PubMed
189.
Zurück zum Zitat Linder, S., & Kopp, P. (2005). Podosomes at a glance. J Cell Sci, 118, 2079–2082.PubMed Linder, S., & Kopp, P. (2005). Podosomes at a glance. J Cell Sci, 118, 2079–2082.PubMed
190.
Zurück zum Zitat Ayala, I., Baldassarre, M., Caldieri, G., & Buccione, R. (2006). Invadopodia: a guided tour. Eur J Cell Biol, 85, 159–164.PubMed Ayala, I., Baldassarre, M., Caldieri, G., & Buccione, R. (2006). Invadopodia: a guided tour. Eur J Cell Biol, 85, 159–164.PubMed
191.
Zurück zum Zitat Block, M. R., Badowski, C., Millon-Fremillon, A., Bouvard, D., Bouin, A. P., & Faurobert, E. (2008). Podosome-type adhesions and focal adhesions, so alike yet so different. Eur J Cell Biol, 87(8–9), 491–506.PubMed Block, M. R., Badowski, C., Millon-Fremillon, A., Bouvard, D., Bouin, A. P., & Faurobert, E. (2008). Podosome-type adhesions and focal adhesions, so alike yet so different. Eur J Cell Biol, 87(8–9), 491–506.PubMed
192.
Zurück zum Zitat Kelly, T., Yan, Y., Osborne, R. L., Athota, A. B., Rozypal, T. L., & Colclasure, J. C. (1998). Proteolysis of extracellular matrix by invadopodia facilitates human breast cancer cell invasion and is mediated by matrix metalloproteinases. Clin Exp Metastasis, 16, 501–512.PubMed Kelly, T., Yan, Y., Osborne, R. L., Athota, A. B., Rozypal, T. L., & Colclasure, J. C. (1998). Proteolysis of extracellular matrix by invadopodia facilitates human breast cancer cell invasion and is mediated by matrix metalloproteinases. Clin Exp Metastasis, 16, 501–512.PubMed
193.
Zurück zum Zitat Tague, S. E., Muralidharan, V., D, , & Souza-Schorey, C. (2004). ADP-ribosylation factor 6 regulates tumor cell invasion through the activation of the MEK/ERK signaling pathway. Proc Natl Acad Sci U S A, 101, 9671–9676.PubMed Tague, S. E., Muralidharan, V., D, , & Souza-Schorey, C. (2004). ADP-ribosylation factor 6 regulates tumor cell invasion through the activation of the MEK/ERK signaling pathway. Proc Natl Acad Sci U S A, 101, 9671–9676.PubMed
194.
Zurück zum Zitat Artym, V. V., Zhang, Y., Seillier-Moiseiwitsch, F., Yamada, K. M., & Mueller, S. C. (2006). Dynamic interactions of cortactin and membrane type 1 matrix metalloproteinase at invadopodia: defining the stages of invadopodia formation and function. Cancer Res, 66, 3034–3043.PubMed Artym, V. V., Zhang, Y., Seillier-Moiseiwitsch, F., Yamada, K. M., & Mueller, S. C. (2006). Dynamic interactions of cortactin and membrane type 1 matrix metalloproteinase at invadopodia: defining the stages of invadopodia formation and function. Cancer Res, 66, 3034–3043.PubMed
195.
Zurück zum Zitat Angers-Loustau, A., Hering, R., Werbowetski, T. E., Kaplan, D. R., & Del, Maestro, R. F. (2004). SRC regulates actin dynamics and invasion of malignant glial cells in three dimensions. Mol Cancer Res, 2, 595–605.PubMed Angers-Loustau, A., Hering, R., Werbowetski, T. E., Kaplan, D. R., & Del, Maestro, R. F. (2004). SRC regulates actin dynamics and invasion of malignant glial cells in three dimensions. Mol Cancer Res, 2, 595–605.PubMed
196.
Zurück zum Zitat Clark, E. S., Whigham, A. S., Yarbrough, W. G., & Weaver, A. M. (2007). Cortactin is an essential regulator of matrix metalloproteinase secretion and extracellular matrix degradation in invadopodia. Cancer Res, 67, 4227–4235.PubMed Clark, E. S., Whigham, A. S., Yarbrough, W. G., & Weaver, A. M. (2007). Cortactin is an essential regulator of matrix metalloproteinase secretion and extracellular matrix degradation in invadopodia. Cancer Res, 67, 4227–4235.PubMed
197.
Zurück zum Zitat Yamaguchi, H., Lorenz, M., Kempiak, S., Sarmiento, C., Coniglio, S., & Symons, M. (2005). Molecular mechanisms of invadopodium formation: the role of the N-WASP-Arp2/3 complex pathway and cofilin. J Cell Biol, 168, 441–452.PubMed Yamaguchi, H., Lorenz, M., Kempiak, S., Sarmiento, C., Coniglio, S., & Symons, M. (2005). Molecular mechanisms of invadopodium formation: the role of the N-WASP-Arp2/3 complex pathway and cofilin. J Cell Biol, 168, 441–452.PubMed
198.
Zurück zum Zitat Oxmann, D., Held-Feindt, J., Stark, A. M., Hattermann, K., Yoneda, T., & Mentlein, R. (2008). Endoglin expression in metastatic breast cancer cells enhances their invasive phenotype. Oncogene, 27, 3567–3575.PubMed Oxmann, D., Held-Feindt, J., Stark, A. M., Hattermann, K., Yoneda, T., & Mentlein, R. (2008). Endoglin expression in metastatic breast cancer cells enhances their invasive phenotype. Oncogene, 27, 3567–3575.PubMed
199.
Zurück zum Zitat Nakahara, H., Nomizu, M., Akiyama, S. K., Yamada, Y., Yeh, Y., & Chen, W. T. (1996). A mechanism for regulation of melanoma invasion. Ligation of alpha6beta1 integrin by laminin G peptides. J Biol Chem, 271, 27221–27224.PubMed Nakahara, H., Nomizu, M., Akiyama, S. K., Yamada, Y., Yeh, Y., & Chen, W. T. (1996). A mechanism for regulation of melanoma invasion. Ligation of alpha6beta1 integrin by laminin G peptides. J Biol Chem, 271, 27221–27224.PubMed
200.
Zurück zum Zitat Wyckoff, J., Wang, W., Lin, E. Y., Wang, Y., Pixley, F., & Stanley, E. R. (2004). A paracrine loop between tumor cells and macrophages is required for tumor cell migration in mammary tumors. Cancer Res, 64, 7022–7029.PubMed Wyckoff, J., Wang, W., Lin, E. Y., Wang, Y., Pixley, F., & Stanley, E. R. (2004). A paracrine loop between tumor cells and macrophages is required for tumor cell migration in mammary tumors. Cancer Res, 64, 7022–7029.PubMed
201.
Zurück zum Zitat Yamaguchi, H., Pixley, F., & Condeelis, J. (2006). Invadopodia and podosomes in tumor invasion. Eur J Cell Biol, 85, 213–218.PubMed Yamaguchi, H., Pixley, F., & Condeelis, J. (2006). Invadopodia and podosomes in tumor invasion. Eur J Cell Biol, 85, 213–218.PubMed
202.
Zurück zum Zitat Rafii, S., & Lyden, D. (2006). S100 chemokines mediate bookmarking of premetastatic niches. Nat Cell Biol, 8, 1321–1323.PubMed Rafii, S., & Lyden, D. (2006). S100 chemokines mediate bookmarking of premetastatic niches. Nat Cell Biol, 8, 1321–1323.PubMed
203.
Zurück zum Zitat Cortesio, C. L., Chan, K. T., Perrin, B. J., Burton, N. O., Zhang, S., & Zhang, Z. Y. (2008). Calpain 2 and PTP1B function in a novel pathway with Src to regulate invadopodia dynamics and breast cancer cell invasion. J Cell Biol, 180, 957–971.PubMed Cortesio, C. L., Chan, K. T., Perrin, B. J., Burton, N. O., Zhang, S., & Zhang, Z. Y. (2008). Calpain 2 and PTP1B function in a novel pathway with Src to regulate invadopodia dynamics and breast cancer cell invasion. J Cell Biol, 180, 957–971.PubMed
204.
Zurück zum Zitat Webb, B. A., Jia, L., Eves, R., & Mak, A. S. (2007). Dissecting the functional domain requirements of cortactin in invadopodia formation. Eur J Cell Biol, 86, 189–206.PubMed Webb, B. A., Jia, L., Eves, R., & Mak, A. S. (2007). Dissecting the functional domain requirements of cortactin in invadopodia formation. Eur J Cell Biol, 86, 189–206.PubMed
205.
Zurück zum Zitat Bowden, E. T., Onikoyi, E., Slack, R., Myoui, A., Yoneda, T., & Yamada, K. M. (2006). Co-localization of cortactin and phosphotyrosine identifies active invadopodia in human breast cancer cells. Exp Cell Res, 312, 1240–1253.PubMed Bowden, E. T., Onikoyi, E., Slack, R., Myoui, A., Yoneda, T., & Yamada, K. M. (2006). Co-localization of cortactin and phosphotyrosine identifies active invadopodia in human breast cancer cells. Exp Cell Res, 312, 1240–1253.PubMed
206.
Zurück zum Zitat Bharti, S., Inoue, H., Bharti, K., Hirsch, D. S., Nie, Z., & Yoon, H. Y. (2007). Src-dependent phosphorylation of ASAP1 regulates podosomes. Mol Cell Biol, 27, 8271–8283.PubMed Bharti, S., Inoue, H., Bharti, K., Hirsch, D. S., Nie, Z., & Yoon, H. Y. (2007). Src-dependent phosphorylation of ASAP1 regulates podosomes. Mol Cell Biol, 27, 8271–8283.PubMed
207.
Zurück zum Zitat Badowski, C., Pawlak, G., Grichine, A., Chabadel, A., Oddou, C., & Jurdic, P. (2008). Paxillin Phosphorylation Controls Invadopodia/Podosomes Spatiotemporal Organization. Mol Biol Cell, 19, 633–645.PubMed Badowski, C., Pawlak, G., Grichine, A., Chabadel, A., Oddou, C., & Jurdic, P. (2008). Paxillin Phosphorylation Controls Invadopodia/Podosomes Spatiotemporal Organization. Mol Biol Cell, 19, 633–645.PubMed
208.
Zurück zum Zitat Oikawa, T., Itoh, T., & Takenawa, T. (2008). Sequential signals toward podosome formation in NIH-src cells. J Cell Biol, 182(1), 157–169.PubMed Oikawa, T., Itoh, T., & Takenawa, T. (2008). Sequential signals toward podosome formation in NIH-src cells. J Cell Biol, 182(1), 157–169.PubMed
209.
Zurück zum Zitat Seals, D. F., Azucena Jr., E. F., Pass, I., Tesfay, L., Gordon, R., & Woodrow, M. (2005). The adaptor protein Tks5/Fish is required for podosome formation and function, and for the protease-driven invasion of cancer cells. Cancer Cell, 7, 155–165.PubMed Seals, D. F., Azucena Jr., E. F., Pass, I., Tesfay, L., Gordon, R., & Woodrow, M. (2005). The adaptor protein Tks5/Fish is required for podosome formation and function, and for the protease-driven invasion of cancer cells. Cancer Cell, 7, 155–165.PubMed
210.
Zurück zum Zitat Mueller, S. C., & Chen, W. T. (1991). Cellular invasion into matrix beads: localization of beta 1 integrins and fibronectin to the invadopodia. J Cell Sci, 99, 213–225.PubMed Mueller, S. C., & Chen, W. T. (1991). Cellular invasion into matrix beads: localization of beta 1 integrins and fibronectin to the invadopodia. J Cell Sci, 99, 213–225.PubMed
211.
Zurück zum Zitat Deryugina, E. I., Ratnikov, B., Monosov, E., Postnova, T. I., DiScipio, R., & Smith, J. W. (2001). MT1-MMP initiates activation of pro-MMP-2 and integrin alphavbeta3 promotes maturation of MMP-2 in breast carcinoma cells. Exp Cell Res, 263, 209–223.PubMed Deryugina, E. I., Ratnikov, B., Monosov, E., Postnova, T. I., DiScipio, R., & Smith, J. W. (2001). MT1-MMP initiates activation of pro-MMP-2 and integrin alphavbeta3 promotes maturation of MMP-2 in breast carcinoma cells. Exp Cell Res, 263, 209–223.PubMed
212.
Zurück zum Zitat Galliher, A. J., & Schiemann, W. P. (2007). Src phosphorylates Tyr284 in TGF-beta type II receptor and regulates TGF-beta stimulation of p38 MAPK during breast cancer cell proliferation and invasion. Cancer Res, 67, 3752–3758.PubMed Galliher, A. J., & Schiemann, W. P. (2007). Src phosphorylates Tyr284 in TGF-beta type II receptor and regulates TGF-beta stimulation of p38 MAPK during breast cancer cell proliferation and invasion. Cancer Res, 67, 3752–3758.PubMed
213.
Zurück zum Zitat Terauchi, M., Kajiyama, H., Yamashita, M., Kato, M., Tsukamoto, H., & Umezu, T. (2007). Possible involvement of TWIST in enhanced peritoneal metastasis of epithelial ovarian carcinoma. Clin Exp Metastasis, 24, 329–339.PubMed Terauchi, M., Kajiyama, H., Yamashita, M., Kato, M., Tsukamoto, H., & Umezu, T. (2007). Possible involvement of TWIST in enhanced peritoneal metastasis of epithelial ovarian carcinoma. Clin Exp Metastasis, 24, 329–339.PubMed
214.
Zurück zum Zitat Nakahara, H., Mueller, S. C., Nomizu, M., Yamada, Y., Yeh, Y., & Chen, W. T. (1998). Activation of beta1 integrin signaling stimulates tyrosine phosphorylation of p190RhoGAP and membrane-protrusive activities at invadopodia. J Biol Chem, 273, 9–12.PubMed Nakahara, H., Mueller, S. C., Nomizu, M., Yamada, Y., Yeh, Y., & Chen, W. T. (1998). Activation of beta1 integrin signaling stimulates tyrosine phosphorylation of p190RhoGAP and membrane-protrusive activities at invadopodia. J Biol Chem, 273, 9–12.PubMed
215.
Zurück zum Zitat Chuang, Y. Y., Tran, N. L., Rusk, N., Nakada, M., Berens, M. E., & Symons, M. (2004). Role of synaptojanin 2 in glioma cell migration and invasion. Cancer Res, 64, 8271–8275.PubMed Chuang, Y. Y., Tran, N. L., Rusk, N., Nakada, M., Berens, M. E., & Symons, M. (2004). Role of synaptojanin 2 in glioma cell migration and invasion. Cancer Res, 64, 8271–8275.PubMed
216.
Zurück zum Zitat Sakurai-Yageta, M., Recchi, C., Le, Dez, G., Sibarita, J. B., Daviet, L., & Camonis, J. (2008). The interaction of IQGAP1 with the exocyst complex is required for tumor cell invasion downstream of Cdc42 and RhoA. J Cell Biol, 181, 985–998.PubMed Sakurai-Yageta, M., Recchi, C., Le, Dez, G., Sibarita, J. B., Daviet, L., & Camonis, J. (2008). The interaction of IQGAP1 with the exocyst complex is required for tumor cell invasion downstream of Cdc42 and RhoA. J Cell Biol, 181, 985–998.PubMed
217.
Zurück zum Zitat Buccione, R., Orth, J. D., & McNiven, M. A. (2004). Foot and mouth: podosomes, invadopodia and circular dorsal ruffles. Nat Rev Mol Cell Biol, 5, 647–657.PubMed Buccione, R., Orth, J. D., & McNiven, M. A. (2004). Foot and mouth: podosomes, invadopodia and circular dorsal ruffles. Nat Rev Mol Cell Biol, 5, 647–657.PubMed
218.
Zurück zum Zitat Gimona, M., Buccione, R., Courtneidge, S. A., & Linder, S. (2008). Assembly and biological role of podosomes and invadopodia. Curr Opin Cell Biol, 20, 235–241.PubMed Gimona, M., Buccione, R., Courtneidge, S. A., & Linder, S. (2008). Assembly and biological role of podosomes and invadopodia. Curr Opin Cell Biol, 20, 235–241.PubMed
219.
Zurück zum Zitat Vignjevic, D., & Montagnac, G. (2008). Reorganisation of the dendritic actin network during cancer cell migration and invasion. Semin Cancer Biol, 18, 12–22.PubMed Vignjevic, D., & Montagnac, G. (2008). Reorganisation of the dendritic actin network during cancer cell migration and invasion. Semin Cancer Biol, 18, 12–22.PubMed
220.
Zurück zum Zitat Weaver, A. M. (2008). Invadopodia. Curr Biol, 18, 362–364. Weaver, A. M. (2008). Invadopodia. Curr Biol, 18, 362–364.
221.
Zurück zum Zitat Varon, C., Tatin, F., Moreau, V., Van Obberghen-Schilling, E., Fernandez-Sauze, S., Reuzeau, E., et al. (2006). Transforming growth factor beta induces rosettes of podosomes in primary aortic endothelial cells. Mol Cell Biol, 26, 3582–3594.PubMed Varon, C., Tatin, F., Moreau, V., Van Obberghen-Schilling, E., Fernandez-Sauze, S., Reuzeau, E., et al. (2006). Transforming growth factor beta induces rosettes of podosomes in primary aortic endothelial cells. Mol Cell Biol, 26, 3582–3594.PubMed
222.
Zurück zum Zitat Frame, M. C. (2004). Newest findings on the oldest oncogene; how activated src does it. J Cell Sci, 117, 989–998.PubMed Frame, M. C. (2004). Newest findings on the oldest oncogene; how activated src does it. J Cell Sci, 117, 989–998.PubMed
223.
Zurück zum Zitat Xie, L., Law, B. K., Aakre, M. E., Edgerton, M., Shyr, Y., Bhowmick, N. A., et al. (2003). Transforming growth factor beta-regulated gene expression in a mouse mammary gland epithelial cell line. Breast Cancer Res, 5, S187–198. Xie, L., Law, B. K., Aakre, M. E., Edgerton, M., Shyr, Y., Bhowmick, N. A., et al. (2003). Transforming growth factor beta-regulated gene expression in a mouse mammary gland epithelial cell line. Breast Cancer Res, 5, S187–198.
224.
Zurück zum Zitat Fonsatti, E., Altomonte, M., Nicotra, M. R., Natali, P. G., & Maio, M. (2003). Endoglin (CD105): a powerful therapeutic target on tumor-associated angiogenetic blood vessels. Oncogene, 22, 6557–6563.PubMed Fonsatti, E., Altomonte, M., Nicotra, M. R., Natali, P. G., & Maio, M. (2003). Endoglin (CD105): a powerful therapeutic target on tumor-associated angiogenetic blood vessels. Oncogene, 22, 6557–6563.PubMed
225.
Zurück zum Zitat Mercado-Pimentel, M. E., Hubbard, A. D., & Runyan, R. B. (2007). Endoglin and Alk5 regulate epithelial-mesenchymal transformation during cardiac valve formation. Dev Biol, 304, 420–432.PubMed Mercado-Pimentel, M. E., Hubbard, A. D., & Runyan, R. B. (2007). Endoglin and Alk5 regulate epithelial-mesenchymal transformation during cardiac valve formation. Dev Biol, 304, 420–432.PubMed
226.
Zurück zum Zitat Lua, B. L., & Low, B. C. (2004). BPGAP1 interacts with cortactin and facilitates its translocation to cell periphery for enhanced cell migration. Mol Biol Cell, 15, 2873–2883.PubMed Lua, B. L., & Low, B. C. (2004). BPGAP1 interacts with cortactin and facilitates its translocation to cell periphery for enhanced cell migration. Mol Biol Cell, 15, 2873–2883.PubMed
227.
Zurück zum Zitat Head, J. A., Jiang, D., Li, M., Zorn, L. J., Schaefer, E. M., Parsons, J. T., & Weed, S. A. (2003). Cortactin tyrosine phosphorylation requires Rac1 activity and association with the cortical actin cytoskeleton. Mol Biol Cell, 14, 3216–3229.PubMed Head, J. A., Jiang, D., Li, M., Zorn, L. J., Schaefer, E. M., Parsons, J. T., & Weed, S. A. (2003). Cortactin tyrosine phosphorylation requires Rac1 activity and association with the cortical actin cytoskeleton. Mol Biol Cell, 14, 3216–3229.PubMed
228.
Zurück zum Zitat Lee, S. H. (2005). Interaction of nonreceptor tyrosine-kinase Fer and p120 catenin is involved in neuronal polarization. Mol Cells, 20, 256–262.PubMed Lee, S. H. (2005). Interaction of nonreceptor tyrosine-kinase Fer and p120 catenin is involved in neuronal polarization. Mol Cells, 20, 256–262.PubMed
Metadaten
Titel
EMT, the cytoskeleton, and cancer cell invasion
verfasst von
Mahmut Yilmaz
Gerhard Christofori
Publikationsdatum
01.06.2009
Verlag
Springer US
Erschienen in
Cancer and Metastasis Reviews / Ausgabe 1-2/2009
Print ISSN: 0167-7659
Elektronische ISSN: 1573-7233
DOI
https://doi.org/10.1007/s10555-008-9169-0

Weitere Artikel der Ausgabe 1-2/2009

Cancer and Metastasis Reviews 1-2/2009 Zur Ausgabe

„Überwältigende“ Evidenz für Tripeltherapie beim metastasierten Prostata-Ca.

22.05.2024 Prostatakarzinom Nachrichten

Patienten mit metastasiertem hormonsensitivem Prostatakarzinom sollten nicht mehr mit einer alleinigen Androgendeprivationstherapie (ADT) behandelt werden, mahnt ein US-Team nach Sichtung der aktuellen Datenlage. Mit einer Tripeltherapie haben die Betroffenen offenbar die besten Überlebenschancen.

So sicher sind Tattoos: Neue Daten zur Risikobewertung

22.05.2024 Melanom Nachrichten

Das größte medizinische Problem bei Tattoos bleiben allergische Reaktionen. Melanome werden dadurch offensichtlich nicht gefördert, die Farbpigmente könnten aber andere Tumoren begünstigen.

CAR-M-Zellen: Warten auf das große Fressen

22.05.2024 Onkologische Immuntherapie Nachrichten

Auch myeloide Immunzellen lassen sich mit chimären Antigenrezeptoren gegen Tumoren ausstatten. Solche CAR-Fresszell-Therapien werden jetzt für solide Tumoren entwickelt. Künftig soll dieser Prozess nicht mehr ex vivo, sondern per mRNA im Körper der Betroffenen erfolgen.

Blutdrucksenkung könnte Uterusmyome verhindern

Frauen mit unbehandelter oder neu auftretender Hypertonie haben ein deutlich erhöhtes Risiko für Uterusmyome. Eine Therapie mit Antihypertensiva geht hingegen mit einer verringerten Inzidenz der gutartigen Tumoren einher.

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.