Skip to main content
Erschienen in: Cancer and Metastasis Reviews 3/2021

19.10.2021

Debris-stimulated tumor growth: a Pandora’s box?

verfasst von: Victoria M. Haak, Sui Huang, Dipak Panigrahy

Erschienen in: Cancer and Metastasis Reviews | Ausgabe 3/2021

Einloggen, um Zugang zu erhalten

Abstract

Current cancer therapies aim at eradicating cancer cells from the body. However, killing cells generates cell “debris” which can promote tumor progression. Thus, therapy can be a double-edged sword. Specifically, injury and debris generated by cancer therapies, including chemotherapy, radiation, and surgery, may offset their benefit by promoting the secretion of pro-tumorigenic factors (e.g., eicosanoid-driven cytokines) that stimulate regrowth and metastasis of surviving cells. The debris produced by cytotoxic cancer therapy can also contribute to a tumor microenvironment that promotes tumor progression and recurrence. Although not well understood, several molecular mechanisms have been implicated in debris-stimulated tumor growth that we review here, such as the involvement of extracellular vesicles, exosomal miR-194-5p, Bax, Bak, Smac, HMGB1, cytokines, and caspase-3. We discuss the cases of pancreatic and other cancer types where debris promotes postoperative tumor recurrence and metastasis, thus offering a new opportunity to prevent cancer progression intrinsically linked to treatment by stimulating resolution of tumor-promoting debris.
Literatur
1.
2.
Zurück zum Zitat Gartung, A., et al. (2019). Suppression of chemotherapy-induced cytokine/lipid mediator surge and ovarian cancer by a dual COX-2/sEH inhibitor. Proceedings of the National Academy of Sciences of the United States of America, 116, 1698–1703.PubMedPubMedCentralCrossRef Gartung, A., et al. (2019). Suppression of chemotherapy-induced cytokine/lipid mediator surge and ovarian cancer by a dual COX-2/sEH inhibitor. Proceedings of the National Academy of Sciences of the United States of America, 116, 1698–1703.PubMedPubMedCentralCrossRef
3.
Zurück zum Zitat Chang, J., et al. (2019). Chemotherapy-generated cell debris stimulates colon carcinoma tumor growth via osteopontin. The FASEB Journal, 33, 114–125.PubMedCrossRef Chang, J., et al. (2019). Chemotherapy-generated cell debris stimulates colon carcinoma tumor growth via osteopontin. The FASEB Journal, 33, 114–125.PubMedCrossRef
4.
Zurück zum Zitat Revesz, L. (1956). Effect of tumour cells killed by x-rays upon the growth of admixed viable cells. Nature, 178, 1391–1392.PubMedCrossRef Revesz, L. (1956). Effect of tumour cells killed by x-rays upon the growth of admixed viable cells. Nature, 178, 1391–1392.PubMedCrossRef
5.
Zurück zum Zitat Seelig, K. J., & Revesz, L. (1960). Effect of lethally damaged tumour cells upon the growth of admixed viable cells in diffusion chambers. British Journal of Cancer, 14, 126–138.PubMedPubMedCentralCrossRef Seelig, K. J., & Revesz, L. (1960). Effect of lethally damaged tumour cells upon the growth of admixed viable cells in diffusion chambers. British Journal of Cancer, 14, 126–138.PubMedPubMedCentralCrossRef
6.
Zurück zum Zitat van den Brenk, H. A., Crowe, M. C., & Stone, M. G. (1977). Reactions of the tumour bed to lethally irradiated tumour cells, and the Revesz effect. British Journal of Cancer, 36, 94–104.PubMedPubMedCentralCrossRef van den Brenk, H. A., Crowe, M. C., & Stone, M. G. (1977). Reactions of the tumour bed to lethally irradiated tumour cells, and the Revesz effect. British Journal of Cancer, 36, 94–104.PubMedPubMedCentralCrossRef
7.
Zurück zum Zitat He, S., et al. (2018). HMGB1 released by irradiated tumor cells promotes living tumor cell proliferation via paracrine effect. Cell Death & Disease, 9, 648.CrossRef He, S., et al. (2018). HMGB1 released by irradiated tumor cells promotes living tumor cell proliferation via paracrine effect. Cell Death & Disease, 9, 648.CrossRef
8.
Zurück zum Zitat Green, D. R. (2011). The end and after: How dying cells impact the living organism. Immunity, 35, 441–444.PubMedCrossRef Green, D. R. (2011). The end and after: How dying cells impact the living organism. Immunity, 35, 441–444.PubMedCrossRef
9.
Zurück zum Zitat Gregory, C. D., Ford, C. A., & Voss, J. J. (2016). Microenvironmental effects of cell death in malignant disease. Advances in Experimental Medicine and Biology, 930, 51–88.PubMedCrossRef Gregory, C. D., Ford, C. A., & Voss, J. J. (2016). Microenvironmental effects of cell death in malignant disease. Advances in Experimental Medicine and Biology, 930, 51–88.PubMedCrossRef
10.
Zurück zum Zitat Gregory, C. D., Paterson, M. (2018) An apoptosis-driven ‘onco-regenerative niche’: Roles of tumour-associated macrophages and extracellular vesicles. Philosophical Transactions of the Royal Society of London Series B Biological Sciences, 373. Gregory, C. D., Paterson, M. (2018) An apoptosis-driven ‘onco-regenerative niche’: Roles of tumour-associated macrophages and extracellular vesicles. Philosophical Transactions of the Royal Society of London Series B Biological Sciences, 373.
11.
Zurück zum Zitat Ichim, G., & Tait, S. W. (2016). A fate worse than death: Apoptosis as an oncogenic process. Nature Reviews Cancer, 16, 539–548.PubMedCrossRef Ichim, G., & Tait, S. W. (2016). A fate worse than death: Apoptosis as an oncogenic process. Nature Reviews Cancer, 16, 539–548.PubMedCrossRef
12.
Zurück zum Zitat Gutta, C., et al. (2020). Low expression of pro-apoptotic proteins Bax, Bak and Smac indicates prolonged progression-free survival in chemotherapy-treated metastatic melanoma. Cell Death & Disease, 11, 124.CrossRef Gutta, C., et al. (2020). Low expression of pro-apoptotic proteins Bax, Bak and Smac indicates prolonged progression-free survival in chemotherapy-treated metastatic melanoma. Cell Death & Disease, 11, 124.CrossRef
13.
14.
Zurück zum Zitat Fishbein, A., et al. (2020). Resolution of eicosanoid/cytokine storm prevents carcinogen and inflammation-initiated hepatocellular cancer progression. Proceedings of the National Academy of Sciences of the United States of America, 117, 21576–21587.PubMedPubMedCentralCrossRef Fishbein, A., et al. (2020). Resolution of eicosanoid/cytokine storm prevents carcinogen and inflammation-initiated hepatocellular cancer progression. Proceedings of the National Academy of Sciences of the United States of America, 117, 21576–21587.PubMedPubMedCentralCrossRef
15.
18.
Zurück zum Zitat Gregory, C. D., & Pound, J. D. (2011). Cell death in the neighbourhood: Direct microenvironmental effects of apoptosis in normal and neoplastic tissues. The Journal of Pathology, 223, 177–194.PubMedCrossRef Gregory, C. D., & Pound, J. D. (2011). Cell death in the neighbourhood: Direct microenvironmental effects of apoptosis in normal and neoplastic tissues. The Journal of Pathology, 223, 177–194.PubMedCrossRef
19.
Zurück zum Zitat Zhao, R., et al. (2018). Novel roles of apoptotic caspases in tumor repopulation, epigenetic reprogramming, carcinogenesis, and beyond. Cancer and Metastasis Reviews, 37, 227–236.PubMedCrossRef Zhao, R., et al. (2018). Novel roles of apoptotic caspases in tumor repopulation, epigenetic reprogramming, carcinogenesis, and beyond. Cancer and Metastasis Reviews, 37, 227–236.PubMedCrossRef
20.
Zurück zum Zitat Hu, Q., et al. (2014). Elevated cleaved caspase-3 is associated with shortened overall survival in several cancer types. International Journal of Clinical and Experimental Pathology, 7, 5057–5070.PubMedPubMedCentral Hu, Q., et al. (2014). Elevated cleaved caspase-3 is associated with shortened overall survival in several cancer types. International Journal of Clinical and Experimental Pathology, 7, 5057–5070.PubMedPubMedCentral
21.
Zurück zum Zitat Fishbein, A., Hammock, B. D., Serhan, C. N., & Panigrahy, D. (2021). Carcinogenesis: Failure of resolution of inflammation? Pharmacology & Therapeutics, 218, 107670.CrossRef Fishbein, A., Hammock, B. D., Serhan, C. N., & Panigrahy, D. (2021). Carcinogenesis: Failure of resolution of inflammation? Pharmacology & Therapeutics, 218, 107670.CrossRef
23.
Zurück zum Zitat Wyllie, A. H. (1985). The biology of cell death in tumours. Anticancer Research, 5, 131–136.PubMed Wyllie, A. H. (1985). The biology of cell death in tumours. Anticancer Research, 5, 131–136.PubMed
24.
Zurück zum Zitat Kornbluth, R. S. (1994). The immunological potential of apoptotic debris produced by tumor cells and during HIV infection. Immunology Letters, 43, 125–132.PubMedCrossRef Kornbluth, R. S. (1994). The immunological potential of apoptotic debris produced by tumor cells and during HIV infection. Immunology Letters, 43, 125–132.PubMedCrossRef
25.
Zurück zum Zitat de Jong, J. S., van Diest, P. J., & Baak, J. P. (2000). Number of apoptotic cells as a prognostic marker in invasive breast cancer. British Journal of Cancer, 82, 368–373.PubMedPubMedCentralCrossRef de Jong, J. S., van Diest, P. J., & Baak, J. P. (2000). Number of apoptotic cells as a prognostic marker in invasive breast cancer. British Journal of Cancer, 82, 368–373.PubMedPubMedCentralCrossRef
26.
Zurück zum Zitat Sun, B., et al. (2006). Extent, relationship and prognostic significance of apoptosis and cell proliferation in synovial sarcoma. European Journal of Cancer Prevention, 15, 258–265.PubMedCrossRef Sun, B., et al. (2006). Extent, relationship and prognostic significance of apoptosis and cell proliferation in synovial sarcoma. European Journal of Cancer Prevention, 15, 258–265.PubMedCrossRef
27.
Zurück zum Zitat Ito, Y., et al. (1999). Both cell proliferation and apoptosis significantly predict shortened disease-free survival in hepatocellular carcinoma. British Journal of Cancer, 81, 747–751.PubMedPubMedCentralCrossRef Ito, Y., et al. (1999). Both cell proliferation and apoptosis significantly predict shortened disease-free survival in hepatocellular carcinoma. British Journal of Cancer, 81, 747–751.PubMedPubMedCentralCrossRef
28.
Zurück zum Zitat McMenamin, M. E., O’Neill, A. J., & Gaffney, E. F. (1997). Extent of apoptosis in ovarian serous carcinoma: Relation to mitotic and proliferative indices, p53 expression, and survival. Molecular Pathology, 50, 242–246.PubMedPubMedCentralCrossRef McMenamin, M. E., O’Neill, A. J., & Gaffney, E. F. (1997). Extent of apoptosis in ovarian serous carcinoma: Relation to mitotic and proliferative indices, p53 expression, and survival. Molecular Pathology, 50, 242–246.PubMedPubMedCentralCrossRef
29.
Zurück zum Zitat Hirvikoski, P., et al. (1999). Enhanced apoptosis correlates with poor survival in patients with laryngeal cancer but not with cell proliferation, bcl-2 or p53 expression. European Journal of Cancer, 35, 231–237.PubMedCrossRef Hirvikoski, P., et al. (1999). Enhanced apoptosis correlates with poor survival in patients with laryngeal cancer but not with cell proliferation, bcl-2 or p53 expression. European Journal of Cancer, 35, 231–237.PubMedCrossRef
30.
Zurück zum Zitat Aihara, M., et al. (1995). The frequency of apoptosis correlates with the prognosis of Gleason Grade 3 adenocarcinoma of the prostate. Cancer, 75, 522–529.PubMedCrossRef Aihara, M., et al. (1995). The frequency of apoptosis correlates with the prognosis of Gleason Grade 3 adenocarcinoma of the prostate. Cancer, 75, 522–529.PubMedCrossRef
31.
Zurück zum Zitat Leoncini, L., et al. (1993). Correlations between apoptotic and proliferative indices in malignant non-Hodgkin’s lymphomas. American Journal of Pathology, 142, 755–763.PubMedPubMedCentral Leoncini, L., et al. (1993). Correlations between apoptotic and proliferative indices in malignant non-Hodgkin’s lymphomas. American Journal of Pathology, 142, 755–763.PubMedPubMedCentral
32.
Zurück zum Zitat Naresh, K. N., Lakshminarayanan, K., Pai, S. A., & Borges, A. M. (2001). Apoptosis index is a predictor of metastatic phenotype in patients with early stage squamous carcinoma of the tongue: A hypothesis to support this paradoxical association. Cancer, 91, 578–584.PubMedCrossRef Naresh, K. N., Lakshminarayanan, K., Pai, S. A., & Borges, A. M. (2001). Apoptosis index is a predictor of metastatic phenotype in patients with early stage squamous carcinoma of the tongue: A hypothesis to support this paradoxical association. Cancer, 91, 578–584.PubMedCrossRef
33.
Zurück zum Zitat Jalalinadoushan, M., Peivareh, H., & Azizzadeh Delshad, A. (2004). Correlation between apoptosis and histological grade of transitional cell carcinoma of urinary bladder. Urology Journal, 1, 177–179.PubMed Jalalinadoushan, M., Peivareh, H., & Azizzadeh Delshad, A. (2004). Correlation between apoptosis and histological grade of transitional cell carcinoma of urinary bladder. Urology Journal, 1, 177–179.PubMed
35.
Zurück zum Zitat Holloway, S. B., Colon, G. R., Zheng, W., & Lea, J. S. (2021). Tumor necrotic debris and high nuclear grade: Newly identified high-risk factors for early-stage endocervical adenocarcinoma. American Journal of Clinical Oncology, 44, 162–168.PubMedCrossRef Holloway, S. B., Colon, G. R., Zheng, W., & Lea, J. S. (2021). Tumor necrotic debris and high nuclear grade: Newly identified high-risk factors for early-stage endocervical adenocarcinoma. American Journal of Clinical Oncology, 44, 162–168.PubMedCrossRef
36.
Zurück zum Zitat Connell, P. P., & Weichselbaum, R. R. (2011). A downside to apoptosis in cancer therapy? Nature Medicine, 17, 780–782.PubMedCrossRef Connell, P. P., & Weichselbaum, R. R. (2011). A downside to apoptosis in cancer therapy? Nature Medicine, 17, 780–782.PubMedCrossRef
37.
Zurück zum Zitat Bonavita, E., Pelly, V. S., & Zelenay, S. (2018). Resolving the dark side of therapy-driven cancer cell death. Journal of Experimental Medicine, 215, 9–11.CrossRefPubMedPubMedCentral Bonavita, E., Pelly, V. S., & Zelenay, S. (2018). Resolving the dark side of therapy-driven cancer cell death. Journal of Experimental Medicine, 215, 9–11.CrossRefPubMedPubMedCentral
38.
Zurück zum Zitat Kim, S. H., et al. (2020). Breast cancer cell debris diminishes therapeutic efficacy through heme oxygenase-1-mediated inactivation of M1-like tumor-associated macrophages. Neoplasia, 22, 606–616.PubMedPubMedCentralCrossRef Kim, S. H., et al. (2020). Breast cancer cell debris diminishes therapeutic efficacy through heme oxygenase-1-mediated inactivation of M1-like tumor-associated macrophages. Neoplasia, 22, 606–616.PubMedPubMedCentralCrossRef
39.
Zurück zum Zitat Kim, S. H., et al. (2021). Reprograming of tumor-associated macrophages in breast tumor-bearing mice under chemotherapy by targeting heme oxygenase-1. Antioxidants (Basel), 10. Kim, S. H., et al. (2021). Reprograming of tumor-associated macrophages in breast tumor-bearing mice under chemotherapy by targeting heme oxygenase-1. Antioxidants (Basel), 10.
41.
Zurück zum Zitat Chaurio, R., et al. (2013). UVB-irradiated apoptotic cells induce accelerated growth of co-implanted viable tumor cells in immune competent mice. Autoimmunity, 46, 317–322.PubMedCrossRef Chaurio, R., et al. (2013). UVB-irradiated apoptotic cells induce accelerated growth of co-implanted viable tumor cells in immune competent mice. Autoimmunity, 46, 317–322.PubMedCrossRef
42.
43.
Zurück zum Zitat Gunjal, P. M., et al. (2015). Evidence for induction of a tumor metastasis-receptive microenvironment for ovarian cancer cells in bone marrow and other organs as an unwanted and underestimated side effect of chemotherapy/radiotherapy. Journal of Ovarian Research, 8, 20.PubMedPubMedCentralCrossRef Gunjal, P. M., et al. (2015). Evidence for induction of a tumor metastasis-receptive microenvironment for ovarian cancer cells in bone marrow and other organs as an unwanted and underestimated side effect of chemotherapy/radiotherapy. Journal of Ovarian Research, 8, 20.PubMedPubMedCentralCrossRef
44.
Zurück zum Zitat da Silva, I. A., Jr., Chammas, R., Lepique, A. P., & Jancar, S. (2017). Platelet-activating factor (PAF) receptor as a promising target for cancer cell repopulation after radiotherapy. Oncogenesis, 6, e296.PubMedCrossRef da Silva, I. A., Jr., Chammas, R., Lepique, A. P., & Jancar, S. (2017). Platelet-activating factor (PAF) receptor as a promising target for cancer cell repopulation after radiotherapy. Oncogenesis, 6, e296.PubMedCrossRef
45.
Zurück zum Zitat Donato, A. L., et al. (2014). Caspase 3 promotes surviving melanoma tumor cell growth after cytotoxic therapy. The Journal of Investigative Dermatology, 134, 1686–1692.PubMedPubMedCentralCrossRef Donato, A. L., et al. (2014). Caspase 3 promotes surviving melanoma tumor cell growth after cytotoxic therapy. The Journal of Investigative Dermatology, 134, 1686–1692.PubMedPubMedCentralCrossRef
46.
Zurück zum Zitat Yu, Y., et al. (2016). eIF4E-phosphorylation-mediated Sox2 upregulation promotes pancreatic tumor cell repopulation after irradiation. Cancer Letters, 375, 31–38.PubMedCrossRef Yu, Y., et al. (2016). eIF4E-phosphorylation-mediated Sox2 upregulation promotes pancreatic tumor cell repopulation after irradiation. Cancer Letters, 375, 31–38.PubMedCrossRef
47.
Zurück zum Zitat da Silva-Jr, I. A., Chammas, R., Lepique, A. P., & Jancar, S. (2017). Platelet-activating factor (PAF) receptor as a promising target for cancer cell repopulation after radiotherapy. Oncogenesis, 6, e296.PubMedCentralCrossRef da Silva-Jr, I. A., Chammas, R., Lepique, A. P., & Jancar, S. (2017). Platelet-activating factor (PAF) receptor as a promising target for cancer cell repopulation after radiotherapy. Oncogenesis, 6, e296.PubMedCentralCrossRef
48.
Zurück zum Zitat Lauber, K., & Herrmann, M. (2015). Tumor biology: With a little help from my dying friends. Current Biology, 25, R198-201.PubMedCrossRef Lauber, K., & Herrmann, M. (2015). Tumor biology: With a little help from my dying friends. Current Biology, 25, R198-201.PubMedCrossRef
49.
Zurück zum Zitat Davis, A. J., & Tannock, J. F. (2000). Repopulation of tumour cells between cycles of chemotherapy: A neglected factor. The lancet Oncology, 1, 86–93.PubMedCrossRef Davis, A. J., & Tannock, J. F. (2000). Repopulation of tumour cells between cycles of chemotherapy: A neglected factor. The lancet Oncology, 1, 86–93.PubMedCrossRef
50.
Zurück zum Zitat Huang, J. S., et al. (2017). Caspase-3 expression in tumorigenesis and prognosis of buccal mucosa squamous cell carcinoma. Oncotarget, 8, 84237–84247.PubMedPubMedCentralCrossRef Huang, J. S., et al. (2017). Caspase-3 expression in tumorigenesis and prognosis of buccal mucosa squamous cell carcinoma. Oncotarget, 8, 84237–84247.PubMedPubMedCentralCrossRef
51.
Zurück zum Zitat Panigrahy, D., et al. (2020). Inflammation resolution: A dual-pronged approach to averting cytokine storms in COVID-19? Cancer and Metastasis Reviews, 39, 337–340.PubMedCrossRef Panigrahy, D., et al. (2020). Inflammation resolution: A dual-pronged approach to averting cytokine storms in COVID-19? Cancer and Metastasis Reviews, 39, 337–340.PubMedCrossRef
53.
Zurück zum Zitat Abubaker, K., et al. (2013). Short-term single treatment of chemotherapy results in the enrichment of ovarian cancer stem cell-like cells leading to an increased tumor burden. Molecular Cancer, 12, 24.PubMedPubMedCentralCrossRef Abubaker, K., et al. (2013). Short-term single treatment of chemotherapy results in the enrichment of ovarian cancer stem cell-like cells leading to an increased tumor burden. Molecular Cancer, 12, 24.PubMedPubMedCentralCrossRef
54.
Zurück zum Zitat Volk-Draper, L., et al. (2014). Paclitaxel therapy promotes breast cancer metastasis in a TLR4-dependent manner. Cancer Research, 74, 5421–5434.PubMedPubMedCentralCrossRef Volk-Draper, L., et al. (2014). Paclitaxel therapy promotes breast cancer metastasis in a TLR4-dependent manner. Cancer Research, 74, 5421–5434.PubMedPubMedCentralCrossRef
55.
Zurück zum Zitat Chang, Y. S., Jalgaonkar, S. P., Middleton, J. D., & Hai, T. (2017). Stress-inducible gene Atf3 in the noncancer host cells contributes to chemotherapy-exacerbated breast cancer metastasis. Proceedings of the National Academy of Sciences of the United States of America, 114, E7159–E7168.PubMedPubMedCentralCrossRef Chang, Y. S., Jalgaonkar, S. P., Middleton, J. D., & Hai, T. (2017). Stress-inducible gene Atf3 in the noncancer host cells contributes to chemotherapy-exacerbated breast cancer metastasis. Proceedings of the National Academy of Sciences of the United States of America, 114, E7159–E7168.PubMedPubMedCentralCrossRef
56.
Zurück zum Zitat Karagiannis, G. S., et al. (2017). Neoadjuvant chemotherapy induces breast cancer metastasis through a TMEM-mediated mechanism. Science Translational Medicine, 9. Karagiannis, G. S., et al. (2017). Neoadjuvant chemotherapy induces breast cancer metastasis through a TMEM-mediated mechanism. Science Translational Medicine, 9.
58.
Zurück zum Zitat Li, Q., et al. (2016). Low doses of paclitaxel enhance liver metastasis of breast cancer cells in the mouse model. FEBS Journal, 283, 2836–2852.CrossRefPubMed Li, Q., et al. (2016). Low doses of paclitaxel enhance liver metastasis of breast cancer cells in the mouse model. FEBS Journal, 283, 2836–2852.CrossRefPubMed
59.
Zurück zum Zitat Liu, G., et al. (2015). Specific chemotherapeutic agents induce metastatic behaviour through stromal- and tumour-derived cytokine and angiogenic factor signalling. The Journal of Pathology, 237, 190–202.PubMedCrossRef Liu, G., et al. (2015). Specific chemotherapeutic agents induce metastatic behaviour through stromal- and tumour-derived cytokine and angiogenic factor signalling. The Journal of Pathology, 237, 190–202.PubMedCrossRef
60.
Zurück zum Zitat de Ruiter, J., Cramer, S. J., Smink, T., & van Putten, L. M. (1979). The facilitation of tumour growth in the lung by cyclophosphamide in artificial and spontaneous metastases models. European Journal of Cancer, 15, 1139–1149.PubMedCrossRef de Ruiter, J., Cramer, S. J., Smink, T., & van Putten, L. M. (1979). The facilitation of tumour growth in the lung by cyclophosphamide in artificial and spontaneous metastases models. European Journal of Cancer, 15, 1139–1149.PubMedCrossRef
61.
Zurück zum Zitat Orr, F. W., Adamson, I. Y., & Young, L. (1986). Promotion of pulmonary metastasis in mice by bleomycin-induced endothelial injury. Cancer Research, 46, 891–897.PubMed Orr, F. W., Adamson, I. Y., & Young, L. (1986). Promotion of pulmonary metastasis in mice by bleomycin-induced endothelial injury. Cancer Research, 46, 891–897.PubMed
62.
Zurück zum Zitat Ormerod, E. J., Everett, C. A., & Hart, I. R. (1986). Enhanced experimental metastatic capacity of a human tumor line following treatment with 5-azacytidine. Cancer Research, 46, 884–890.PubMed Ormerod, E. J., Everett, C. A., & Hart, I. R. (1986). Enhanced experimental metastatic capacity of a human tumor line following treatment with 5-azacytidine. Cancer Research, 46, 884–890.PubMed
63.
Zurück zum Zitat Sahu, R. P., et al. (2014). Chemotherapeutic agents subvert tumor immunity by generating agonists of platelet-activating factor. Cancer Research, 74, 7069–7078.PubMedPubMedCentralCrossRef Sahu, R. P., et al. (2014). Chemotherapeutic agents subvert tumor immunity by generating agonists of platelet-activating factor. Cancer Research, 74, 7069–7078.PubMedPubMedCentralCrossRef
64.
Zurück zum Zitat Leopold, W. R., Batzinger, R. P., Miller, E. C., Miller, J. A., & Earhart, R. H. (1981). Mutagenicity, tumorigenicity, and electrophilic reactivity of the stereoisomeric platinum(II) complexes of 1,2-diaminocyclohexane. Cancer Research, 41, 4368–4377.PubMed Leopold, W. R., Batzinger, R. P., Miller, E. C., Miller, J. A., & Earhart, R. H. (1981). Mutagenicity, tumorigenicity, and electrophilic reactivity of the stereoisomeric platinum(II) complexes of 1,2-diaminocyclohexane. Cancer Research, 41, 4368–4377.PubMed
65.
Zurück zum Zitat Ramani, V. C., & Sanderson, R. D. (2014). Chemotherapy stimulates syndecan-1 shedding: A potentially negative effect of treatment that may promote tumor relapse. Matrix Biology, 35, 215–222.PubMedCrossRef Ramani, V. C., & Sanderson, R. D. (2014). Chemotherapy stimulates syndecan-1 shedding: A potentially negative effect of treatment that may promote tumor relapse. Matrix Biology, 35, 215–222.PubMedCrossRef
66.
Zurück zum Zitat Keklikoglou, I., et al. (2019). Chemotherapy elicits pro-metastatic extracellular vesicles in breast cancer models. Nature Cell Biology, 21, 190–202.PubMedCrossRef Keklikoglou, I., et al. (2019). Chemotherapy elicits pro-metastatic extracellular vesicles in breast cancer models. Nature Cell Biology, 21, 190–202.PubMedCrossRef
67.
Zurück zum Zitat Chen, X., et al. (2021). DCBLD2 mediates epithelial-mesenchymal transition-induced metastasis by cisplatin in lung adenocarcinoma. Cancers (Basel), 13. Chen, X., et al. (2021). DCBLD2 mediates epithelial-mesenchymal transition-induced metastasis by cisplatin in lung adenocarcinoma. Cancers (Basel), 13.
68.
Zurück zum Zitat Wills, C. A., et al. (2021). Chemotherapy-induced upregulation of small extracellular vesicle-associated PTX3 accelerates breast cancer metastasis. Cancer Research, 81, 452–463.PubMedCrossRef Wills, C. A., et al. (2021). Chemotherapy-induced upregulation of small extracellular vesicle-associated PTX3 accelerates breast cancer metastasis. Cancer Research, 81, 452–463.PubMedCrossRef
69.
Zurück zum Zitat Zhu, X., et al. (2019). Neoadjuvant chemotherapy plays an adverse role in the prognosis of grade 2 breast cancer. Journal of Cancer, 10, 5661–5670.PubMedPubMedCentralCrossRef Zhu, X., et al. (2019). Neoadjuvant chemotherapy plays an adverse role in the prognosis of grade 2 breast cancer. Journal of Cancer, 10, 5661–5670.PubMedPubMedCentralCrossRef
70.
Zurück zum Zitat Andrade, L. N. S., et al. (2019). Extracellular vesicles shedding promotes melanoma growth in response to chemotherapy. Science and Reports, 9, 14482.CrossRef Andrade, L. N. S., et al. (2019). Extracellular vesicles shedding promotes melanoma growth in response to chemotherapy. Science and Reports, 9, 14482.CrossRef
71.
Zurück zum Zitat Sulciner, M. L., Gartung, A., Gilligan, M. M., Serhan, C. N., & Panigrahy, D. (2018). Targeting lipid mediators in cancer biology. Cancer and Metastasis Reviews, 37, 557–572.PubMedCrossRef Sulciner, M. L., Gartung, A., Gilligan, M. M., Serhan, C. N., & Panigrahy, D. (2018). Targeting lipid mediators in cancer biology. Cancer and Metastasis Reviews, 37, 557–572.PubMedCrossRef
72.
Zurück zum Zitat Greene, E. R., Huang, S., Serhan, C. N., & Panigrahy, D. (2011). Regulation of inflammation in cancer by eicosanoids. Prostaglandins & Other Lipid Mediators, 96, 27–36.CrossRef Greene, E. R., Huang, S., Serhan, C. N., & Panigrahy, D. (2011). Regulation of inflammation in cancer by eicosanoids. Prostaglandins & Other Lipid Mediators, 96, 27–36.CrossRef
75.
Zurück zum Zitat Serhan, C. N., Hamberg, M., & Samuelsson, B. (1984). Lipoxins: Novel series of biologically active compounds formed from arachidonic acid in human leukocytes. Proceedings of the National Academy of Sciences of the United States of America, 81, 5335–5339.PubMedPubMedCentralCrossRef Serhan, C. N., Hamberg, M., & Samuelsson, B. (1984). Lipoxins: Novel series of biologically active compounds formed from arachidonic acid in human leukocytes. Proceedings of the National Academy of Sciences of the United States of America, 81, 5335–5339.PubMedPubMedCentralCrossRef
76.
Zurück zum Zitat Chen, Q., et al. (2019). Tumour cell-derived debris and IgG synergistically promote metastasis of pancreatic cancer by inducing inflammation via tumour-associated macrophages. British Journal of Cancer, 121, 786–795.PubMedPubMedCentralCrossRef Chen, Q., et al. (2019). Tumour cell-derived debris and IgG synergistically promote metastasis of pancreatic cancer by inducing inflammation via tumour-associated macrophages. British Journal of Cancer, 121, 786–795.PubMedPubMedCentralCrossRef
77.
Zurück zum Zitat Sekar, D., Hahn, C., Brune, B., Roberts, E., & Weigert, A. (2012). Apoptotic tumor cells induce IL-27 release from human DCs to activate Treg cells that express CD69 and attenuate cytotoxicity. European Journal of Immunology, 42, 1585–1598.PubMedPubMedCentralCrossRef Sekar, D., Hahn, C., Brune, B., Roberts, E., & Weigert, A. (2012). Apoptotic tumor cells induce IL-27 release from human DCs to activate Treg cells that express CD69 and attenuate cytotoxicity. European Journal of Immunology, 42, 1585–1598.PubMedPubMedCentralCrossRef
78.
Zurück zum Zitat Lavy, M., Gauttier, V., Poirier, N., Barille-Nion, S., & Blanquart, C. (2021). Specialized pro-resolving mediators mitigate cancer-related inflammation: Role of tumor-associated macrophages and therapeutic opportunities. Frontiers in Immunology, 12, 702785.PubMedPubMedCentralCrossRef Lavy, M., Gauttier, V., Poirier, N., Barille-Nion, S., & Blanquart, C. (2021). Specialized pro-resolving mediators mitigate cancer-related inflammation: Role of tumor-associated macrophages and therapeutic opportunities. Frontiers in Immunology, 12, 702785.PubMedPubMedCentralCrossRef
79.
Zurück zum Zitat Gilligan, M. M., et al. (2019). Aspirin-triggered proresolving mediators stimulate resolution in cancer. Proceedings of the National Academy of Sciences of the United States of America, 116, 6292–6297.PubMedPubMedCentralCrossRef Gilligan, M. M., et al. (2019). Aspirin-triggered proresolving mediators stimulate resolution in cancer. Proceedings of the National Academy of Sciences of the United States of America, 116, 6292–6297.PubMedPubMedCentralCrossRef
80.
Zurück zum Zitat Ye, Y., et al. (2018). Anti-cancer and analgesic effects of resolvin D2 in oral squamous cell carcinoma. Neuropharmacology, 139, 182–193.PubMedCrossRef Ye, Y., et al. (2018). Anti-cancer and analgesic effects of resolvin D2 in oral squamous cell carcinoma. Neuropharmacology, 139, 182–193.PubMedCrossRef
81.
Zurück zum Zitat Panigrahy, D., et al. (2019). Preoperative stimulation of resolution and inflammation blockade eradicates micrometastases. The Journal of Clinical Investigation, 129, 2964–2979.PubMedPubMedCentralCrossRef Panigrahy, D., et al. (2019). Preoperative stimulation of resolution and inflammation blockade eradicates micrometastases. The Journal of Clinical Investigation, 129, 2964–2979.PubMedPubMedCentralCrossRef
82.
Zurück zum Zitat Fisher, B., & Fisher, E. R. (1959). Experimental evidence in support of the dormant tumor cell. Science, 130, 918–919.PubMedCrossRef Fisher, B., & Fisher, E. R. (1959). Experimental evidence in support of the dormant tumor cell. Science, 130, 918–919.PubMedCrossRef
83.
Zurück zum Zitat Krall, J. A., et al., (2018) The systemic response to surgery triggers the outgrowth of distant immune-controlled tumors in mouse models of dormancy. Science Translational Medicine, 10. Krall, J. A., et al., (2018) The systemic response to surgery triggers the outgrowth of distant immune-controlled tumors in mouse models of dormancy. Science Translational Medicine, 10.
84.
Zurück zum Zitat Ananth, A. A., et al. (2016). Surgical stress abrogates pre-existing protective T cell mediated anti-tumor immunity leading to postoperative cancer recurrence. PLoS One, 11, e0155947.PubMedPubMedCentralCrossRef Ananth, A. A., et al. (2016). Surgical stress abrogates pre-existing protective T cell mediated anti-tumor immunity leading to postoperative cancer recurrence. PLoS One, 11, e0155947.PubMedPubMedCentralCrossRef
86.
Zurück zum Zitat Antonio, N., et al. (2015). The wound inflammatory response exacerbates growth of pre-neoplastic cells and progression to cancer. EMBO Journal, 34, 2219–2236.CrossRefPubMedPubMedCentral Antonio, N., et al. (2015). The wound inflammatory response exacerbates growth of pre-neoplastic cells and progression to cancer. EMBO Journal, 34, 2219–2236.CrossRefPubMedPubMedCentral
87.
Zurück zum Zitat Mathenge, E. G., et al. (2014). Core needle biopsy of breast cancer tumors increases distant metastases in a mouse model. Neoplasia, 16, 950–960.PubMedPubMedCentralCrossRef Mathenge, E. G., et al. (2014). Core needle biopsy of breast cancer tumors increases distant metastases in a mouse model. Neoplasia, 16, 950–960.PubMedPubMedCentralCrossRef
88.
Zurück zum Zitat Alieva, M., et al. (2017). Preventing inflammation inhibits biopsy-mediated changes in tumor cell behavior. Science and Reports, 7, 7529.CrossRef Alieva, M., et al. (2017). Preventing inflammation inhibits biopsy-mediated changes in tumor cell behavior. Science and Reports, 7, 7529.CrossRef
89.
Zurück zum Zitat Hobson, J., et al. (2013). Acute inflammation induced by the biopsy of mouse mammary tumors promotes the development of metastasis. Breast Cancer Research and Treatment, 139, 391–401.PubMedPubMedCentralCrossRef Hobson, J., et al. (2013). Acute inflammation induced by the biopsy of mouse mammary tumors promotes the development of metastasis. Breast Cancer Research and Treatment, 139, 391–401.PubMedPubMedCentralCrossRef
90.
Zurück zum Zitat Retsky, M., Demicheli, R., Hrushesky, W., Baum, M., & Gukas, I. (2010). Surgery triggers outgrowth of latent distant disease in breast cancer: An inconvenient truth? Cancers (Basel), 2, 305–337.CrossRef Retsky, M., Demicheli, R., Hrushesky, W., Baum, M., & Gukas, I. (2010). Surgery triggers outgrowth of latent distant disease in breast cancer: An inconvenient truth? Cancers (Basel), 2, 305–337.CrossRef
91.
Zurück zum Zitat Cata, J. P., et al. (2017). Inflammation and pro-resolution inflammation after hepatobiliary surgery. World Journal of Surgical Oncology, 15, 152.PubMedPubMedCentralCrossRef Cata, J. P., et al. (2017). Inflammation and pro-resolution inflammation after hepatobiliary surgery. World Journal of Surgical Oncology, 15, 152.PubMedPubMedCentralCrossRef
92.
Zurück zum Zitat Shakhar, G., & Ben-Eliyahu, S. (2003). Potential prophylactic measures against postoperative immunosuppression: Could they reduce recurrence rates in oncological patients? Annals of Surgical Oncology, 10, 972–992.PubMedCrossRef Shakhar, G., & Ben-Eliyahu, S. (2003). Potential prophylactic measures against postoperative immunosuppression: Could they reduce recurrence rates in oncological patients? Annals of Surgical Oncology, 10, 972–992.PubMedCrossRef
93.
Zurück zum Zitat Forget, P., Simonet, O., & De Kock, M. (2013). Cancer surgery induces inflammation, immunosuppression and neo-angiogenesis, but is it influenced by analgesics? F1000Res, 2, 102.PubMedPubMedCentralCrossRef Forget, P., Simonet, O., & De Kock, M. (2013). Cancer surgery induces inflammation, immunosuppression and neo-angiogenesis, but is it influenced by analgesics? F1000Res, 2, 102.PubMedPubMedCentralCrossRef
94.
Zurück zum Zitat Demicheli, R., et al. (1994). Local recurrences following mastectomy: Support for the concept of tumor dormancy. Journal of the National Cancer Institute, 86, 45–48.PubMedCrossRef Demicheli, R., et al. (1994). Local recurrences following mastectomy: Support for the concept of tumor dormancy. Journal of the National Cancer Institute, 86, 45–48.PubMedCrossRef
95.
Zurück zum Zitat Retsky, M. W., Demicheli, R., Hrushesky, W. J., Baum, M., & Gukas, I. D. (2008). Dormancy and surgery-driven escape from dormancy help explain some clinical features of breast cancer. APMIS, 116, 730–741.PubMedCrossRef Retsky, M. W., Demicheli, R., Hrushesky, W. J., Baum, M., & Gukas, I. D. (2008). Dormancy and surgery-driven escape from dormancy help explain some clinical features of breast cancer. APMIS, 116, 730–741.PubMedCrossRef
96.
Zurück zum Zitat Bovill, J. G. (2010). Surgery for cancer: Does anesthesia matter? Anesthesia and Analgesia, 110, 1524–1526.PubMedCrossRef Bovill, J. G. (2010). Surgery for cancer: Does anesthesia matter? Anesthesia and Analgesia, 110, 1524–1526.PubMedCrossRef
97.
Zurück zum Zitat Pantel, K., Brakenhoff, R. H., & Brandt, B. (2008). Detection, clinical relevance and specific biological properties of disseminating tumour cells. Nature Reviews Cancer, 8, 329–340.PubMedCrossRef Pantel, K., Brakenhoff, R. H., & Brandt, B. (2008). Detection, clinical relevance and specific biological properties of disseminating tumour cells. Nature Reviews Cancer, 8, 329–340.PubMedCrossRef
98.
Zurück zum Zitat Husemann, Y., et al. (2008). Systemic spread is an early step in breast cancer. Cancer Cell, 13, 58–68.PubMedCrossRef Husemann, Y., et al. (2008). Systemic spread is an early step in breast cancer. Cancer Cell, 13, 58–68.PubMedCrossRef
99.
Zurück zum Zitat Dillekas, H., et al. (2016). The recurrence pattern following delayed breast reconstruction after mastectomy for breast cancer suggests a systemic effect of surgery on occult dormant micrometastases. Breast Cancer Research and Treatment, 158, 169–178.PubMedPubMedCentralCrossRef Dillekas, H., et al. (2016). The recurrence pattern following delayed breast reconstruction after mastectomy for breast cancer suggests a systemic effect of surgery on occult dormant micrometastases. Breast Cancer Research and Treatment, 158, 169–178.PubMedPubMedCentralCrossRef
100.
Zurück zum Zitat Dillekas, H., Transeth, M., Pilskog, M., Assmus, J., & Straume, O. (2014). Differences in metastatic patterns in relation to time between primary surgery and first relapse from breast cancer suggest synchronized growth of dormant micrometastases. Breast Cancer Research and Treatment, 146, 627–636.PubMedPubMedCentralCrossRef Dillekas, H., Transeth, M., Pilskog, M., Assmus, J., & Straume, O. (2014). Differences in metastatic patterns in relation to time between primary surgery and first relapse from breast cancer suggest synchronized growth of dormant micrometastases. Breast Cancer Research and Treatment, 146, 627–636.PubMedPubMedCentralCrossRef
101.
Zurück zum Zitat Gregory, C. D., & Dransfield, I. (2018). Apoptotic tumor cell-derived extracellular vesicles as important regulators of the onco-regenerative niche. Frontiers in Immunology, 9, 1111.PubMedPubMedCentralCrossRef Gregory, C. D., & Dransfield, I. (2018). Apoptotic tumor cell-derived extracellular vesicles as important regulators of the onco-regenerative niche. Frontiers in Immunology, 9, 1111.PubMedPubMedCentralCrossRef
102.
Zurück zum Zitat Jiang, M. J., et al. (2020). Dying tumor cell-derived exosomal miR-194-5p potentiates survival and repopulation of tumor repopulating cells upon radiotherapy in pancreatic cancer. Molecular Cancer, 19, 68.PubMedPubMedCentralCrossRef Jiang, M. J., et al. (2020). Dying tumor cell-derived exosomal miR-194-5p potentiates survival and repopulation of tumor repopulating cells upon radiotherapy in pancreatic cancer. Molecular Cancer, 19, 68.PubMedPubMedCentralCrossRef
103.
Zurück zum Zitat Lin, L. Y., et al. (2016). Tumour cell-derived exosomes endow mesenchymal stromal cells with tumour-promotion capabilities. Oncogene, 35, 6038–6042.PubMedPubMedCentralCrossRef Lin, L. Y., et al. (2016). Tumour cell-derived exosomes endow mesenchymal stromal cells with tumour-promotion capabilities. Oncogene, 35, 6038–6042.PubMedPubMedCentralCrossRef
104.
105.
Zurück zum Zitat Kim, J. J., & Tannock, I. F. (2005). Repopulation of cancer cells during therapy: An important cause of treatment failure. Nature Reviews Cancer, 5, 516–525.PubMedCrossRef Kim, J. J., & Tannock, I. F. (2005). Repopulation of cancer cells during therapy: An important cause of treatment failure. Nature Reviews Cancer, 5, 516–525.PubMedCrossRef
106.
Zurück zum Zitat Fang, C., et al. (2018). microRNA-193a stimulates pancreatic cancer cell repopulation and metastasis through modulating TGF-beta2/TGF-betaRIII signalings. Journal of Experimental & Clinical Cancer Research, 37, 25.CrossRef Fang, C., et al. (2018). microRNA-193a stimulates pancreatic cancer cell repopulation and metastasis through modulating TGF-beta2/TGF-betaRIII signalings. Journal of Experimental & Clinical Cancer Research, 37, 25.CrossRef
107.
Zurück zum Zitat Cheng, J., et al. (2015). Dying tumor cells stimulate proliferation of living tumor cells via caspase-dependent protein kinase Cdelta activation in pancreatic ductal adenocarcinoma. Molecular Oncology, 9, 105–114.PubMedCrossRef Cheng, J., et al. (2015). Dying tumor cells stimulate proliferation of living tumor cells via caspase-dependent protein kinase Cdelta activation in pancreatic ductal adenocarcinoma. Molecular Oncology, 9, 105–114.PubMedCrossRef
108.
Zurück zum Zitat Zhang, J., et al. (2014). Upregulation of miR-194 contributes to tumor growth and progression in pancreatic ductal adenocarcinoma. Oncology Reports, 31, 1157–1164.PubMedCrossRef Zhang, J., et al. (2014). Upregulation of miR-194 contributes to tumor growth and progression in pancreatic ductal adenocarcinoma. Oncology Reports, 31, 1157–1164.PubMedCrossRef
109.
Zurück zum Zitat Tait, S. W., & Green, D. R. (2010). Mitochondria and cell death: Outer membrane permeabilization and beyond. Nature Reviews Molecular Cell Biology, 11, 621–632.PubMedCrossRef Tait, S. W., & Green, D. R. (2010). Mitochondria and cell death: Outer membrane permeabilization and beyond. Nature Reviews Molecular Cell Biology, 11, 621–632.PubMedCrossRef
110.
Zurück zum Zitat Dawson, S. J., et al. (2010). BCL2 in breast cancer: A favourable prognostic marker across molecular subtypes and independent of adjuvant therapy received. British Journal of Cancer, 103, 668–675.PubMedPubMedCentralCrossRef Dawson, S. J., et al. (2010). BCL2 in breast cancer: A favourable prognostic marker across molecular subtypes and independent of adjuvant therapy received. British Journal of Cancer, 103, 668–675.PubMedPubMedCentralCrossRef
111.
Zurück zum Zitat Anagnostou, V. K., et al. (2010). High expression of BCL-2 predicts favorable outcome in non-small cell lung cancer patients with non squamous histology. BMC Cancer, 10, 186.PubMedPubMedCentralCrossRef Anagnostou, V. K., et al. (2010). High expression of BCL-2 predicts favorable outcome in non-small cell lung cancer patients with non squamous histology. BMC Cancer, 10, 186.PubMedPubMedCentralCrossRef
112.
Zurück zum Zitat Renouf, D. J., et al. (2009). BCL-2 expression is prognostic for improved survival in non-small cell lung cancer. Journal of Thoracic Oncology, 4, 486–491.PubMedCrossRef Renouf, D. J., et al. (2009). BCL-2 expression is prognostic for improved survival in non-small cell lung cancer. Journal of Thoracic Oncology, 4, 486–491.PubMedCrossRef
113.
Zurück zum Zitat Hogarth, L. A., & Hall, A. G. (1999). Increased BAX expression is associated with an increased risk of relapse in childhood acute lymphocytic leukemia. Blood, 93, 2671–2678.PubMedCrossRef Hogarth, L. A., & Hall, A. G. (1999). Increased BAX expression is associated with an increased risk of relapse in childhood acute lymphocytic leukemia. Blood, 93, 2671–2678.PubMedCrossRef
114.
Zurück zum Zitat Kaparou, M., et al. (2013). Enhanced levels of the apoptotic BAX/BCL-2 ratio in children with acute lymphoblastic leukemia and high-risk features. Genetics and Molecular Biology, 36, 7–11.PubMedPubMedCentralCrossRef Kaparou, M., et al. (2013). Enhanced levels of the apoptotic BAX/BCL-2 ratio in children with acute lymphoblastic leukemia and high-risk features. Genetics and Molecular Biology, 36, 7–11.PubMedPubMedCentralCrossRef
115.
Zurück zum Zitat Kohler, T., et al. (2002). High Bad and Bax mRNA expression correlate with negative outcome in acute myeloid leukemia (AML). Leukemia, 16, 22–29.PubMedCrossRef Kohler, T., et al. (2002). High Bad and Bax mRNA expression correlate with negative outcome in acute myeloid leukemia (AML). Leukemia, 16, 22–29.PubMedCrossRef
116.
Zurück zum Zitat Bairey, O., Zimra, Y., Shaklai, M., Okon, E., & Rabizadeh, E. (1999). Bcl-2, Bcl-X, Bax, and Bak expression in short- and long-lived patients with diffuse large B-cell lymphomas. Clinical Cancer Research, 5, 2860–2866.PubMed Bairey, O., Zimra, Y., Shaklai, M., Okon, E., & Rabizadeh, E. (1999). Bcl-2, Bcl-X, Bax, and Bak expression in short- and long-lived patients with diffuse large B-cell lymphomas. Clinical Cancer Research, 5, 2860–2866.PubMed
117.
Zurück zum Zitat Meterissian, S. H., et al. (2001). Bcl-2 is a useful prognostic marker in Dukes’ B colon cancer. Annals of Surgical Oncology, 8, 533–537.PubMed Meterissian, S. H., et al. (2001). Bcl-2 is a useful prognostic marker in Dukes’ B colon cancer. Annals of Surgical Oncology, 8, 533–537.PubMed
118.
Zurück zum Zitat Vargas-Roig, L. M., et al. (2008). Prognostic value of Bcl-2 in breast cancer patients treated with neoadjuvant anthracycline based chemotherapy. Molecular Oncology, 2, 102–111.PubMedPubMedCentralCrossRef Vargas-Roig, L. M., et al. (2008). Prognostic value of Bcl-2 in breast cancer patients treated with neoadjuvant anthracycline based chemotherapy. Molecular Oncology, 2, 102–111.PubMedPubMedCentralCrossRef
119.
120.
Zurück zum Zitat Inada, T., Kikuyama, S., Ichikawa, A., Igarashi, S., & Ogata, Y. (1998). Bcl-2 expression as a prognostic factor of survival of gastric carcinoma. Anticancer Research, 18, 2003–2010.PubMed Inada, T., Kikuyama, S., Ichikawa, A., Igarashi, S., & Ogata, Y. (1998). Bcl-2 expression as a prognostic factor of survival of gastric carcinoma. Anticancer Research, 18, 2003–2010.PubMed
121.
Zurück zum Zitat Labi, V., & Erlacher, M. (2015). How cell death shapes cancer. Cell Death & Disease, 6, e1675.CrossRef Labi, V., & Erlacher, M. (2015). How cell death shapes cancer. Cell Death & Disease, 6, e1675.CrossRef
122.
123.
Zurück zum Zitat Pisetsky, D. (2011). Cell death in the pathogenesis of immune-mediated diseases: The role of HMGB1 and DAMP-PAMP complexes. Swiss Medical Weekly, 141, w13256.PubMedPubMedCentral Pisetsky, D. (2011). Cell death in the pathogenesis of immune-mediated diseases: The role of HMGB1 and DAMP-PAMP complexes. Swiss Medical Weekly, 141, w13256.PubMedPubMedCentral
125.
Zurück zum Zitat Bertheloot, D., & Latz, E. (2017). HMGB1, IL-1alpha, IL-33 and S100 proteins: Dual-function alarmins. Cellular & Molecular Immunology, 14, 43–64.CrossRef Bertheloot, D., & Latz, E. (2017). HMGB1, IL-1alpha, IL-33 and S100 proteins: Dual-function alarmins. Cellular & Molecular Immunology, 14, 43–64.CrossRef
126.
Zurück zum Zitat Liu, P. F., et al. (2017). Expression levels of cleaved caspase-3 and caspase-3 in tumorigenesis and prognosis of oral tongue squamous cell carcinoma. PLoS One, 12, e0180620.PubMedPubMedCentralCrossRef Liu, P. F., et al. (2017). Expression levels of cleaved caspase-3 and caspase-3 in tumorigenesis and prognosis of oral tongue squamous cell carcinoma. PLoS One, 12, e0180620.PubMedPubMedCentralCrossRef
127.
Zurück zum Zitat Coutinho-Camillo, C. M., Lourenco, S. V., Nishimoto, I. N., Kowalski, L. P., & Soares, F. A. (2011). Caspase expression in oral squamous cell carcinoma. Head and Neck, 33, 1191–1198.PubMedCrossRef Coutinho-Camillo, C. M., Lourenco, S. V., Nishimoto, I. N., Kowalski, L. P., & Soares, F. A. (2011). Caspase expression in oral squamous cell carcinoma. Head and Neck, 33, 1191–1198.PubMedCrossRef
128.
Zurück zum Zitat Zhao, X., et al. (2006). Caspase-3-dependent activation of calcium-independent phospholipase A2 enhances cell migration in non-apoptotic ovarian cancer cells. Journal of Biological Chemistry, 281, 29357–29368.CrossRefPubMed Zhao, X., et al. (2006). Caspase-3-dependent activation of calcium-independent phospholipase A2 enhances cell migration in non-apoptotic ovarian cancer cells. Journal of Biological Chemistry, 281, 29357–29368.CrossRefPubMed
129.
Zurück zum Zitat Hellwig, C. T., Passante, E., & Rehm, M. (2011). The molecular machinery regulating apoptosis signal transduction and its implication in human physiology and pathophysiologies. Current Molecular Medicine, 11, 31–47.PubMedCrossRef Hellwig, C. T., Passante, E., & Rehm, M. (2011). The molecular machinery regulating apoptosis signal transduction and its implication in human physiology and pathophysiologies. Current Molecular Medicine, 11, 31–47.PubMedCrossRef
130.
Zurück zum Zitat Nakanishi, M., & Rosenberg, D. W. (2013). Multifaceted roles of PGE2 in inflammation and cancer. Semin Immunopathol, 35, 123–137.PubMedCrossRef Nakanishi, M., & Rosenberg, D. W. (2013). Multifaceted roles of PGE2 in inflammation and cancer. Semin Immunopathol, 35, 123–137.PubMedCrossRef
131.
132.
Zurück zum Zitat Kurtova, A. V., et al. (2015). Blocking PGE2-induced tumour repopulation abrogates bladder cancer chemoresistance. Nature, 517, 209–213.PubMedCrossRef Kurtova, A. V., et al. (2015). Blocking PGE2-induced tumour repopulation abrogates bladder cancer chemoresistance. Nature, 517, 209–213.PubMedCrossRef
133.
Zurück zum Zitat Gdynia, G., et al. (2007). Basal caspase activity promotes migration and invasiveness in glioblastoma cells. Molecular Cancer Research, 5, 1232–1240.PubMedCrossRef Gdynia, G., et al. (2007). Basal caspase activity promotes migration and invasiveness in glioblastoma cells. Molecular Cancer Research, 5, 1232–1240.PubMedCrossRef
134.
Zurück zum Zitat Liu, Y. R., et al. (2013). Basal caspase-3 activity promotes migration, invasion, and vasculogenic mimicry formation of melanoma cells. Melanoma Research, 23, 243–253.PubMedCrossRef Liu, Y. R., et al. (2013). Basal caspase-3 activity promotes migration, invasion, and vasculogenic mimicry formation of melanoma cells. Melanoma Research, 23, 243–253.PubMedCrossRef
135.
Zurück zum Zitat Estrov, Z., et al. (1998). Caspase 2 and caspase 3 protein levels as predictors of survival in acute myelogenous leukemia. Blood, 92, 3090–3097.PubMedCrossRef Estrov, Z., et al. (1998). Caspase 2 and caspase 3 protein levels as predictors of survival in acute myelogenous leukemia. Blood, 92, 3090–3097.PubMedCrossRef
136.
Zurück zum Zitat Vakkala, M., Paakko, P., & Soini, Y. (1999). Expression of caspases 3, 6 and 8 is increased in parallel with apoptosis and histological aggressiveness of the breast lesion. British Journal of Cancer, 81, 592–599.PubMedPubMedCentralCrossRef Vakkala, M., Paakko, P., & Soini, Y. (1999). Expression of caspases 3, 6 and 8 is increased in parallel with apoptosis and histological aggressiveness of the breast lesion. British Journal of Cancer, 81, 592–599.PubMedPubMedCentralCrossRef
137.
Zurück zum Zitat O’Donovan, N., et al. (2003). Caspase 3 in breast cancer. Clinical Cancer Research, 9, 738–742.PubMed O’Donovan, N., et al. (2003). Caspase 3 in breast cancer. Clinical Cancer Research, 9, 738–742.PubMed
138.
Zurück zum Zitat Tormanen-Napankangas, U., Soini, Y., Kahlos, K., Kinnula, V., & Paakko, P. (2001). Expression of caspases-3, -6 and -8 and their relation to apoptosis in non-small cell lung carcinoma. International Journal of Cancer, 93, 192–198.PubMedCrossRef Tormanen-Napankangas, U., Soini, Y., Kahlos, K., Kinnula, V., & Paakko, P. (2001). Expression of caspases-3, -6 and -8 and their relation to apoptosis in non-small cell lung carcinoma. International Journal of Cancer, 93, 192–198.PubMedCrossRef
139.
Zurück zum Zitat Hague, A., et al. (2004). Caspase-3 expression is reduced, in the absence of cleavage, in terminally differentiated normal oral epithelium but is increased in oral squamous cell carcinomas and correlates with tumour stage. The Journal of Pathology, 204, 175–182.PubMedCrossRef Hague, A., et al. (2004). Caspase-3 expression is reduced, in the absence of cleavage, in terminally differentiated normal oral epithelium but is increased in oral squamous cell carcinomas and correlates with tumour stage. The Journal of Pathology, 204, 175–182.PubMedCrossRef
140.
Zurück zum Zitat Satoh, K., Kaneko, K., Hirota, M., Toyota, T., & Shimosegawa, T. (2000). The pattern of CPP32/caspase-3 expression reflects the biological behavior of the human pancreatic duct cell tumors. Pancreas, 21, 352–357.PubMedCrossRef Satoh, K., Kaneko, K., Hirota, M., Toyota, T., & Shimosegawa, T. (2000). The pattern of CPP32/caspase-3 expression reflects the biological behavior of the human pancreatic duct cell tumors. Pancreas, 21, 352–357.PubMedCrossRef
141.
Zurück zum Zitat Jakubowska, K., et al. (2016). Reduced expression of caspase-8 and cleaved caspase-3 in pancreatic ductal adenocarcinoma cells. Oncology Letters, 11, 1879–1884.PubMedPubMedCentralCrossRef Jakubowska, K., et al. (2016). Reduced expression of caspase-8 and cleaved caspase-3 in pancreatic ductal adenocarcinoma cells. Oncology Letters, 11, 1879–1884.PubMedPubMedCentralCrossRef
142.
Zurück zum Zitat Levy, B. D., Clish, C. B., Schmidt, B., Gronert, K., & Serhan, C. N. (2001). Lipid mediator class switching during acute inflammation: Signals in resolution. Nature Immunology, 2, 612–619.PubMedCrossRef Levy, B. D., Clish, C. B., Schmidt, B., Gronert, K., & Serhan, C. N. (2001). Lipid mediator class switching during acute inflammation: Signals in resolution. Nature Immunology, 2, 612–619.PubMedCrossRef
143.
Zurück zum Zitat da Silva Junior, I. A., de Sousa Andrade, L. N., Jancar, S., & Chammas, R. (2018). Platelet activating factor receptor antagonists improve the efficacy of experimental chemo- and radiotherapy. Clinics (Sao Paulo), 73, e792s.CrossRef da Silva Junior, I. A., de Sousa Andrade, L. N., Jancar, S., & Chammas, R. (2018). Platelet activating factor receptor antagonists improve the efficacy of experimental chemo- and radiotherapy. Clinics (Sao Paulo), 73, e792s.CrossRef
144.
Zurück zum Zitat de Oliveira, S. I., et al. (2010). Platelet-activating factor receptor (PAF-R)-dependent pathways control tumour growth and tumour response to chemotherapy. BMC Cancer, 10, 200.PubMedPubMedCentralCrossRef de Oliveira, S. I., et al. (2010). Platelet-activating factor receptor (PAF-R)-dependent pathways control tumour growth and tumour response to chemotherapy. BMC Cancer, 10, 200.PubMedPubMedCentralCrossRef
145.
Zurück zum Zitat Li, T., et al. (2003). The epidermal platelet-activating factor receptor augments chemotherapy-induced apoptosis in human carcinoma cell lines. Journal of Biological Chemistry, 278, 16614–16621.CrossRefPubMed Li, T., et al. (2003). The epidermal platelet-activating factor receptor augments chemotherapy-induced apoptosis in human carcinoma cell lines. Journal of Biological Chemistry, 278, 16614–16621.CrossRefPubMed
146.
Zurück zum Zitat Yao, B., et al. (2017). PAFR selectively mediates radioresistance and irradiation-induced autophagy suppression in prostate cancer cells. Oncotarget, 8, 13846–13854.PubMedPubMedCentralCrossRef Yao, B., et al. (2017). PAFR selectively mediates radioresistance and irradiation-induced autophagy suppression in prostate cancer cells. Oncotarget, 8, 13846–13854.PubMedPubMedCentralCrossRef
148.
Zurück zum Zitat Melnikova, V., & Bar-Eli, M. (2007). Inflammation and melanoma growth and metastasis: The role of platelet-activating factor (PAF) and its receptor. Cancer and Metastasis Reviews, 26, 359–371.PubMedCrossRef Melnikova, V., & Bar-Eli, M. (2007). Inflammation and melanoma growth and metastasis: The role of platelet-activating factor (PAF) and its receptor. Cancer and Metastasis Reviews, 26, 359–371.PubMedCrossRef
149.
Zurück zum Zitat Jancar, S., & Chammas, R. (2014). PAF receptor and tumor growth. Current Drug Targets, 15, 982–987.PubMedCrossRef Jancar, S., & Chammas, R. (2014). PAF receptor and tumor growth. Current Drug Targets, 15, 982–987.PubMedCrossRef
150.
Zurück zum Zitat Sugimoto, T., et al. (1992). Molecular cloning and characterization of the platelet-activating factor receptor gene expressed in the human heart. Biochemical and Biophysical Research Communications, 189, 617–624.PubMedCrossRef Sugimoto, T., et al. (1992). Molecular cloning and characterization of the platelet-activating factor receptor gene expressed in the human heart. Biochemical and Biophysical Research Communications, 189, 617–624.PubMedCrossRef
151.
Zurück zum Zitat Walterscheid, J. P., Ullrich, S. E., & Nghiem, D. X. (2002). Platelet-activating factor, a molecular sensor for cellular damage, activates systemic immune suppression. Journal of Experimental Medicine, 195, 171–179.CrossRefPubMedPubMedCentral Walterscheid, J. P., Ullrich, S. E., & Nghiem, D. X. (2002). Platelet-activating factor, a molecular sensor for cellular damage, activates systemic immune suppression. Journal of Experimental Medicine, 195, 171–179.CrossRefPubMedPubMedCentral
152.
Zurück zum Zitat Sahu, R. P., et al. (2012). The environmental stressor ultraviolet B radiation inhibits murine antitumor immunity through its ability to generate platelet-activating factor agonists. Carcinogenesis, 33, 1360–1367.PubMedPubMedCentralCrossRef Sahu, R. P., et al. (2012). The environmental stressor ultraviolet B radiation inhibits murine antitumor immunity through its ability to generate platelet-activating factor agonists. Carcinogenesis, 33, 1360–1367.PubMedPubMedCentralCrossRef
153.
Zurück zum Zitat Yao, Y., et al. (2009). Ultraviolet B radiation generated platelet-activating factor receptor agonist formation involves EGF-R-mediated reactive oxygen species. The Journal of Immunology, 182, 2842–2848.PubMedCrossRef Yao, Y., et al. (2009). Ultraviolet B radiation generated platelet-activating factor receptor agonist formation involves EGF-R-mediated reactive oxygen species. The Journal of Immunology, 182, 2842–2848.PubMedCrossRef
154.
Zurück zum Zitat Serhan, C. N., & Levy, B. D. (2018). Resolvins in inflammation: Emergence of the pro-resolving superfamily of mediators. The Journal of Clinical Investigation, 128, 2657–2669.PubMedPubMedCentralCrossRef Serhan, C. N., & Levy, B. D. (2018). Resolvins in inflammation: Emergence of the pro-resolving superfamily of mediators. The Journal of Clinical Investigation, 128, 2657–2669.PubMedPubMedCentralCrossRef
155.
Zurück zum Zitat Serhan, C. N., et al. (2002). Resolvins: A family of bioactive products of omega-3 fatty acid transformation circuits initiated by aspirin treatment that counter proinflammation signals. Journal of Experimental Medicine, 196, 1025–1037.CrossRefPubMedPubMedCentral Serhan, C. N., et al. (2002). Resolvins: A family of bioactive products of omega-3 fatty acid transformation circuits initiated by aspirin treatment that counter proinflammation signals. Journal of Experimental Medicine, 196, 1025–1037.CrossRefPubMedPubMedCentral
156.
Zurück zum Zitat Serhan, C. N., et al. (2000). Novel functional sets of lipid-derived mediators with antiinflammatory actions generated from omega-3 fatty acids via cyclooxygenase 2-nonsteroidal antiinflammatory drugs and transcellular processing. Journal of Experimental Medicine, 192, 1197–1204.CrossRefPubMedPubMedCentral Serhan, C. N., et al. (2000). Novel functional sets of lipid-derived mediators with antiinflammatory actions generated from omega-3 fatty acids via cyclooxygenase 2-nonsteroidal antiinflammatory drugs and transcellular processing. Journal of Experimental Medicine, 192, 1197–1204.CrossRefPubMedPubMedCentral
157.
Zurück zum Zitat Janakiram, N. B., Mohammed, A., & Rao, C. V. (2011). Role of lipoxins, resolvins, and other bioactive lipids in colon and pancreatic cancer. Cancer and Metastasis Reviews, 30, 507–523.PubMedCrossRef Janakiram, N. B., Mohammed, A., & Rao, C. V. (2011). Role of lipoxins, resolvins, and other bioactive lipids in colon and pancreatic cancer. Cancer and Metastasis Reviews, 30, 507–523.PubMedCrossRef
158.
Zurück zum Zitat Nabavi, S. F., et al. (2015). Omega-3 polyunsaturated fatty acids and cancer: Lessons learned from clinical trials. Cancer and Metastasis Reviews, 34, 359–380.PubMedCrossRef Nabavi, S. F., et al. (2015). Omega-3 polyunsaturated fatty acids and cancer: Lessons learned from clinical trials. Cancer and Metastasis Reviews, 34, 359–380.PubMedCrossRef
Metadaten
Titel
Debris-stimulated tumor growth: a Pandora’s box?
verfasst von
Victoria M. Haak
Sui Huang
Dipak Panigrahy
Publikationsdatum
19.10.2021
Verlag
Springer US
Erschienen in
Cancer and Metastasis Reviews / Ausgabe 3/2021
Print ISSN: 0167-7659
Elektronische ISSN: 1573-7233
DOI
https://doi.org/10.1007/s10555-021-09998-8

Weitere Artikel der Ausgabe 3/2021

Cancer and Metastasis Reviews 3/2021 Zur Ausgabe

Announcement

Biographies

Mehr Lebenszeit mit Abemaciclib bei fortgeschrittenem Brustkrebs?

24.05.2024 Mammakarzinom Nachrichten

In der MONARCHE-3-Studie lebten Frauen mit fortgeschrittenem Hormonrezeptor-positivem, HER2-negativem Brustkrebs länger, wenn sie zusätzlich zu einem nicht steroidalen Aromatasehemmer mit Abemaciclib behandelt wurden; allerdings verfehlte der numerische Zugewinn die statistische Signifikanz.

ADT zur Radiatio nach Prostatektomie: Wenn, dann wohl länger

24.05.2024 Prostatakarzinom Nachrichten

Welchen Nutzen es trägt, wenn die Strahlentherapie nach radikaler Prostatektomie um eine Androgendeprivation ergänzt wird, hat die RADICALS-HD-Studie untersucht. Nun liegen die Ergebnisse vor. Sie sprechen für länger dauernden Hormonentzug.

Das sind die führenden Symptome junger Darmkrebspatienten

Darmkrebserkrankungen in jüngeren Jahren sind ein zunehmendes Problem, das häufig längere Zeit übersehen wird, gerade weil die Patienten noch nicht alt sind. Welche Anzeichen Ärzte stutzig machen sollten, hat eine Metaanalyse herausgearbeitet.

„Überwältigende“ Evidenz für Tripeltherapie beim metastasierten Prostata-Ca.

22.05.2024 Prostatakarzinom Nachrichten

Patienten mit metastasiertem hormonsensitivem Prostatakarzinom sollten nicht mehr mit einer alleinigen Androgendeprivationstherapie (ADT) behandelt werden, mahnt ein US-Team nach Sichtung der aktuellen Datenlage. Mit einer Tripeltherapie haben die Betroffenen offenbar die besten Überlebenschancen.

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.