Skip to main content
Erschienen in: Heart Failure Reviews 1/2019

23.05.2018

Metabolic remodeling of substrate utilization during heart failure progression

verfasst von: Liang Chen, Jiangping Song, Shengshou Hu

Erschienen in: Heart Failure Reviews | Ausgabe 1/2019

Einloggen, um Zugang zu erhalten

Abstract

Heart failure (HF) is a clinical syndrome caused by a decline in cardiac systolic or diastolic function, which leaves the heart unable to pump enough blood to meet the normal physiological requirements of the human body. It is a serious disease burden worldwide affecting nearly 23 million patients. The concept that heart failure is “an engine out of fuel” has been generally accepted and metabolic remodeling has been recognized as an important aspect of this condition; it is characterized by defects in energy production and changes in metabolic pathways involved in the regulation of essential cellular functions such as the process of substrate utilization, the tricarboxylic acid cycle, oxidative phosphorylation, and high-energy phosphate metabolism. Advances in second-generation sequencing, proteomics, and metabolomics have made it possible to perform comprehensive tests on genes and metabolites that are crucial in the process of HF, thereby providing a clearer and comprehensive understanding of metabolic remodeling during HF. In recent years, new metabolic changes such as ketone bodies and branched-chain amino acids were demonstrated as alternative substrates in end-stage HF. This systematic review focuses on changes in metabolic substrate utilization during the progression of HF and the underlying regulatory mechanisms. Accordingly, the conventional concepts of metabolic remodeling characteristics are reviewed, and the latest developments, particularly multi-omics studies, are compiled.
Literatur
1.
Zurück zum Zitat Shen L et al (2017) Declining risk of sudden death in heart failure. N Engl J Med 377(1):41–51PubMed Shen L et al (2017) Declining risk of sudden death in heart failure. N Engl J Med 377(1):41–51PubMed
2.
Zurück zum Zitat Dunlay SM, Roger VL, Redfield MM (2017) Epidemiology of heart failure with preserved ejection fraction. Nat Rev Cardiol 14(10):591–602PubMed Dunlay SM, Roger VL, Redfield MM (2017) Epidemiology of heart failure with preserved ejection fraction. Nat Rev Cardiol 14(10):591–602PubMed
3.
Zurück zum Zitat Velazquez EJ et al (2016) Coronary-artery bypass surgery in patients with ischemic cardiomyopathy. N Engl J Med 374(16):1511–1520PubMedPubMedCentral Velazquez EJ et al (2016) Coronary-artery bypass surgery in patients with ischemic cardiomyopathy. N Engl J Med 374(16):1511–1520PubMedPubMedCentral
4.
Zurück zum Zitat Filion KB et al (2016) A multicenter observational study of incretin-based drugs and heart failure. N Engl J Med 374(12):1145–1154PubMed Filion KB et al (2016) A multicenter observational study of incretin-based drugs and heart failure. N Engl J Med 374(12):1145–1154PubMed
5.
Zurück zum Zitat Felker GM et al (2017) Effect of natriuretic peptide-guided therapy on hospitalization or cardiovascular mortality in high-risk patients with heart failure and reduced ejection fraction: a randomized clinical trial. JAMA 318(8):713–720PubMedPubMedCentral Felker GM et al (2017) Effect of natriuretic peptide-guided therapy on hospitalization or cardiovascular mortality in high-risk patients with heart failure and reduced ejection fraction: a randomized clinical trial. JAMA 318(8):713–720PubMedPubMedCentral
6.
Zurück zum Zitat Ho KK et al (1993) The epidemiology of heart failure: the Framingham Study. J Am Coll Cardiol 22(4 Suppl A):6A–13APubMed Ho KK et al (1993) The epidemiology of heart failure: the Framingham Study. J Am Coll Cardiol 22(4 Suppl A):6A–13APubMed
7.
Zurück zum Zitat Doenst T, Nguyen TD, Abel ED (2013) Cardiac metabolism in heart failure: implications beyond ATP production. Circ Res 113(6):709–724PubMedPubMedCentral Doenst T, Nguyen TD, Abel ED (2013) Cardiac metabolism in heart failure: implications beyond ATP production. Circ Res 113(6):709–724PubMedPubMedCentral
8.
Zurück zum Zitat Byrne NJ et al (2016) Normalization of cardiac substrate utilization and left ventricular hypertrophy precede functional recovery in heart failure regression. Cardiovasc Res 110(2):249–257PubMedPubMedCentral Byrne NJ et al (2016) Normalization of cardiac substrate utilization and left ventricular hypertrophy precede functional recovery in heart failure regression. Cardiovasc Res 110(2):249–257PubMedPubMedCentral
9.
Zurück zum Zitat Neubauer S (2007) The failing heart—an engine out of fuel. N Engl J Med 356(11):1140–1151PubMed Neubauer S (2007) The failing heart—an engine out of fuel. N Engl J Med 356(11):1140–1151PubMed
10.
Zurück zum Zitat Stanley WC, Recchia FA, Lopaschuk GD (2005) Myocardial substrate metabolism in the normal and failing heart. Physiol Rev 85(3):1093–1129PubMed Stanley WC, Recchia FA, Lopaschuk GD (2005) Myocardial substrate metabolism in the normal and failing heart. Physiol Rev 85(3):1093–1129PubMed
11.
Zurück zum Zitat Fillmore N, Lopaschuk GD (2013) Targeting mitochondrial oxidative metabolism as an approach to treat heart failure. Biochim Biophys Acta 1833(4):857–865PubMed Fillmore N, Lopaschuk GD (2013) Targeting mitochondrial oxidative metabolism as an approach to treat heart failure. Biochim Biophys Acta 1833(4):857–865PubMed
12.
Zurück zum Zitat Lopaschuk GD et al (2010) Myocardial fatty acid metabolism in health and disease. Physiol Rev 90(1):207–258PubMed Lopaschuk GD et al (2010) Myocardial fatty acid metabolism in health and disease. Physiol Rev 90(1):207–258PubMed
13.
Zurück zum Zitat Szablewski L (2017) Glucose transporters in healthy heart and in cardiac disease. Int J Cardiol 230(1):70–75PubMed Szablewski L (2017) Glucose transporters in healthy heart and in cardiac disease. Int J Cardiol 230(1):70–75PubMed
14.
15.
Zurück zum Zitat Vimercati C et al (2014) Beneficial effects of acute inhibition of the oxidative pentose phosphate pathway in the failing heart. Am J Physiol Heart Circ Physiol 306(5):H709–H717PubMedPubMedCentral Vimercati C et al (2014) Beneficial effects of acute inhibition of the oxidative pentose phosphate pathway in the failing heart. Am J Physiol Heart Circ Physiol 306(5):H709–H717PubMedPubMedCentral
16.
17.
Zurück zum Zitat Carley AN, Lewandowski ED (2016) Triacylglycerol turnover in the failing heart. Biochim Biophys Acta 1861(10):1492–1499PubMed Carley AN, Lewandowski ED (2016) Triacylglycerol turnover in the failing heart. Biochim Biophys Acta 1861(10):1492–1499PubMed
18.
Zurück zum Zitat Jenei ZA et al (2011) Packing of transmembrane domain 2 of carnitine palmitoyltransferase-1A affects oligomerization and malonyl-CoA sensitivity of the mitochondrial outer membrane protein. FASEB J 25(12):4522–4530PubMed Jenei ZA et al (2011) Packing of transmembrane domain 2 of carnitine palmitoyltransferase-1A affects oligomerization and malonyl-CoA sensitivity of the mitochondrial outer membrane protein. FASEB J 25(12):4522–4530PubMed
19.
Zurück zum Zitat Abdurrachim D et al (2015) Good and bad consequences of altered fatty acid metabolism in heart failure: evidence from mouse models. Cardiovasc Res 106(2):194–205PubMed Abdurrachim D et al (2015) Good and bad consequences of altered fatty acid metabolism in heart failure: evidence from mouse models. Cardiovasc Res 106(2):194–205PubMed
20.
Zurück zum Zitat O’Neill HM et al (2014) AMPK phosphorylation of ACC2 is required for skeletal muscle fatty acid oxidation and insulin sensitivity in mice. Diabetologia 57(8):1693–1702PubMed O’Neill HM et al (2014) AMPK phosphorylation of ACC2 is required for skeletal muscle fatty acid oxidation and insulin sensitivity in mice. Diabetologia 57(8):1693–1702PubMed
21.
Zurück zum Zitat Saha AK et al (2000) Activation of malonyl-CoA decarboxylase in rat skeletal muscle by contraction and the AMP-activated protein kinase activator 5-aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside. J Biol Chem 275(32):24279–24283PubMed Saha AK et al (2000) Activation of malonyl-CoA decarboxylase in rat skeletal muscle by contraction and the AMP-activated protein kinase activator 5-aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside. J Biol Chem 275(32):24279–24283PubMed
22.
Zurück zum Zitat Barreto-Torres G et al (2015) The beneficial effects of AMP kinase activation against oxidative stress are associated with prevention of PPARalpha-cyclophilin D interaction in cardiomyocytes. Am J Physiol Heart Circ Physiol 308(7):H749–H758PubMedPubMedCentral Barreto-Torres G et al (2015) The beneficial effects of AMP kinase activation against oxidative stress are associated with prevention of PPARalpha-cyclophilin D interaction in cardiomyocytes. Am J Physiol Heart Circ Physiol 308(7):H749–H758PubMedPubMedCentral
23.
Zurück zum Zitat Sung MM et al (2015) AMPK deficiency in cardiac muscle results in dilated cardiomyopathy in the absence of changes in energy metabolism. Cardiovasc Res 107(2):235–245PubMedPubMedCentral Sung MM et al (2015) AMPK deficiency in cardiac muscle results in dilated cardiomyopathy in the absence of changes in energy metabolism. Cardiovasc Res 107(2):235–245PubMedPubMedCentral
24.
Zurück zum Zitat Ashrafian H, Frenneaux MP, Opie LH (2007) Metabolic mechanisms in heart failure. Circulation 116(4):434–448PubMed Ashrafian H, Frenneaux MP, Opie LH (2007) Metabolic mechanisms in heart failure. Circulation 116(4):434–448PubMed
25.
Zurück zum Zitat Abushouk AI et al (2017) Peroxisome proliferator-activated receptors as therapeutic targets for heart failure. Biomed Pharmacother 95(1):692–700PubMed Abushouk AI et al (2017) Peroxisome proliferator-activated receptors as therapeutic targets for heart failure. Biomed Pharmacother 95(1):692–700PubMed
26.
Zurück zum Zitat Lam VH et al (2015) Activating PPARalpha prevents post-ischemic contractile dysfunction in hypertrophied neonatal hearts. Circ Res 117(1):41–51PubMed Lam VH et al (2015) Activating PPARalpha prevents post-ischemic contractile dysfunction in hypertrophied neonatal hearts. Circ Res 117(1):41–51PubMed
27.
Zurück zum Zitat Smeets PJ et al (2008) Cardiac hypertrophy is enhanced in PPAR alpha−/− mice in response to chronic pressure overload. Cardiovasc Res 78(1):79–89PubMed Smeets PJ et al (2008) Cardiac hypertrophy is enhanced in PPAR alpha−/− mice in response to chronic pressure overload. Cardiovasc Res 78(1):79–89PubMed
28.
Zurück zum Zitat Drosatos K et al (2016) Cardiac myocyte KLF5 regulates Ppara expression and cardiac function. Circ Res 118(2):241–253PubMed Drosatos K et al (2016) Cardiac myocyte KLF5 regulates Ppara expression and cardiac function. Circ Res 118(2):241–253PubMed
29.
Zurück zum Zitat Palomer X et al (2016) PPARbeta/delta and lipid metabolism in the heart. Biochim Biophys Acta 1861(10):1569–1578PubMed Palomer X et al (2016) PPARbeta/delta and lipid metabolism in the heart. Biochim Biophys Acta 1861(10):1569–1578PubMed
30.
Zurück zum Zitat Burkart EM et al (2007) Nuclear receptors PPARbeta/delta and PPARalpha direct distinct metabolic regulatory programs in the mouse heart. J Clin Invest 117(12):3930–3939PubMedPubMedCentral Burkart EM et al (2007) Nuclear receptors PPARbeta/delta and PPARalpha direct distinct metabolic regulatory programs in the mouse heart. J Clin Invest 117(12):3930–3939PubMedPubMedCentral
32.
Zurück zum Zitat Abo AO, Lopaschuk GD (2014) Role of CoA and acetyl-CoA in regulating cardiac fatty acid and glucose oxidation. Biochem Soc Trans 42(4):1043–1051 Abo AO, Lopaschuk GD (2014) Role of CoA and acetyl-CoA in regulating cardiac fatty acid and glucose oxidation. Biochem Soc Trans 42(4):1043–1051
33.
Zurück zum Zitat Guo Z (2015) Pyruvate dehydrogenase, Randle cycle, and skeletal muscle insulin resistance. Proc Natl Acad Sci U S A 112(22):E2854PubMedPubMedCentral Guo Z (2015) Pyruvate dehydrogenase, Randle cycle, and skeletal muscle insulin resistance. Proc Natl Acad Sci U S A 112(22):E2854PubMedPubMedCentral
34.
Zurück zum Zitat Gomez-Arroyo J et al (2013) Metabolic gene remodeling and mitochondrial dysfunction in failing right ventricular hypertrophy secondary to pulmonary arterial hypertension. Circ Heart Fail 6(1):136–144PubMed Gomez-Arroyo J et al (2013) Metabolic gene remodeling and mitochondrial dysfunction in failing right ventricular hypertrophy secondary to pulmonary arterial hypertension. Circ Heart Fail 6(1):136–144PubMed
35.
Zurück zum Zitat Christe ME, Rodgers RL (1994) Altered glucose and fatty acid oxidation in hearts of the spontaneously hypertensive rat. J Mol Cell Cardiol 26(10):1371–1375PubMed Christe ME, Rodgers RL (1994) Altered glucose and fatty acid oxidation in hearts of the spontaneously hypertensive rat. J Mol Cell Cardiol 26(10):1371–1375PubMed
36.
Zurück zum Zitat Massie BM et al (1995) Myocardial high-energy phosphate and substrate metabolism in swine with moderate left ventricular hypertrophy. Circulation 91(6):1814–1823PubMed Massie BM et al (1995) Myocardial high-energy phosphate and substrate metabolism in swine with moderate left ventricular hypertrophy. Circulation 91(6):1814–1823PubMed
37.
Zurück zum Zitat Degens H et al (2006) Cardiac fatty acid metabolism is preserved in the compensated hypertrophic rat heart. Basic Res Cardiol 101(1):17–26PubMed Degens H et al (2006) Cardiac fatty acid metabolism is preserved in the compensated hypertrophic rat heart. Basic Res Cardiol 101(1):17–26PubMed
38.
Zurück zum Zitat Seymour AM et al (2015) In vivo assessment of cardiac metabolism and function in the abdominal aortic banding model of compensated cardiac hypertrophy. Cardiovasc Res 106(2):249–260PubMedPubMedCentral Seymour AM et al (2015) In vivo assessment of cardiac metabolism and function in the abdominal aortic banding model of compensated cardiac hypertrophy. Cardiovasc Res 106(2):249–260PubMedPubMedCentral
39.
Zurück zum Zitat Kato T et al (2010) Analysis of metabolic remodeling in compensated left ventricular hypertrophy and heart failure. Circ Heart Fail 3(3):420–430PubMed Kato T et al (2010) Analysis of metabolic remodeling in compensated left ventricular hypertrophy and heart failure. Circ Heart Fail 3(3):420–430PubMed
40.
Zurück zum Zitat O’Donnell JM et al (2008) The absence of endogenous lipid oxidation in early stage heart failure exposes limits in lipid storage and turnover. J Mol Cell Cardiol 44(2):315–322PubMed O’Donnell JM et al (2008) The absence of endogenous lipid oxidation in early stage heart failure exposes limits in lipid storage and turnover. J Mol Cell Cardiol 44(2):315–322PubMed
41.
Zurück zum Zitat Lai L et al (2014) Energy metabolic reprogramming in the hypertrophied and early stage failing heart: a multisystems approach. Circ Heart Fail 7(6):1022–1031PubMedPubMedCentral Lai L et al (2014) Energy metabolic reprogramming in the hypertrophied and early stage failing heart: a multisystems approach. Circ Heart Fail 7(6):1022–1031PubMedPubMedCentral
42.
Zurück zum Zitat Burke MA et al (2016) Molecular profiling of dilated cardiomyopathy that progresses to heart failure. JCI Insight 1(6):e86898PubMedPubMedCentral Burke MA et al (2016) Molecular profiling of dilated cardiomyopathy that progresses to heart failure. JCI Insight 1(6):e86898PubMedPubMedCentral
43.
Zurück zum Zitat Lionetti V, Stanley WC, Recchia FA (2011) Modulating fatty acid oxidation in heart failure. Cardiovasc Res 90(2):202–209PubMedPubMedCentral Lionetti V, Stanley WC, Recchia FA (2011) Modulating fatty acid oxidation in heart failure. Cardiovasc Res 90(2):202–209PubMedPubMedCentral
44.
Zurück zum Zitat Heggermont WA et al (2016) Metabolic support for the heart: complementary therapy for heart failure? Eur J Heart Fail 18(12):1420–1429PubMed Heggermont WA et al (2016) Metabolic support for the heart: complementary therapy for heart failure? Eur J Heart Fail 18(12):1420–1429PubMed
45.
Zurück zum Zitat Pereira RO et al (2014) GLUT1 deficiency in cardiomyocytes does not accelerate the transition from compensated hypertrophy to heart failure. J Mol Cell Cardiol 72(1):95–103PubMedPubMedCentral Pereira RO et al (2014) GLUT1 deficiency in cardiomyocytes does not accelerate the transition from compensated hypertrophy to heart failure. J Mol Cell Cardiol 72(1):95–103PubMedPubMedCentral
46.
Zurück zum Zitat Yan J et al (2009) Increased glucose uptake and oxidation in mouse hearts prevent high fatty acid oxidation but cause cardiac dysfunction in diet-induced obesity. Circulation 119(21):2818–2828PubMedPubMedCentral Yan J et al (2009) Increased glucose uptake and oxidation in mouse hearts prevent high fatty acid oxidation but cause cardiac dysfunction in diet-induced obesity. Circulation 119(21):2818–2828PubMedPubMedCentral
47.
Zurück zum Zitat Kundu BK et al (2015) Remodeling of glucose metabolism precedes pressure overload-induced left ventricular hypertrophy: review of a hypothesis. Cardiology 130(4):211–220PubMedPubMedCentral Kundu BK et al (2015) Remodeling of glucose metabolism precedes pressure overload-induced left ventricular hypertrophy: review of a hypothesis. Cardiology 130(4):211–220PubMedPubMedCentral
48.
Zurück zum Zitat Bedi KJ et al (2016) Evidence for Intramyocardial disruption of lipid metabolism and increased myocardial ketone utilization in advanced human heart failure. Circulation 133(8):706–716PubMedPubMedCentral Bedi KJ et al (2016) Evidence for Intramyocardial disruption of lipid metabolism and increased myocardial ketone utilization in advanced human heart failure. Circulation 133(8):706–716PubMedPubMedCentral
49.
Zurück zum Zitat Peterzan MA et al (2017) Metabolic remodeling in hypertrophied and failing myocardium: a review. Am J Physiol Heart Circ Physiol 313(3):H597–H616PubMed Peterzan MA et al (2017) Metabolic remodeling in hypertrophied and failing myocardium: a review. Am J Physiol Heart Circ Physiol 313(3):H597–H616PubMed
50.
Zurück zum Zitat El AZ et al (1992) Fatty acid oxidation and mechanical performance of volume-overloaded rat hearts. Am J Phys 262(4 Pt 2):H1068–H1074 El AZ et al (1992) Fatty acid oxidation and mechanical performance of volume-overloaded rat hearts. Am J Phys 262(4 Pt 2):H1068–H1074
51.
Zurück zum Zitat Pound KM et al (2009) Substrate-enzyme competition attenuates upregulated anaplerotic flux through malic enzyme in hypertrophied rat heart and restores triacylglyceride content: attenuating upregulated anaplerosis in hypertrophy. Circ Res 104(6):805–812PubMedPubMedCentral Pound KM et al (2009) Substrate-enzyme competition attenuates upregulated anaplerotic flux through malic enzyme in hypertrophied rat heart and restores triacylglyceride content: attenuating upregulated anaplerosis in hypertrophy. Circ Res 104(6):805–812PubMedPubMedCentral
52.
Zurück zum Zitat Lei B et al (2004) Paradoxical downregulation of the glucose oxidation pathway despite enhanced flux in severe heart failure. J Mol Cell Cardiol 36(4):567–576PubMed Lei B et al (2004) Paradoxical downregulation of the glucose oxidation pathway despite enhanced flux in severe heart failure. J Mol Cell Cardiol 36(4):567–576PubMed
53.
Zurück zum Zitat Sansbury BE et al (2014) Metabolomic analysis of pressure-overloaded and infarcted mouse hearts. Circ Heart Fail 7(4):634–642PubMedPubMedCentral Sansbury BE et al (2014) Metabolomic analysis of pressure-overloaded and infarcted mouse hearts. Circ Heart Fail 7(4):634–642PubMedPubMedCentral
54.
Zurück zum Zitat Davila-Roman VG et al (2002) Altered myocardial fatty acid and glucose metabolism in idiopathic dilated cardiomyopathy. J Am Coll Cardiol 40(2):271–277PubMed Davila-Roman VG et al (2002) Altered myocardial fatty acid and glucose metabolism in idiopathic dilated cardiomyopathy. J Am Coll Cardiol 40(2):271–277PubMed
55.
Zurück zum Zitat Zhabyeyev P et al (2013) Pressure-overload-induced heart failure induces a selective reduction in glucose oxidation at physiological afterload. Cardiovasc Res 97(4):676–685PubMed Zhabyeyev P et al (2013) Pressure-overload-induced heart failure induces a selective reduction in glucose oxidation at physiological afterload. Cardiovasc Res 97(4):676–685PubMed
56.
Zurück zum Zitat Amorim PA et al (2010) Myocardial infarction in rats causes partial impairment in insulin response associated with reduced fatty acid oxidation and mitochondrial gene expression. J Thorac Cardiovasc Surg 140(5):1160–1167PubMed Amorim PA et al (2010) Myocardial infarction in rats causes partial impairment in insulin response associated with reduced fatty acid oxidation and mitochondrial gene expression. J Thorac Cardiovasc Surg 140(5):1160–1167PubMed
57.
Zurück zum Zitat Osorio JC et al (2002) Impaired myocardial fatty acid oxidation and reduced protein expression of retinoid X receptor-alpha in pacing-induced heart failure. Circulation 106(5):606–612PubMed Osorio JC et al (2002) Impaired myocardial fatty acid oxidation and reduced protein expression of retinoid X receptor-alpha in pacing-induced heart failure. Circulation 106(5):606–612PubMed
58.
Zurück zum Zitat Doenst T et al (2010) Decreased rates of substrate oxidation ex vivo predict the onset of heart failure and contractile dysfunction in rats with pressure overload. Cardiovasc Res 86(3):461–470PubMed Doenst T et al (2010) Decreased rates of substrate oxidation ex vivo predict the onset of heart failure and contractile dysfunction in rats with pressure overload. Cardiovasc Res 86(3):461–470PubMed
59.
Zurück zum Zitat Gupte AA et al (2014) Mechanical unloading promotes myocardial energy recovery in human heart failure. Circ Cardiovasc Genet 7(3):266–276PubMedPubMedCentral Gupte AA et al (2014) Mechanical unloading promotes myocardial energy recovery in human heart failure. Circ Cardiovasc Genet 7(3):266–276PubMedPubMedCentral
60.
Zurück zum Zitat Tuunanen H, Ukkonen H, Knuuti J (2008) Myocardial fatty acid metabolism and cardiac performance in heart failure. Curr Cardiol Rep 10(2):142–148PubMed Tuunanen H, Ukkonen H, Knuuti J (2008) Myocardial fatty acid metabolism and cardiac performance in heart failure. Curr Cardiol Rep 10(2):142–148PubMed
62.
63.
Zurück zum Zitat Sun H et al (2016) Catabolic defect of branched-chain amino acids promotes heart failure. Circulation 133(21):2038–2049PubMedPubMedCentral Sun H et al (2016) Catabolic defect of branched-chain amino acids promotes heart failure. Circulation 133(21):2038–2049PubMedPubMedCentral
64.
Zurück zum Zitat Foster DB et al (2016) Integrated omic analysis of a guinea pig model of heart failure and sudden cardiac death. J Proteome Res 15(9):3009–3028PubMedPubMedCentral Foster DB et al (2016) Integrated omic analysis of a guinea pig model of heart failure and sudden cardiac death. J Proteome Res 15(9):3009–3028PubMedPubMedCentral
65.
Zurück zum Zitat Hunter WG et al (2016) Metabolomic profiling identifies novel circulating biomarkers of mitochondrial dysfunction differentially elevated in heart failure with preserved versus reduced ejection fraction: evidence for shared metabolic impairments in clinical heart failure. J Am Heart Assoc 5(8):e003190PubMedPubMedCentral Hunter WG et al (2016) Metabolomic profiling identifies novel circulating biomarkers of mitochondrial dysfunction differentially elevated in heart failure with preserved versus reduced ejection fraction: evidence for shared metabolic impairments in clinical heart failure. J Am Heart Assoc 5(8):e003190PubMedPubMedCentral
66.
Zurück zum Zitat Ruiz M et al (2017) Circulating acylcarnitine profile in human heart failure: a surrogate of fatty acid metabolic dysregulation in mitochondria and beyond. Am J Physiol Heart Circ Physiol 313(4):H768–H781PubMed Ruiz M et al (2017) Circulating acylcarnitine profile in human heart failure: a surrogate of fatty acid metabolic dysregulation in mitochondria and beyond. Am J Physiol Heart Circ Physiol 313(4):H768–H781PubMed
67.
Zurück zum Zitat Ahmad T et al (2016) Prognostic implications of long-chain acylcarnitines in heart failure and reversibility with mechanical circulatory support. J Am Coll Cardiol 67(3):291–299PubMedPubMedCentral Ahmad T et al (2016) Prognostic implications of long-chain acylcarnitines in heart failure and reversibility with mechanical circulatory support. J Am Coll Cardiol 67(3):291–299PubMedPubMedCentral
68.
Zurück zum Zitat Fragasso G et al (2006) A randomized clinical trial of trimetazidine, a partial free fatty acid oxidation inhibitor, in patients with heart failure. J Am Coll Cardiol 48(5):992–998PubMed Fragasso G et al (2006) A randomized clinical trial of trimetazidine, a partial free fatty acid oxidation inhibitor, in patients with heart failure. J Am Coll Cardiol 48(5):992–998PubMed
69.
Zurück zum Zitat Fragasso G et al (2011) Effect of partial inhibition of fatty acid oxidation by trimetazidine on whole body energy metabolism in patients with chronic heart failure. Heart 97(18):1495–1500PubMed Fragasso G et al (2011) Effect of partial inhibition of fatty acid oxidation by trimetazidine on whole body energy metabolism in patients with chronic heart failure. Heart 97(18):1495–1500PubMed
70.
Zurück zum Zitat Tuunanen H et al (2006) Free fatty acid depletion acutely decreases cardiac work and efficiency in cardiomyopathic heart failure. Circulation 114(20):2130–2137PubMed Tuunanen H et al (2006) Free fatty acid depletion acutely decreases cardiac work and efficiency in cardiomyopathic heart failure. Circulation 114(20):2130–2137PubMed
71.
Zurück zum Zitat Salerno A et al (2015) Effects of short-term manipulation of serum FFA concentrations on left ventricular energy metabolism and function in patients with heart failure: no association with circulating bio-markers of inflammation. Acta Diabetol 52(4):753–761PubMed Salerno A et al (2015) Effects of short-term manipulation of serum FFA concentrations on left ventricular energy metabolism and function in patients with heart failure: no association with circulating bio-markers of inflammation. Acta Diabetol 52(4):753–761PubMed
72.
Zurück zum Zitat Martin MA et al (2000) Myocardial carnitine and carnitine palmitoyltransferase deficiencies in patients with severe heart failure. Biochim Biophys Acta 1502(3):330–336PubMed Martin MA et al (2000) Myocardial carnitine and carnitine palmitoyltransferase deficiencies in patients with severe heart failure. Biochim Biophys Acta 1502(3):330–336PubMed
73.
Zurück zum Zitat Fillmore N, Mori J, Lopaschuk GD (2014) Mitochondrial fatty acid oxidation alterations in heart failure, ischaemic heart disease and diabetic cardiomyopathy. Br J Pharmacol 171(8):2080–2090PubMedPubMedCentral Fillmore N, Mori J, Lopaschuk GD (2014) Mitochondrial fatty acid oxidation alterations in heart failure, ischaemic heart disease and diabetic cardiomyopathy. Br J Pharmacol 171(8):2080–2090PubMedPubMedCentral
74.
Zurück zum Zitat Wang Y et al (2013) Integrated proteomic and metabolomic analysis reveals the NADH-mediated TCA cycle and energy metabolism disorders based on a new model of chronic progressive heart failure. Mol BioSyst 9(12):3135–3145PubMed Wang Y et al (2013) Integrated proteomic and metabolomic analysis reveals the NADH-mediated TCA cycle and energy metabolism disorders based on a new model of chronic progressive heart failure. Mol BioSyst 9(12):3135–3145PubMed
75.
Zurück zum Zitat Warren JS et al (2017) Metabolic reprogramming via PPARalpha signaling in cardiac hypertrophy and failure: from metabolomics to epigenetics. Am J Physiol Heart Circ Physiol 313(3):H584–H596PubMed Warren JS et al (2017) Metabolic reprogramming via PPARalpha signaling in cardiac hypertrophy and failure: from metabolomics to epigenetics. Am J Physiol Heart Circ Physiol 313(3):H584–H596PubMed
76.
Zurück zum Zitat Kaimoto S et al (2017) Activation of PPAR-alpha in the early stage of heart failure maintained myocardial function and energetics in pressure-overload heart failure. Am J Physiol Heart Circ Physiol 312(2):H305–H313PubMed Kaimoto S et al (2017) Activation of PPAR-alpha in the early stage of heart failure maintained myocardial function and energetics in pressure-overload heart failure. Am J Physiol Heart Circ Physiol 312(2):H305–H313PubMed
77.
Zurück zum Zitat Oka S et al (2015) Peroxisome proliferator activated receptor-alpha association with silent information regulator 1 suppresses cardiac fatty acid metabolism in the failing heart. Circ Heart Fail 8(6):1123–1132PubMedPubMedCentral Oka S et al (2015) Peroxisome proliferator activated receptor-alpha association with silent information regulator 1 suppresses cardiac fatty acid metabolism in the failing heart. Circ Heart Fail 8(6):1123–1132PubMedPubMedCentral
78.
Zurück zum Zitat Morgan EE et al (2006) Effects of chronic activation of peroxisome proliferator-activated receptor-alpha or high-fat feeding in a rat infarct model of heart failure. Am J Physiol Heart Circ Physiol 290(5):H1899–H1904PubMed Morgan EE et al (2006) Effects of chronic activation of peroxisome proliferator-activated receptor-alpha or high-fat feeding in a rat infarct model of heart failure. Am J Physiol Heart Circ Physiol 290(5):H1899–H1904PubMed
79.
Zurück zum Zitat Ogata T et al (2004) Myocardial fibrosis and diastolic dysfunction in deoxycorticosterone acetate-salt hypertensive rats is ameliorated by the peroxisome proliferator-activated receptor-alpha activator fenofibrate, partly by suppressing inflammatory responses associated with the nuclear factor-kappa-B pathway. J Am Coll Cardiol 43(8):1481–1488PubMed Ogata T et al (2004) Myocardial fibrosis and diastolic dysfunction in deoxycorticosterone acetate-salt hypertensive rats is ameliorated by the peroxisome proliferator-activated receptor-alpha activator fenofibrate, partly by suppressing inflammatory responses associated with the nuclear factor-kappa-B pathway. J Am Coll Cardiol 43(8):1481–1488PubMed
80.
Zurück zum Zitat Brigadeau F et al (2007) The PPARalpha activator fenofibrate slows down the progression of the left ventricular dysfunction in porcine tachycardia-induced cardiomyopathy. J Cardiovasc Pharmacol 49(6):408–415PubMed Brigadeau F et al (2007) The PPARalpha activator fenofibrate slows down the progression of the left ventricular dysfunction in porcine tachycardia-induced cardiomyopathy. J Cardiovasc Pharmacol 49(6):408–415PubMed
81.
Zurück zum Zitat Cheng L et al (2004) Cardiomyocyte-restricted peroxisome proliferator-activated receptor-delta deletion perturbs myocardial fatty acid oxidation and leads to cardiomyopathy. Nat Med 10(11):1245–1250PubMed Cheng L et al (2004) Cardiomyocyte-restricted peroxisome proliferator-activated receptor-delta deletion perturbs myocardial fatty acid oxidation and leads to cardiomyopathy. Nat Med 10(11):1245–1250PubMed
82.
Zurück zum Zitat El AH et al (2013) The hypoxia-inducible microRNA cluster miR-199a approximately 214 targets myocardial PPARdelta and impairs mitochondrial fatty acid oxidation. Cell Metab 18(3):341–354 El AH et al (2013) The hypoxia-inducible microRNA cluster miR-199a approximately 214 targets myocardial PPARdelta and impairs mitochondrial fatty acid oxidation. Cell Metab 18(3):341–354
83.
Zurück zum Zitat Sihag S et al (2009) PGC-1alpha and ERRalpha target gene downregulation is a signature of the failing human heart. J Mol Cell Cardiol 46(2):201–212PubMed Sihag S et al (2009) PGC-1alpha and ERRalpha target gene downregulation is a signature of the failing human heart. J Mol Cell Cardiol 46(2):201–212PubMed
84.
Zurück zum Zitat Riehle C et al (2011) PGC-1beta deficiency accelerates the transition to heart failure in pressure overload hypertrophy. Circ Res 109(7):783–793PubMedPubMedCentral Riehle C et al (2011) PGC-1beta deficiency accelerates the transition to heart failure in pressure overload hypertrophy. Circ Res 109(7):783–793PubMedPubMedCentral
85.
Zurück zum Zitat Lopaschuk GD, Ussher JR (2016) Evolving concepts of myocardial energy metabolism: more than just fats and carbohydrates. Circ Res 119(11):1173–1176PubMed Lopaschuk GD, Ussher JR (2016) Evolving concepts of myocardial energy metabolism: more than just fats and carbohydrates. Circ Res 119(11):1173–1176PubMed
87.
Zurück zum Zitat Cotter DG, Schugar RC, Crawford PA (2013) Ketone body metabolism and cardiovascular disease. Am J Physiol Heart Circ Physiol 304(8):H1060–H1076PubMedPubMedCentral Cotter DG, Schugar RC, Crawford PA (2013) Ketone body metabolism and cardiovascular disease. Am J Physiol Heart Circ Physiol 304(8):H1060–H1076PubMedPubMedCentral
88.
Zurück zum Zitat Yokokawa T et al (2016) Exhaled acetone concentration is related to hemodynamic severity in patients with non-ischemic chronic heart failure. Circ J 80(5):1178–1186PubMed Yokokawa T et al (2016) Exhaled acetone concentration is related to hemodynamic severity in patients with non-ischemic chronic heart failure. Circ J 80(5):1178–1186PubMed
89.
Zurück zum Zitat Obokata M et al (2017) Association between circulating ketone bodies and worse outcomes in hemodialysis patients. J Am Heart Assoc 6(10):e006885PubMedPubMedCentral Obokata M et al (2017) Association between circulating ketone bodies and worse outcomes in hemodialysis patients. J Am Heart Assoc 6(10):e006885PubMedPubMedCentral
90.
Zurück zum Zitat Taegtmeyer H (2016) Failing heart and starving brain: ketone bodies to the rescue. Circulation 134(4):265–266PubMed Taegtmeyer H (2016) Failing heart and starving brain: ketone bodies to the rescue. Circulation 134(4):265–266PubMed
91.
Zurück zum Zitat Kolwicz SJ, Airhart S, Tian R (2016) Ketones step to the plate: a game changer for metabolic remodeling in heart failure? Circulation 133(8):689–691PubMedPubMedCentral Kolwicz SJ, Airhart S, Tian R (2016) Ketones step to the plate: a game changer for metabolic remodeling in heart failure? Circulation 133(8):689–691PubMedPubMedCentral
92.
Zurück zum Zitat Wang W et al (2016) Defective branched chain amino acid catabolism contributes to cardiac dysfunction and remodeling following myocardial infarction. Am J Physiol Heart Circ Physiol 311(5):H1160–H1169PubMed Wang W et al (2016) Defective branched chain amino acid catabolism contributes to cardiac dysfunction and remodeling following myocardial infarction. Am J Physiol Heart Circ Physiol 311(5):H1160–H1169PubMed
93.
Zurück zum Zitat Tanada Y et al (2015) Branched-chain amino acids ameliorate heart failure with cardiac cachexia in rats. Life Sci 137(1):20–27PubMed Tanada Y et al (2015) Branched-chain amino acids ameliorate heart failure with cardiac cachexia in rats. Life Sci 137(1):20–27PubMed
94.
Zurück zum Zitat Takata M et al (2017) An exploratory study on the efficacy and safety of a BCAA preparation used in combination with cardiac rehabilitation for patients with chronic heart failure. BMC Cardiovasc Disord 17(1):205PubMedPubMedCentral Takata M et al (2017) An exploratory study on the efficacy and safety of a BCAA preparation used in combination with cardiac rehabilitation for patients with chronic heart failure. BMC Cardiovasc Disord 17(1):205PubMedPubMedCentral
95.
Zurück zum Zitat Huynh K (2016) Heart failure: ketone bodies as fuel in heart failure. Nat Rev Cardiol 13(3):122–123PubMed Huynh K (2016) Heart failure: ketone bodies as fuel in heart failure. Nat Rev Cardiol 13(3):122–123PubMed
96.
Zurück zum Zitat Biesele JJ, Tobioka M (1956) Mitochondria in living cells: an analysis of movements. J Biophys Biochem Cytol 2(4 Suppl):319–324PubMedPubMedCentral Biesele JJ, Tobioka M (1956) Mitochondria in living cells: an analysis of movements. J Biophys Biochem Cytol 2(4 Suppl):319–324PubMedPubMedCentral
97.
Zurück zum Zitat Maneechote C et al (2017) Roles of mitochondrial dynamics modulators in cardiac ischaemia/reperfusion injury. J Cell Mol Med 21(11):2643–2653PubMedPubMedCentral Maneechote C et al (2017) Roles of mitochondrial dynamics modulators in cardiac ischaemia/reperfusion injury. J Cell Mol Med 21(11):2643–2653PubMedPubMedCentral
98.
Zurück zum Zitat Nan J et al (2017) TNFR2 stimulation promotes mitochondrial fusion via Stat3- and NF-kB-dependent activation of OPA1 expression. Circ Res 121(4):392–410PubMedPubMedCentral Nan J et al (2017) TNFR2 stimulation promotes mitochondrial fusion via Stat3- and NF-kB-dependent activation of OPA1 expression. Circ Res 121(4):392–410PubMedPubMedCentral
99.
Zurück zum Zitat Wai T et al (2015) Imbalanced OPA1 processing and mitochondrial fragmentation cause heart failure in mice. Science 350(6265):aad0116PubMed Wai T et al (2015) Imbalanced OPA1 processing and mitochondrial fragmentation cause heart failure in mice. Science 350(6265):aad0116PubMed
100.
Zurück zum Zitat Nan J et al (2017) Molecular regulation of mitochondrial dynamics in cardiac disease. Biochim Biophys Acta 1864(7):1260–1273 Nan J et al (2017) Molecular regulation of mitochondrial dynamics in cardiac disease. Biochim Biophys Acta 1864(7):1260–1273
101.
Zurück zum Zitat Martin OJ et al (2014) A role for peroxisome proliferator-activated receptor gamma coactivator-1 in the control of mitochondrial dynamics during postnatal cardiac growth. Circ Res 114(4):626–636PubMed Martin OJ et al (2014) A role for peroxisome proliferator-activated receptor gamma coactivator-1 in the control of mitochondrial dynamics during postnatal cardiac growth. Circ Res 114(4):626–636PubMed
102.
Zurück zum Zitat Tsushima K et al (2018) Mitochondrial reactive oxygen species in Lipotoxic hearts induce post-translational modifications of AKAP121, DRP1, and OPA1 that promote mitochondrial fission. Circ Res 122(1):58–73PubMed Tsushima K et al (2018) Mitochondrial reactive oxygen species in Lipotoxic hearts induce post-translational modifications of AKAP121, DRP1, and OPA1 that promote mitochondrial fission. Circ Res 122(1):58–73PubMed
105.
Zurück zum Zitat Li Q et al (2015) Multiple mass isotopomer tracing of acetyl-CoA metabolism in Langendorff-perfused rat hearts: channeling of acetyl-CoA from pyruvate dehydrogenase to carnitine acetyltransferase. J Biol Chem 290(13):8121–8132PubMedPubMedCentral Li Q et al (2015) Multiple mass isotopomer tracing of acetyl-CoA metabolism in Langendorff-perfused rat hearts: channeling of acetyl-CoA from pyruvate dehydrogenase to carnitine acetyltransferase. J Biol Chem 290(13):8121–8132PubMedPubMedCentral
106.
Zurück zum Zitat Nadtochiy SM et al (2015) Metabolomic profiling of the heart during acute ischemic preconditioning reveals a role for SIRT1 in rapid cardioprotective metabolic adaptation. J Mol Cell Cardiol 88(1):64–72PubMedPubMedCentral Nadtochiy SM et al (2015) Metabolomic profiling of the heart during acute ischemic preconditioning reveals a role for SIRT1 in rapid cardioprotective metabolic adaptation. J Mol Cell Cardiol 88(1):64–72PubMedPubMedCentral
Metadaten
Titel
Metabolic remodeling of substrate utilization during heart failure progression
verfasst von
Liang Chen
Jiangping Song
Shengshou Hu
Publikationsdatum
23.05.2018
Verlag
Springer US
Erschienen in
Heart Failure Reviews / Ausgabe 1/2019
Print ISSN: 1382-4147
Elektronische ISSN: 1573-7322
DOI
https://doi.org/10.1007/s10741-018-9713-0

Weitere Artikel der Ausgabe 1/2019

Heart Failure Reviews 1/2019 Zur Ausgabe

„Übersichtlicher Wegweiser“: Lauterbachs umstrittener Klinik-Atlas ist online

17.05.2024 Klinik aktuell Nachrichten

Sie sei „ethisch geboten“, meint Gesundheitsminister Karl Lauterbach: mehr Transparenz über die Qualität von Klinikbehandlungen. Um sie abzubilden, lässt er gegen den Widerstand vieler Länder einen virtuellen Klinik-Atlas freischalten.

„Jeder Fall von plötzlichem Tod muss obduziert werden!“

17.05.2024 Plötzlicher Herztod Nachrichten

Ein signifikanter Anteil der Fälle von plötzlichem Herztod ist genetisch bedingt. Um ihre Verwandten vor diesem Schicksal zu bewahren, sollten jüngere Personen, die plötzlich unerwartet versterben, ausnahmslos einer Autopsie unterzogen werden.

Hirnblutung unter DOAK und VKA ähnlich bedrohlich

17.05.2024 Direkte orale Antikoagulanzien Nachrichten

Kommt es zu einer nichttraumatischen Hirnblutung, spielt es keine große Rolle, ob die Betroffenen zuvor direkt wirksame orale Antikoagulanzien oder Marcumar bekommen haben: Die Prognose ist ähnlich schlecht.

Schlechtere Vorhofflimmern-Prognose bei kleinem linken Ventrikel

17.05.2024 Vorhofflimmern Nachrichten

Nicht nur ein vergrößerter, sondern auch ein kleiner linker Ventrikel ist bei Vorhofflimmern mit einer erhöhten Komplikationsrate assoziiert. Der Zusammenhang besteht nach Daten aus China unabhängig von anderen Risikofaktoren.

Update Kardiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.