Skip to main content
Erschienen in: Inflammation 4/2020

24.04.2020 | Review

Sepsis-Induced Myocardial Dysfunction (SIMD): the Pathophysiological Mechanisms and Therapeutic Strategies Targeting Mitochondria

verfasst von: Yao Lin, Yinchuan Xu, Zhaocai Zhang

Erschienen in: Inflammation | Ausgabe 4/2020

Einloggen, um Zugang zu erhalten

Abstract

Sepsis is a lethal syndrome with multiple organ failure caused by an inappropriate host response to infection. Cardiac dysfunction is one of the important complications of sepsis, termed sepsis-induced myocardial dysfunction (SIMD), which is characterized by systolic and diastolic dysfunction of both sides of the heart. Mechanisms that contribute to SIMD include an excessive inflammatory response, altered circulatory, microvascular status, nitric oxide (NO) synthesis impairment, endothelial dysfunction, disorders of calcium regulation, cardiac autophagy anomaly, autonomic nervous system dysregulation, metabolic reprogramming, and mitochondrial dysfunction. The role of mitochondrial dysfunction, which is characterized by structural abnormalities, increased oxidative stress, abnormal opening of the mitochondrial permeability transition pore (mPTP), mitochondrial uncoupling, and disordered quality control systems, has been gaining increasing attention as a central player in the pathophysiology of SIMD. The disruption of homeostasis within the organism induced by mitochondrial dysfunction may also be an important aspect of SIMD development. In addition, an emerging therapy strategy targeting mitochondria, namely, metabolic resuscitation, seems promising. The current review briefly introduces the mechanism of SIMD, highlights how mitochondrial dysfunction contributes to SIMD, and discusses the role of metabolic resuscitation in the treatment of SIMD.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Singer, M., C.S. Deutschman, C.W. Seymour, M. Shankar-Hari, D. Annane, M. Bauer, R. Bellomo, G.R. Bernard, J.D. Chiche, C.M. Coopersmith, R.S. Hotchkiss, M.M. Levy, J.C. Marshall, G.S. Martin, S.M. Opal, G.D. Rubenfeld, T. van der Poll, J.L. Vincent, and D.C. Angus. 2016. The third international consensus definitions for sepsis and septic shock (Sepsis-3). Jama 315 (8): 801–810.PubMedPubMedCentral Singer, M., C.S. Deutschman, C.W. Seymour, M. Shankar-Hari, D. Annane, M. Bauer, R. Bellomo, G.R. Bernard, J.D. Chiche, C.M. Coopersmith, R.S. Hotchkiss, M.M. Levy, J.C. Marshall, G.S. Martin, S.M. Opal, G.D. Rubenfeld, T. van der Poll, J.L. Vincent, and D.C. Angus. 2016. The third international consensus definitions for sepsis and septic shock (Sepsis-3). Jama 315 (8): 801–810.PubMedPubMedCentral
2.
Zurück zum Zitat Reinhart, K., R. Daniels, N. Kissoon, F.R. Machado, R.D. Schachter, and S. Finfer. 2017. Recognizing sepsis as a global health priority - a WHO resolution. The New England Journal of Medicine 377 (5): 414–417.PubMed Reinhart, K., R. Daniels, N. Kissoon, F.R. Machado, R.D. Schachter, and S. Finfer. 2017. Recognizing sepsis as a global health priority - a WHO resolution. The New England Journal of Medicine 377 (5): 414–417.PubMed
3.
Zurück zum Zitat Court, O., A. Kumar, J.E. Parrillo, and A. Kumar. 2002. Clinical review: myocardial depression in sepsis and septic shock. Critical care (London, England)6 (6): 500–508. Court, O., A. Kumar, J.E. Parrillo, and A. Kumar. 2002. Clinical review: myocardial depression in sepsis and septic shock. Critical care (London, England)6 (6): 500–508.
4.
Zurück zum Zitat Liu, Y.C., M.M. Yu, S.T. Shou, and Y.F. Chai. 2017. Sepsis-induced cardiomyopathy: mechanisms and treatments. Frontiers in Immunology 8: 1021.PubMedPubMedCentral Liu, Y.C., M.M. Yu, S.T. Shou, and Y.F. Chai. 2017. Sepsis-induced cardiomyopathy: mechanisms and treatments. Frontiers in Immunology 8: 1021.PubMedPubMedCentral
5.
Zurück zum Zitat Beesley, S.J., G. Weber, T. Sarge, S. Nikravan, C.K. Grissom, M.J. Lanspa, S. Shahul, and S.M. Brown. 2018. Septic cardiomyopathy. Critical Care Medicine 46 (4): 625–634.PubMed Beesley, S.J., G. Weber, T. Sarge, S. Nikravan, C.K. Grissom, M.J. Lanspa, S. Shahul, and S.M. Brown. 2018. Septic cardiomyopathy. Critical Care Medicine 46 (4): 625–634.PubMed
6.
Zurück zum Zitat Martin, L., M. Derwall, S. Al Zoubi, E. Zechendorf, D.A. Reuter, C. Thiemermann, and T. Schuerholz. 2019. The septic heart: current understanding of molecular mechanisms and clinical implications. Chest 155 (2): 427–437.PubMed Martin, L., M. Derwall, S. Al Zoubi, E. Zechendorf, D.A. Reuter, C. Thiemermann, and T. Schuerholz. 2019. The septic heart: current understanding of molecular mechanisms and clinical implications. Chest 155 (2): 427–437.PubMed
7.
Zurück zum Zitat Fenton, K.E., and M.M. Parker. 2016. Cardiac function and dysfunction in sepsis. Clinics in Chest Medicine 37 (2): 289–298.PubMed Fenton, K.E., and M.M. Parker. 2016. Cardiac function and dysfunction in sepsis. Clinics in Chest Medicine 37 (2): 289–298.PubMed
8.
Zurück zum Zitat Singer, M. 2014. The role of mitochondrial dysfunction in sepsis-induced multi-organ failure. Virulence 5 (1): 66–72.PubMed Singer, M. 2014. The role of mitochondrial dysfunction in sepsis-induced multi-organ failure. Virulence 5 (1): 66–72.PubMed
9.
Zurück zum Zitat Takasu, O., J.P. Gaut, E. Watanabe, To K, R.E. Fagley, B. Sato, S. Jarman, I.R. Efimov, D.L. Janks, A. Srivastava, et al. 2013. Mechanisms of cardiac and renal dysfunction in patients dying of sepsis. American Journal of Respiratory and Critical Care Medicine 187 (5): 509–517.PubMedPubMedCentral Takasu, O., J.P. Gaut, E. Watanabe, To K, R.E. Fagley, B. Sato, S. Jarman, I.R. Efimov, D.L. Janks, A. Srivastava, et al. 2013. Mechanisms of cardiac and renal dysfunction in patients dying of sepsis. American Journal of Respiratory and Critical Care Medicine 187 (5): 509–517.PubMedPubMedCentral
10.
Zurück zum Zitat Vanasco, V., T. Saez, N.D. Magnani, L. Pereyra, T. Marchini, A. Corach, M.I. Vaccaro, D. Corach, P. Evelson, and S. Alvarez. 2014. Cardiac mitochondrial biogenesis in endotoxemia is not accompanied by mitochondrial function recovery. Free Radical Biology & Medicine 77: 1–9. Vanasco, V., T. Saez, N.D. Magnani, L. Pereyra, T. Marchini, A. Corach, M.I. Vaccaro, D. Corach, P. Evelson, and S. Alvarez. 2014. Cardiac mitochondrial biogenesis in endotoxemia is not accompanied by mitochondrial function recovery. Free Radical Biology & Medicine 77: 1–9.
11.
Zurück zum Zitat Supinski, G.S., and L.A. Callahan. 2006. Polyethylene glycol-superoxide dismutase prevents endotoxin-induced cardiac dysfunction. American Journal of Respiratory and Critical Care Medicine 173 (11): 1240–1247.PubMedPubMedCentral Supinski, G.S., and L.A. Callahan. 2006. Polyethylene glycol-superoxide dismutase prevents endotoxin-induced cardiac dysfunction. American Journal of Respiratory and Critical Care Medicine 173 (11): 1240–1247.PubMedPubMedCentral
12.
Zurück zum Zitat Lowes, D.A., B.M. Thottakam, N.R. Webster, M.P. Murphy, and H.F. Galley. 2008. The mitochondria-targeted antioxidant MitoQ protects against organ damage in a lipopolysaccharide-peptidoglycan model of sepsis. Free Radical Biology & Medicine 45 (11): 1559–1565. Lowes, D.A., B.M. Thottakam, N.R. Webster, M.P. Murphy, and H.F. Galley. 2008. The mitochondria-targeted antioxidant MitoQ protects against organ damage in a lipopolysaccharide-peptidoglycan model of sepsis. Free Radical Biology & Medicine 45 (11): 1559–1565.
13.
Zurück zum Zitat Zang, Q.S., H. Sadek, D.L. Maass, B. Martinez, L. Ma, J.A. Kilgore, N.S. Williams, D.E. Frantz, J.G. Wigginton, F.E. Nwariaku, S.E. Wolf, and J.P. Minei. 2012. Specific inhibition of mitochondrial oxidative stress suppresses inflammation and improves cardiac function in a rat pneumonia-related sepsis model. American Journal of Physiology Heart and Circulatory Physiology 302 (9): H1847–H1859.PubMed Zang, Q.S., H. Sadek, D.L. Maass, B. Martinez, L. Ma, J.A. Kilgore, N.S. Williams, D.E. Frantz, J.G. Wigginton, F.E. Nwariaku, S.E. Wolf, and J.P. Minei. 2012. Specific inhibition of mitochondrial oxidative stress suppresses inflammation and improves cardiac function in a rat pneumonia-related sepsis model. American Journal of Physiology Heart and Circulatory Physiology 302 (9): H1847–H1859.PubMed
14.
Zurück zum Zitat Vanasco, V., M.C. Cimolai, P. Evelson, and S. Alvarez. 2008. The oxidative stress and the mitochondrial dysfunction caused by endotoxemia are prevented by alpha-lipoic acid. Free Radical Research 42 (9): 815–823.PubMed Vanasco, V., M.C. Cimolai, P. Evelson, and S. Alvarez. 2008. The oxidative stress and the mitochondrial dysfunction caused by endotoxemia are prevented by alpha-lipoic acid. Free Radical Research 42 (9): 815–823.PubMed
15.
Zurück zum Zitat Suliman, H.B., K.E. Welty-Wolf, M. Carraway, L. Tatro, and C.A. Piantadosi. 2004. Lipopolysaccharide induces oxidative cardiac mitochondrial damage and biogenesis. Cardiovascular Research 64 (2): 279–288.PubMed Suliman, H.B., K.E. Welty-Wolf, M. Carraway, L. Tatro, and C.A. Piantadosi. 2004. Lipopolysaccharide induces oxidative cardiac mitochondrial damage and biogenesis. Cardiovascular Research 64 (2): 279–288.PubMed
16.
Zurück zum Zitat Joshi, M.S., M.W. Julian, J.E. Huff, J.A. Bauer, Y. Xia, and E.D. Crouser. 2006. Calcineurin regulates myocardial function during acute endotoxemia. American Journal of Respiratory and Critical Care Medicine 173 (9): 999–1007.PubMedPubMedCentral Joshi, M.S., M.W. Julian, J.E. Huff, J.A. Bauer, Y. Xia, and E.D. Crouser. 2006. Calcineurin regulates myocardial function during acute endotoxemia. American Journal of Respiratory and Critical Care Medicine 173 (9): 999–1007.PubMedPubMedCentral
17.
Zurück zum Zitat Larche, J., S. Lancel, S.M. Hassoun, R. Favory, B. Decoster, P. Marchetti, C. Chopin, and R. Neviere. 2006. Inhibition of mitochondrial permeability transition prevents sepsis-induced myocardial dysfunction and mortality. Journal of the American College of Cardiology 48 (2): 377–385.PubMed Larche, J., S. Lancel, S.M. Hassoun, R. Favory, B. Decoster, P. Marchetti, C. Chopin, and R. Neviere. 2006. Inhibition of mitochondrial permeability transition prevents sepsis-induced myocardial dysfunction and mortality. Journal of the American College of Cardiology 48 (2): 377–385.PubMed
18.
Zurück zum Zitat Pan, P., H. Zhang, L. Su, X. Wang, and D. Liu. 2018. Melatonin balance the autophagy and apoptosis by regulating UCP2 in the LPS-induced cardiomyopathy. Molecules (Basel, Switzerland) 23 (3). Pan, P., H. Zhang, L. Su, X. Wang, and D. Liu. 2018. Melatonin balance the autophagy and apoptosis by regulating UCP2 in the LPS-induced cardiomyopathy. Molecules (Basel, Switzerland) 23 (3).
19.
Zurück zum Zitat Xu, C., C. Yi, H. Wang, I.C. Bruce, and Q. Xia. 2012. Mitochondrial nitric oxide synthase participates in septic shock myocardial depression by nitric oxide overproduction and mitochondrial permeability transition pore opening. Shock (Augusta, Ga) 37 (1): 110–115. Xu, C., C. Yi, H. Wang, I.C. Bruce, and Q. Xia. 2012. Mitochondrial nitric oxide synthase participates in septic shock myocardial depression by nitric oxide overproduction and mitochondrial permeability transition pore opening. Shock (Augusta, Ga) 37 (1): 110–115.
20.
Zurück zum Zitat Petronilli, V., D. Penzo, L. Scorrano, P. Bernardi, and F. Di Lisa. 2001. The mitochondrial permeability transition, release of cytochrome c and cell death. Correlation with the duration of pore openings in situ. The Journal of Biological Chemistry 276 (15): 12030–12034.PubMed Petronilli, V., D. Penzo, L. Scorrano, P. Bernardi, and F. Di Lisa. 2001. The mitochondrial permeability transition, release of cytochrome c and cell death. Correlation with the duration of pore openings in situ. The Journal of Biological Chemistry 276 (15): 12030–12034.PubMed
21.
Zurück zum Zitat Wang, X., D. Liu, W. Chai, Y. Long, L. Su, and R. Yang. 2015. The role of uncoupling protein 2 during myocardial dysfunction in a canine model of endotoxin shock. Shock (Augusta, Ga) 43 (3): 292–297. Wang, X., D. Liu, W. Chai, Y. Long, L. Su, and R. Yang. 2015. The role of uncoupling protein 2 during myocardial dysfunction in a canine model of endotoxin shock. Shock (Augusta, Ga) 43 (3): 292–297.
22.
Zurück zum Zitat Zheng, G., J. Lyu, S. Liu, J. Huang, C. Liu, D. Xiang, M. Xie, and Q. Zeng. 2015. Silencing of uncoupling protein 2 by small interfering RNA aggravates mitochondrial dysfunction in cardiomyocytes under septic conditions. International Journal of Molecular Medicine 35 (6): 1525–1536.PubMedPubMedCentral Zheng, G., J. Lyu, S. Liu, J. Huang, C. Liu, D. Xiang, M. Xie, and Q. Zeng. 2015. Silencing of uncoupling protein 2 by small interfering RNA aggravates mitochondrial dysfunction in cardiomyocytes under septic conditions. International Journal of Molecular Medicine 35 (6): 1525–1536.PubMedPubMedCentral
23.
Zurück zum Zitat Sánchez-Villamil, J.P., V. D'Annunzio, P. Finocchietto, S. Holod, I. Rebagliati, H. Pérez, J.G. Peralta, R.J. Gelpi, J.J. Poderoso, and M.C. Carreras. 2016. Cardiac-specific overexpression of thioredoxin 1 attenuates mitochondrial and myocardial dysfunction in septic mice. The international journal of biochemistry & cell biology 81 (Pt B): 323–334. Sánchez-Villamil, J.P., V. D'Annunzio, P. Finocchietto, S. Holod, I. Rebagliati, H. Pérez, J.G. Peralta, R.J. Gelpi, J.J. Poderoso, and M.C. Carreras. 2016. Cardiac-specific overexpression of thioredoxin 1 attenuates mitochondrial and myocardial dysfunction in septic mice. The international journal of biochemistry & cell biology 81 (Pt B): 323–334.
24.
Zurück zum Zitat Gonzalez, A.S., M.E. Elguero, P. Finocchietto, S. Holod, L. Romorini, S.G. Miriuka, J.G. Peralta, J.J. Poderoso, and M.C. Carreras. 2014. Abnormal mitochondrial fusion-fission balance contributes to the progression of experimental sepsis. Free Radical Research 48 (7): 769–783.PubMed Gonzalez, A.S., M.E. Elguero, P. Finocchietto, S. Holod, L. Romorini, S.G. Miriuka, J.G. Peralta, J.J. Poderoso, and M.C. Carreras. 2014. Abnormal mitochondrial fusion-fission balance contributes to the progression of experimental sepsis. Free Radical Research 48 (7): 769–783.PubMed
25.
Zurück zum Zitat Preau, S., F. Delguste, Y. Yu, I. Remy-Jouet, V. Richard, F. Saulnier, E. Boulanger, and R. Neviere. 2016. Endotoxemia engages the RhoA kinase pathway to impair cardiac function by altering cytoskeleton, mitochondrial fission, and autophagy. Antioxidants & Redox Signaling 24 (10): 529–542. Preau, S., F. Delguste, Y. Yu, I. Remy-Jouet, V. Richard, F. Saulnier, E. Boulanger, and R. Neviere. 2016. Endotoxemia engages the RhoA kinase pathway to impair cardiac function by altering cytoskeleton, mitochondrial fission, and autophagy. Antioxidants & Redox Signaling 24 (10): 529–542.
26.
Zurück zum Zitat Hickson-Bick, D.L., C. Jones, and L.M. Buja. 2008. Stimulation of mitochondrial biogenesis and autophagy by lipopolysaccharide in the neonatal rat cardiomyocyte protects against programmed cell death. Journal of Molecular and Cellular Cardiology 44 (2): 411–418.PubMed Hickson-Bick, D.L., C. Jones, and L.M. Buja. 2008. Stimulation of mitochondrial biogenesis and autophagy by lipopolysaccharide in the neonatal rat cardiomyocyte protects against programmed cell death. Journal of Molecular and Cellular Cardiology 44 (2): 411–418.PubMed
27.
Zurück zum Zitat Piquereau, J., R. Godin, S. Deschênes, V.L. Bessi, M. Mofarrahi, S.N. Hussain, and Y. Burelle. 2013. Protective role of PARK2/Parkin in sepsis-induced cardiac contractile and mitochondrial dysfunction. Autophagy 9 (11): 1837–1851.PubMed Piquereau, J., R. Godin, S. Deschênes, V.L. Bessi, M. Mofarrahi, S.N. Hussain, and Y. Burelle. 2013. Protective role of PARK2/Parkin in sepsis-induced cardiac contractile and mitochondrial dysfunction. Autophagy 9 (11): 1837–1851.PubMed
28.
Zurück zum Zitat Kim, M.J., S.H. Bae, J.C. Ryu, Y. Kwon, J.H. Oh, J. Kwon, J.S. Moon, K. Kim, A. Miyawaki, M.G. Lee, et al. 2016. SESN2/sestrin2 suppresses sepsis by inducing mitophagy and inhibiting NLRP3 activation in macrophages. Autophagy 12 (8): 1272–1291.PubMedPubMedCentral Kim, M.J., S.H. Bae, J.C. Ryu, Y. Kwon, J.H. Oh, J. Kwon, J.S. Moon, K. Kim, A. Miyawaki, M.G. Lee, et al. 2016. SESN2/sestrin2 suppresses sepsis by inducing mitophagy and inhibiting NLRP3 activation in macrophages. Autophagy 12 (8): 1272–1291.PubMedPubMedCentral
29.
Zurück zum Zitat Carré, J.E., J.C. Orban, L. Re, K. Felsmann, W. Iffert, M. Bauer, H.B. Suliman, C.A. Piantadosi, T.M. Mayhew, P. Breen, M. Stotz, and M. Singer. 2010. Survival in critical illness is associated with early activation of mitochondrial biogenesis. American Journal of Respiratory and Critical Care Medicine 182 (6): 745–751.PubMedPubMedCentral Carré, J.E., J.C. Orban, L. Re, K. Felsmann, W. Iffert, M. Bauer, H.B. Suliman, C.A. Piantadosi, T.M. Mayhew, P. Breen, M. Stotz, and M. Singer. 2010. Survival in critical illness is associated with early activation of mitochondrial biogenesis. American Journal of Respiratory and Critical Care Medicine 182 (6): 745–751.PubMedPubMedCentral
30.
Zurück zum Zitat Russell, L.K., C.M. Mansfield, J.J. Lehman, A. Kovacs, M. Courtois, J.E. Saffitz, D.M. Medeiros, M.L. Valencik, J.A. McDonald, and D.P. Kelly. 2004. Cardiac-specific induction of the transcriptional coactivator peroxisome proliferator-activated receptor gamma coactivator-1alpha promotes mitochondrial biogenesis and reversible cardiomyopathy in a developmental stage-dependent manner. Circulation Research 94 (4): 525–533.PubMed Russell, L.K., C.M. Mansfield, J.J. Lehman, A. Kovacs, M. Courtois, J.E. Saffitz, D.M. Medeiros, M.L. Valencik, J.A. McDonald, and D.P. Kelly. 2004. Cardiac-specific induction of the transcriptional coactivator peroxisome proliferator-activated receptor gamma coactivator-1alpha promotes mitochondrial biogenesis and reversible cardiomyopathy in a developmental stage-dependent manner. Circulation Research 94 (4): 525–533.PubMed
31.
Zurück zum Zitat Drosatos, K., R.S. Khan, C.M. Trent, H. Jiang, N.H. Son, W.S. Blaner, S. Homma, P.C. Schulze, and I.J. Goldberg. 2013. Peroxisome proliferator-activated receptor-γ activation prevents sepsis-related cardiac dysfunction and mortality in mice. Circulation Heart failure 6 (3): 550–562.PubMedPubMedCentral Drosatos, K., R.S. Khan, C.M. Trent, H. Jiang, N.H. Son, W.S. Blaner, S. Homma, P.C. Schulze, and I.J. Goldberg. 2013. Peroxisome proliferator-activated receptor-γ activation prevents sepsis-related cardiac dysfunction and mortality in mice. Circulation Heart failure 6 (3): 550–562.PubMedPubMedCentral
32.
Zurück zum Zitat Schilling, J., L. Lai, N. Sambandam, C.E. Dey, T.C. Leone, and D.P. Kelly. 2011. Toll-like receptor-mediated inflammatory signaling reprograms cardiac energy metabolism by repressing peroxisome proliferator-activated receptor γ coactivator-1 signaling. Circulation Heart failure 4 (4): 474–482.PubMedPubMedCentral Schilling, J., L. Lai, N. Sambandam, C.E. Dey, T.C. Leone, and D.P. Kelly. 2011. Toll-like receptor-mediated inflammatory signaling reprograms cardiac energy metabolism by repressing peroxisome proliferator-activated receptor γ coactivator-1 signaling. Circulation Heart failure 4 (4): 474–482.PubMedPubMedCentral
33.
Zurück zum Zitat Solomon, M.A., R. Correa, H.R. Alexander, L.A. Koev, J.P. Cobb, D.K. Kim, W.C. Roberts, Z.M. Quezado, T.D. Scholz, and R.E. Cunnion. 1994. Myocardial energy metabolism and morphology in a canine model of sepsis. The American Journal of Physiology 266 (2 Pt 2): H757–H768.PubMed Solomon, M.A., R. Correa, H.R. Alexander, L.A. Koev, J.P. Cobb, D.K. Kim, W.C. Roberts, Z.M. Quezado, T.D. Scholz, and R.E. Cunnion. 1994. Myocardial energy metabolism and morphology in a canine model of sepsis. The American Journal of Physiology 266 (2 Pt 2): H757–H768.PubMed
34.
Zurück zum Zitat Zang, Q., D.L. Maass, S.J. Tsai, and J.W. Horton. 2007. Cardiac mitochondrial damage and inflammation responses in sepsis. Surgical Infections 8 (1): 41–54.PubMedPubMedCentral Zang, Q., D.L. Maass, S.J. Tsai, and J.W. Horton. 2007. Cardiac mitochondrial damage and inflammation responses in sepsis. Surgical Infections 8 (1): 41–54.PubMedPubMedCentral
35.
Zurück zum Zitat Neri, M., I. Riezzo, C. Pomara, S. Schiavone, and E. Turillazzi. 2016. Oxidative-nitrosative stress and myocardial dysfunctions in sepsis: evidence from the literature and postmortem observations. Mediators of Inflammation 2016: 3423450.PubMedPubMedCentral Neri, M., I. Riezzo, C. Pomara, S. Schiavone, and E. Turillazzi. 2016. Oxidative-nitrosative stress and myocardial dysfunctions in sepsis: evidence from the literature and postmortem observations. Mediators of Inflammation 2016: 3423450.PubMedPubMedCentral
36.
Zurück zum Zitat Bolaños, J.P., S.J. Heales, S. Peuchen, J.E. Barker, J.M. Land, and J.B. Clark. 1996. Nitric oxide-mediated mitochondrial damage: a potential neuroprotective role for glutathione. Free Radical Biology & Medicine 21 (7): 995–1001. Bolaños, J.P., S.J. Heales, S. Peuchen, J.E. Barker, J.M. Land, and J.B. Clark. 1996. Nitric oxide-mediated mitochondrial damage: a potential neuroprotective role for glutathione. Free Radical Biology & Medicine 21 (7): 995–1001.
37.
Zurück zum Zitat Supinski, G.S., M.P. Murphy, and L.A. Callahan. 2009. MitoQ administration prevents endotoxin-induced cardiac dysfunction. American journal of physiology Regulatory, integrative and comparative physiology 297 (4): R1095–R1102.PubMedPubMedCentral Supinski, G.S., M.P. Murphy, and L.A. Callahan. 2009. MitoQ administration prevents endotoxin-induced cardiac dysfunction. American journal of physiology Regulatory, integrative and comparative physiology 297 (4): R1095–R1102.PubMedPubMedCentral
38.
Zurück zum Zitat Halestrap, A.P., G.P. McStay, and S.J. Clarke. The permeability transition pore complex: another view. Biochimie84 (2–3): 153–166. Halestrap, A.P., G.P. McStay, and S.J. Clarke. The permeability transition pore complex: another view. Biochimie84 (2–3): 153–166.
39.
Zurück zum Zitat Halestrap, A.P. 2009. What is the mitochondrial permeability transition pore? Journal of Molecular and Cellular Cardiology 46 (6): 821–831.PubMed Halestrap, A.P. 2009. What is the mitochondrial permeability transition pore? Journal of Molecular and Cellular Cardiology 46 (6): 821–831.PubMed
40.
Zurück zum Zitat Hüser, J., and L.A. Blatter. 1999. Fluctuations in mitochondrial membrane potential caused by repetitive gating of the permeability transition pore. The Biochemical Journal 343 (Pt 2): 311–317.PubMedPubMedCentral Hüser, J., and L.A. Blatter. 1999. Fluctuations in mitochondrial membrane potential caused by repetitive gating of the permeability transition pore. The Biochemical Journal 343 (Pt 2): 311–317.PubMedPubMedCentral
41.
Zurück zum Zitat Petronilli, V., G. Miotto, M. Canton, M. Brini, R. Colonna, P. Bernardi, and F. Di Lisa. 1999. Transient and long-lasting openings of the mitochondrial permeability transition pore can be monitored directly in intact cells by changes in mitochondrial calcein fluorescence. Biophysical Journal 76 (2): 725–734.PubMedPubMedCentral Petronilli, V., G. Miotto, M. Canton, M. Brini, R. Colonna, P. Bernardi, and F. Di Lisa. 1999. Transient and long-lasting openings of the mitochondrial permeability transition pore can be monitored directly in intact cells by changes in mitochondrial calcein fluorescence. Biophysical Journal 76 (2): 725–734.PubMedPubMedCentral
42.
Zurück zum Zitat Divakaruni, A.S., and M.D. Brand. 2011. The regulation and physiology of mitochondrial proton leak. Physiology (Bethesda, Md) 26 (3): 192–205. Divakaruni, A.S., and M.D. Brand. 2011. The regulation and physiology of mitochondrial proton leak. Physiology (Bethesda, Md) 26 (3): 192–205.
43.
Zurück zum Zitat Ruiz-Ramírez, A., O. López-Acosta, M.A. Barrios-Maya, and M. El-Hafidi. 2016. Cell death and heart failure in obesity: role of uncoupling proteins. Oxidative Medicine and Cellular Longevity 2016: 9340654.PubMedPubMedCentral Ruiz-Ramírez, A., O. López-Acosta, M.A. Barrios-Maya, and M. El-Hafidi. 2016. Cell death and heart failure in obesity: role of uncoupling proteins. Oxidative Medicine and Cellular Longevity 2016: 9340654.PubMedPubMedCentral
44.
Zurück zum Zitat Youle, R.J., and A.M. van der Bliek. 2012. Mitochondrial fission, fusion, and stress. Science (New York, NY) 337 (6098): 1062–1065. Youle, R.J., and A.M. van der Bliek. 2012. Mitochondrial fission, fusion, and stress. Science (New York, NY) 337 (6098): 1062–1065.
45.
Zurück zum Zitat Kubli, D.A., and Å.B. Gustafsson. 2012. Mitochondria and mitophagy: the yin and yang of cell death control. Circulation Research 111 (9): 1208–1221.PubMedPubMedCentral Kubli, D.A., and Å.B. Gustafsson. 2012. Mitochondria and mitophagy: the yin and yang of cell death control. Circulation Research 111 (9): 1208–1221.PubMedPubMedCentral
46.
Zurück zum Zitat Dorn, G.W., and R.N. Kitsis. 2015. The mitochondrial dynamism-mitophagy-cell death interactome: multiple roles performed by members of a mitochondrial molecular ensemble. Circulation Research 116 (1): 167–182.PubMed Dorn, G.W., and R.N. Kitsis. 2015. The mitochondrial dynamism-mitophagy-cell death interactome: multiple roles performed by members of a mitochondrial molecular ensemble. Circulation Research 116 (1): 167–182.PubMed
47.
Zurück zum Zitat Kelly, D.P., and R.C. Scarpulla. 2004. Transcriptional regulatory circuits controlling mitochondrial biogenesis and function. Genes & Development 18 (4): 357–368. Kelly, D.P., and R.C. Scarpulla. 2004. Transcriptional regulatory circuits controlling mitochondrial biogenesis and function. Genes & Development 18 (4): 357–368.
48.
Zurück zum Zitat Wenz, T. 2013. Regulation of mitochondrial biogenesis and PGC-1α under cellular stress. Mitochondrion 13 (2): 134–142.PubMed Wenz, T. 2013. Regulation of mitochondrial biogenesis and PGC-1α under cellular stress. Mitochondrion 13 (2): 134–142.PubMed
49.
Zurück zum Zitat Yao, X., D. Carlson, Y. Sun, L. Ma, S.E. Wolf, J.P. Minei, and Q.S. Zang. 2015. Mitochondrial ROS induces cardiac inflammation via a pathway through mtDNA damage in a pneumonia-related sepsis model. PLoS One 10 (10): e0139416.PubMedPubMedCentral Yao, X., D. Carlson, Y. Sun, L. Ma, S.E. Wolf, J.P. Minei, and Q.S. Zang. 2015. Mitochondrial ROS induces cardiac inflammation via a pathway through mtDNA damage in a pneumonia-related sepsis model. PLoS One 10 (10): e0139416.PubMedPubMedCentral
50.
Zurück zum Zitat Chouchani, E.T., L. Kazak, and B.M. Spiegelman. 2017. Mitochondrial reactive oxygen species and adipose tissue thermogenesis: Bridging physiology and mechanisms. The Journal of Biological Chemistry 292 (41): 16810–16816.PubMedPubMedCentral Chouchani, E.T., L. Kazak, and B.M. Spiegelman. 2017. Mitochondrial reactive oxygen species and adipose tissue thermogenesis: Bridging physiology and mechanisms. The Journal of Biological Chemistry 292 (41): 16810–16816.PubMedPubMedCentral
51.
Zurück zum Zitat Ortega, S.P., E.T. Chouchani, and S. Boudina. 2017. Stress turns on the heat: regulation of mitochondrial biogenesis and UCP1 by ROS in adipocytes. Adipocyte 6 (1): 56–61.PubMed Ortega, S.P., E.T. Chouchani, and S. Boudina. 2017. Stress turns on the heat: regulation of mitochondrial biogenesis and UCP1 by ROS in adipocytes. Adipocyte 6 (1): 56–61.PubMed
52.
Zurück zum Zitat Yu, X.X., J.L. Barger, B.B. Boyer, M.D. Brand, G. Pan, and S.H. Adams. 2000. Impact of endotoxin on UCP homolog mRNA abundance, thermoregulation, and mitochondrial proton leak kinetics. American Journal of Physiology Endocrinology and Metabolism 279 (2): E433–E446.PubMed Yu, X.X., J.L. Barger, B.B. Boyer, M.D. Brand, G. Pan, and S.H. Adams. 2000. Impact of endotoxin on UCP homolog mRNA abundance, thermoregulation, and mitochondrial proton leak kinetics. American Journal of Physiology Endocrinology and Metabolism 279 (2): E433–E446.PubMed
53.
Zurück zum Zitat Chen, H.W., C. Hsu, T.S. Lu, S.J. Wang, and R.C. Yang. 2003. Heat shock pretreatment prevents cardiac mitochondrial dysfunction during sepsis. Shock (Augusta, Ga) 20 (3): 274–279. Chen, H.W., C. Hsu, T.S. Lu, S.J. Wang, and R.C. Yang. 2003. Heat shock pretreatment prevents cardiac mitochondrial dysfunction during sepsis. Shock (Augusta, Ga) 20 (3): 274–279.
54.
Zurück zum Zitat Miller, W.L. 2013. Steroid hormone synthesis in mitochondria. Molecular and Cellular Endocrinology 379 (1–2): 62–73.PubMed Miller, W.L. 2013. Steroid hormone synthesis in mitochondria. Molecular and Cellular Endocrinology 379 (1–2): 62–73.PubMed
55.
Zurück zum Zitat Maechler, P. 2013. Mitochondrial function and insulin secretion. Molecular and Cellular Endocrinology 379 (1–2): 12–18.PubMed Maechler, P. 2013. Mitochondrial function and insulin secretion. Molecular and Cellular Endocrinology 379 (1–2): 12–18.PubMed
56.
Zurück zum Zitat Chow, J., J. Rahman, J.C. Achermann, M.T. Dattani, and S. Rahman. 2017. Mitochondrial disease and endocrine dysfunction. Nature Reviews Endocrinology 13 (2): 92–104.PubMed Chow, J., J. Rahman, J.C. Achermann, M.T. Dattani, and S. Rahman. 2017. Mitochondrial disease and endocrine dysfunction. Nature Reviews Endocrinology 13 (2): 92–104.PubMed
57.
Zurück zum Zitat Sharma, A.C., H.B. Bosmann, S.J. Motew, K.H. Hales, D.B. Hales, and J.L. Ferguson. 1996. Steroid hormone alterations following induction of chronic intraperitoneal sepsis in male rats. Shock (Augusta, Ga) 6 (2): 150–154. Sharma, A.C., H.B. Bosmann, S.J. Motew, K.H. Hales, D.B. Hales, and J.L. Ferguson. 1996. Steroid hormone alterations following induction of chronic intraperitoneal sepsis in male rats. Shock (Augusta, Ga) 6 (2): 150–154.
58.
Zurück zum Zitat Fourrier, F., A. Jallot, L. Leclerc, M. Jourdain, A. Racadot, J.L. Chagnon, A. Rime, and C. Chopin. 1994. Sex steroid hormones in circulatory shock, sepsis syndrome, and septic shock. Circulatory Shock 43 (4): 171–178.PubMed Fourrier, F., A. Jallot, L. Leclerc, M. Jourdain, A. Racadot, J.L. Chagnon, A. Rime, and C. Chopin. 1994. Sex steroid hormones in circulatory shock, sepsis syndrome, and septic shock. Circulatory Shock 43 (4): 171–178.PubMed
59.
Zurück zum Zitat Borkowski, J., A. Siemiatkowski, M. Jedynak, S.L. Czaban, and S. Wołczyński. 2003. Serum levels of luteinizing hormone, testosterone and prolactin in patients with septic shock. Przeglad lekarski 60 (11): 706–709.PubMed Borkowski, J., A. Siemiatkowski, M. Jedynak, S.L. Czaban, and S. Wołczyński. 2003. Serum levels of luteinizing hormone, testosterone and prolactin in patients with septic shock. Przeglad lekarski 60 (11): 706–709.PubMed
60.
Zurück zum Zitat Marx, C., S. Petros, S.R. Bornstein, M. Weise, M. Wendt, M. Menschikowski, L. Engelmann, and G. Höffken. 2003. Adrenocortical hormones in survivors and nonsurvivors of severe sepsis: diverse time course of dehydroepiandrosterone, dehydroepiandrosterone-sulfate, and cortisol. Critical Care Medicine 31 (5): 1382–1388.PubMed Marx, C., S. Petros, S.R. Bornstein, M. Weise, M. Wendt, M. Menschikowski, L. Engelmann, and G. Höffken. 2003. Adrenocortical hormones in survivors and nonsurvivors of severe sepsis: diverse time course of dehydroepiandrosterone, dehydroepiandrosterone-sulfate, and cortisol. Critical Care Medicine 31 (5): 1382–1388.PubMed
61.
Zurück zum Zitat Zhang, Q., G. Dong, X. Zhao, M. Wang, and C.S. Li. 2014. Prognostic significance of hypothalamic-pituitary-adrenal axis hormones in early sepsis: a study performed in the emergency department. Intensive Care Medicine 40 (10): 1499–1508.PubMed Zhang, Q., G. Dong, X. Zhao, M. Wang, and C.S. Li. 2014. Prognostic significance of hypothalamic-pituitary-adrenal axis hormones in early sepsis: a study performed in the emergency department. Intensive Care Medicine 40 (10): 1499–1508.PubMed
62.
Zurück zum Zitat Giorgi, C., S. Marchi, and P. Pinton. 2018. The machineries, regulation and cellular functions of mitochondrial calcium. Nature Reviews Molecular Cell Biology 19 (11): 713–730.PubMed Giorgi, C., S. Marchi, and P. Pinton. 2018. The machineries, regulation and cellular functions of mitochondrial calcium. Nature Reviews Molecular Cell Biology 19 (11): 713–730.PubMed
63.
Zurück zum Zitat Bravo-Sagua, R., V. Parra, C. López-Crisosto, P. Díaz, A.F. Quest, and S. Lavandero. 2017. Calcium transport and signaling in mitochondria. Comprehensive Physiology 7 (2): 623–634.PubMed Bravo-Sagua, R., V. Parra, C. López-Crisosto, P. Díaz, A.F. Quest, and S. Lavandero. 2017. Calcium transport and signaling in mitochondria. Comprehensive Physiology 7 (2): 623–634.PubMed
64.
Zurück zum Zitat Berridge, M.J., P. Lipp, and M.D. Bootman. 2000. The versatility and universality of calcium signalling. Nature Reviews Molecular Cell Biology 1 (1): 11–21.PubMed Berridge, M.J., P. Lipp, and M.D. Bootman. 2000. The versatility and universality of calcium signalling. Nature Reviews Molecular Cell Biology 1 (1): 11–21.PubMed
65.
Zurück zum Zitat Hassoun, S.M., X. Marechal, D. Montaigne, Y. Bouazza, B. Decoster, S. Lancel, and R. Neviere. 2008. Prevention of endotoxin-induced sarcoplasmic reticulum calcium leak improves mitochondrial and myocardial dysfunction. Critical Care Medicine 36 (9): 2590–2596.PubMed Hassoun, S.M., X. Marechal, D. Montaigne, Y. Bouazza, B. Decoster, S. Lancel, and R. Neviere. 2008. Prevention of endotoxin-induced sarcoplasmic reticulum calcium leak improves mitochondrial and myocardial dysfunction. Critical Care Medicine 36 (9): 2590–2596.PubMed
66.
Zurück zum Zitat Joseph, L.C., D. Kokkinaki, M.C. Valenti, G.J. Kim, E. Barca, D. Tomar, N.E. Hoffman, P. Subramanyam, H.M. Colecraft, M. Hirano, et al. 2017. Inhibition of NADPH oxidase 2 (NOX2) prevents sepsis-induced cardiomyopathy by improving calcium handling and mitochondrial function. JCI insight 2 (17). Joseph, L.C., D. Kokkinaki, M.C. Valenti, G.J. Kim, E. Barca, D. Tomar, N.E. Hoffman, P. Subramanyam, H.M. Colecraft, M. Hirano, et al. 2017. Inhibition of NADPH oxidase 2 (NOX2) prevents sepsis-induced cardiomyopathy by improving calcium handling and mitochondrial function. JCI insight 2 (17).
67.
Zurück zum Zitat Pinto, B.B., A. Dyson, M. Umbrello, J.E. Carré, C. Ritter, I. Clatworthy, M.R. Duchen, and M. Singer. 2017. Improved survival in a long-term rat model of sepsis is associated with reduced mitochondrial calcium uptake despite increased energetic demand. Critical Care Medicine 45 (8): e840–e848.PubMed Pinto, B.B., A. Dyson, M. Umbrello, J.E. Carré, C. Ritter, I. Clatworthy, M.R. Duchen, and M. Singer. 2017. Improved survival in a long-term rat model of sepsis is associated with reduced mitochondrial calcium uptake despite increased energetic demand. Critical Care Medicine 45 (8): e840–e848.PubMed
69.
Zurück zum Zitat Chandel, N.S. 2015. Evolution of mitochondria as signaling organelles. Cell Metabolism 22 (2): 204–206.PubMed Chandel, N.S. 2015. Evolution of mitochondria as signaling organelles. Cell Metabolism 22 (2): 204–206.PubMed
70.
Zurück zum Zitat Chan, S.H., K.L. Wu, L.L. Wang, and J.Y. Chan. 2005. Nitric oxide- and superoxide-dependent mitochondrial signaling in endotoxin-induced apoptosis in the rostral ventrolateral medulla of rats. Free Radical Biology & Medicine 39 (5): 603–618. Chan, S.H., K.L. Wu, L.L. Wang, and J.Y. Chan. 2005. Nitric oxide- and superoxide-dependent mitochondrial signaling in endotoxin-induced apoptosis in the rostral ventrolateral medulla of rats. Free Radical Biology & Medicine 39 (5): 603–618.
71.
Zurück zum Zitat Emre, Y., C. Hurtaud, T. Nübel, F. Criscuolo, D. Ricquier, and A.M. Cassard-Doulcier. 2007. Mitochondria contribute to LPS-induced MAPK activation via uncoupling protein UCP2 in macrophages. The Biochemical Journal 402 (2): 271–278.PubMedPubMedCentral Emre, Y., C. Hurtaud, T. Nübel, F. Criscuolo, D. Ricquier, and A.M. Cassard-Doulcier. 2007. Mitochondria contribute to LPS-induced MAPK activation via uncoupling protein UCP2 in macrophages. The Biochemical Journal 402 (2): 271–278.PubMedPubMedCentral
72.
Zurück zum Zitat Neviere, R., F. Delguste, A. Durand, J. Inamo, E. Boulanger, and S. Preau. 2016. Abnormal mitochondrial cAMP/PKA signaling is involved in sepsis-induced mitochondrial and myocardial dysfunction. International Journal of Molecular Sciences17 (12). Neviere, R., F. Delguste, A. Durand, J. Inamo, E. Boulanger, and S. Preau. 2016. Abnormal mitochondrial cAMP/PKA signaling is involved in sepsis-induced mitochondrial and myocardial dysfunction. International Journal of Molecular Sciences17 (12).
73.
Zurück zum Zitat Zang, Q.S., B. Martinez, X. Yao, D.L. Maass, L. Ma, S.E. Wolf, and J.P. Minei. 2012. Sepsis-induced cardiac mitochondrial dysfunction involves altered mitochondrial-localization of tyrosine kinase Src and tyrosine phosphatase SHP2. PLoS One 7 (8): e43424.PubMedPubMedCentral Zang, Q.S., B. Martinez, X. Yao, D.L. Maass, L. Ma, S.E. Wolf, and J.P. Minei. 2012. Sepsis-induced cardiac mitochondrial dysfunction involves altered mitochondrial-localization of tyrosine kinase Src and tyrosine phosphatase SHP2. PLoS One 7 (8): e43424.PubMedPubMedCentral
74.
Zurück zum Zitat Quirós, P.M., A. Mottis, and J. Auwerx. 2016. Mitonuclear communication in homeostasis and stress. Nature Reviews Molecular Cell Biology 17 (4): 213–226.PubMed Quirós, P.M., A. Mottis, and J. Auwerx. 2016. Mitonuclear communication in homeostasis and stress. Nature Reviews Molecular Cell Biology 17 (4): 213–226.PubMed
75.
Zurück zum Zitat Haynes, C.M., C.J. Fiorese, and Y.F. Lin. 2013. Evaluating and responding to mitochondrial dysfunction: the mitochondrial unfolded-protein response and beyond. Trends in Cell Biology 23 (7): 311–318.PubMedPubMedCentral Haynes, C.M., C.J. Fiorese, and Y.F. Lin. 2013. Evaluating and responding to mitochondrial dysfunction: the mitochondrial unfolded-protein response and beyond. Trends in Cell Biology 23 (7): 311–318.PubMedPubMedCentral
76.
Zurück zum Zitat Huang, L.J., H.P. Dong, I.C. Chuang, M.S. Liu, and R.C. Yang. 2012. Attenuation of mitochondrial unfolded protein response is associated with hepatic dysfunction in septic rats. Shock (Augusta, Ga), 38 (6): 642–648. Huang, L.J., H.P. Dong, I.C. Chuang, M.S. Liu, and R.C. Yang. 2012. Attenuation of mitochondrial unfolded protein response is associated with hepatic dysfunction in septic rats. Shock (Augusta, Ga), 38 (6): 642–648.
77.
Zurück zum Zitat West, A.P., W. Khoury-Hanold, M. Staron, M.C. Tal, C.M. Pineda, S.M. Lang, M. Bestwick, B.A. Duguay, N. Raimundo, D.A. MacDuff, et al. 2015. Mitochondrial DNA stress primes the antiviral innate immune response. Nature 520 (7548): 553–557.PubMedPubMedCentral West, A.P., W. Khoury-Hanold, M. Staron, M.C. Tal, C.M. Pineda, S.M. Lang, M. Bestwick, B.A. Duguay, N. Raimundo, D.A. MacDuff, et al. 2015. Mitochondrial DNA stress primes the antiviral innate immune response. Nature 520 (7548): 553–557.PubMedPubMedCentral
78.
Zurück zum Zitat Breda, C.N.S., G.G. Davanzo, P.J. Basso, N.O. Saraiva Câmara, and P.M.M. Moraes-Vieira. 2019. Mitochondria as central hub of the immune system. Redox Biology 26: 101255.PubMedPubMedCentral Breda, C.N.S., G.G. Davanzo, P.J. Basso, N.O. Saraiva Câmara, and P.M.M. Moraes-Vieira. 2019. Mitochondria as central hub of the immune system. Redox Biology 26: 101255.PubMedPubMedCentral
79.
Zurück zum Zitat Vakifahmetoglu-Norberg, H., A.T. Ouchida, and E. Norberg. 2017. The role of mitochondria in metabolism and cell death. Biochemical and Biophysical Research Communications 482 (3): 426–431.PubMed Vakifahmetoglu-Norberg, H., A.T. Ouchida, and E. Norberg. 2017. The role of mitochondria in metabolism and cell death. Biochemical and Biophysical Research Communications 482 (3): 426–431.PubMed
80.
Zurück zum Zitat Gurung, P., J.R. Lukens, and T.D. Kanneganti. 2015. Mitochondria: diversity in the regulation of the NLRP3 inflammasome. Trends in Molecular Medicine 21 (3): 193–201.PubMed Gurung, P., J.R. Lukens, and T.D. Kanneganti. 2015. Mitochondria: diversity in the regulation of the NLRP3 inflammasome. Trends in Molecular Medicine 21 (3): 193–201.PubMed
81.
Zurück zum Zitat Xu, X., Q. Liu, S. He, J. Zhao, N. Wang, X. Han, and Y. Guo. 2018. Qiang-Xin 1 formula prevents Sepsis-induced apoptosis in murine cardiomyocytes by suppressing endoplasmic reticulum- and mitochondria-associated pathways. Frontiers in Pharmacology 9: 818.PubMedPubMedCentral Xu, X., Q. Liu, S. He, J. Zhao, N. Wang, X. Han, and Y. Guo. 2018. Qiang-Xin 1 formula prevents Sepsis-induced apoptosis in murine cardiomyocytes by suppressing endoplasmic reticulum- and mitochondria-associated pathways. Frontiers in Pharmacology 9: 818.PubMedPubMedCentral
82.
Zurück zum Zitat Hotchkiss, R.S., S.B. Osmon, K.C. Chang, T.H. Wagner, C.M. Coopersmith, and I.E. Karl. 2005. Accelerated lymphocyte death in sepsis occurs by both the death receptor and mitochondrial pathways. Journal of immunology (Baltimore, Md : 1950) 174 (8): 5110–5118. Hotchkiss, R.S., S.B. Osmon, K.C. Chang, T.H. Wagner, C.M. Coopersmith, and I.E. Karl. 2005. Accelerated lymphocyte death in sepsis occurs by both the death receptor and mitochondrial pathways. Journal of immunology (Baltimore, Md : 1950) 174 (8): 5110–5118.
83.
Zurück zum Zitat Wang, P., Y. Hu, D. Yao, and Y. Li. 2018. Omi/HtrA2 regulates a mitochondria-dependent apoptotic pathway in a murine model of septic encephalopathy. Cellular Physiology and Biochemistry : International Journal of Experimental Cellular Physiology, Biochemistry, and Pharmacology 49 (6): 2163–2173. Wang, P., Y. Hu, D. Yao, and Y. Li. 2018. Omi/HtrA2 regulates a mitochondria-dependent apoptotic pathway in a murine model of septic encephalopathy. Cellular Physiology and Biochemistry : International Journal of Experimental Cellular Physiology, Biochemistry, and Pharmacology 49 (6): 2163–2173.
84.
Zurück zum Zitat Chen, G., X. Li, M. Huang, X. Zhou, Y. Li, X. Mao, and J. Bai. 2017. The role of thioredoxin-1 in suppression sepsis through inhibiting mitochondrial-induced apoptosis in spleen. Shock (Augusta, Ga) 47 (6): 753–758. Chen, G., X. Li, M. Huang, X. Zhou, Y. Li, X. Mao, and J. Bai. 2017. The role of thioredoxin-1 in suppression sepsis through inhibiting mitochondrial-induced apoptosis in spleen. Shock (Augusta, Ga) 47 (6): 753–758.
85.
Zurück zum Zitat Leite, H.P., and L.F. de Lima. 2016. Metabolic resuscitation in sepsis: a necessary step beyond the hemodynamic? Journal of Thoracic Disease 8 (7): E552–E557.PubMedPubMedCentral Leite, H.P., and L.F. de Lima. 2016. Metabolic resuscitation in sepsis: a necessary step beyond the hemodynamic? Journal of Thoracic Disease 8 (7): E552–E557.PubMedPubMedCentral
86.
Zurück zum Zitat Ding, W., Y. Shen, Q. Li, S. Jiang, and H. Shen. 2018. Therapeutic mild hypothermia improves early outcomes in rats subjected to severe sepsis. Life Sciences 199: 1–9.PubMed Ding, W., Y. Shen, Q. Li, S. Jiang, and H. Shen. 2018. Therapeutic mild hypothermia improves early outcomes in rats subjected to severe sepsis. Life Sciences 199: 1–9.PubMed
87.
Zurück zum Zitat Léon, K., K. Pichavant-Rafini, H. Ollivier, V. Monbet, and E. L'Her. 2015. Does induction time of mild hypothermia influence the survival duration of septic rats? Therapeutic Hypothermia and Temperature Management 5 (2): 85–88.PubMed Léon, K., K. Pichavant-Rafini, H. Ollivier, V. Monbet, and E. L'Her. 2015. Does induction time of mild hypothermia influence the survival duration of septic rats? Therapeutic Hypothermia and Temperature Management 5 (2): 85–88.PubMed
88.
Zurück zum Zitat Schwarzl, M., S. Seiler, M. Wallner, D. von Lewinski, S. Huber, H. Maechler, P. Steendijk, S. Zelzer, M. Truschnig-Wilders, B. Obermayer-Pietsch, A. Lueger, B.M. Pieske, and H. Post. 2013. Mild hypothermia attenuates circulatory and pulmonary dysfunction during experimental endotoxemia. Critical Care Medicine 41 (12): e401–e410.PubMed Schwarzl, M., S. Seiler, M. Wallner, D. von Lewinski, S. Huber, H. Maechler, P. Steendijk, S. Zelzer, M. Truschnig-Wilders, B. Obermayer-Pietsch, A. Lueger, B.M. Pieske, and H. Post. 2013. Mild hypothermia attenuates circulatory and pulmonary dysfunction during experimental endotoxemia. Critical Care Medicine 41 (12): e401–e410.PubMed
89.
Zurück zum Zitat Itenov, T.S., M.E. Johansen, M. Bestle, K. Thormar, L. Hein, L. Gyldensted, A. Lindhardt, H. Christensen, S. Estrup, H.P. Pedersen, et al. 2018. Induced hypothermia in patients with septic shock and respiratory failure (CASS): A randomised, controlled, open-label trial. The Lancet Respiratory Medicine 6 (3): 183–192.PubMed Itenov, T.S., M.E. Johansen, M. Bestle, K. Thormar, L. Hein, L. Gyldensted, A. Lindhardt, H. Christensen, S. Estrup, H.P. Pedersen, et al. 2018. Induced hypothermia in patients with septic shock and respiratory failure (CASS): A randomised, controlled, open-label trial. The Lancet Respiratory Medicine 6 (3): 183–192.PubMed
90.
Zurück zum Zitat Zhang, Z., L. Chen, and H. Ni. 2015. Antipyretic therapy in critically ill patients with sepsis: an interaction with body temperature. PLoS One 10 (3): e0121919.PubMedPubMedCentral Zhang, Z., L. Chen, and H. Ni. 2015. Antipyretic therapy in critically ill patients with sepsis: an interaction with body temperature. PLoS One 10 (3): e0121919.PubMedPubMedCentral
91.
Zurück zum Zitat López-Lluch, G., and P. Navas. 2016. Calorie restriction as an intervention in ageing. The Journal of Physiology 594 (8): 2043–2060.PubMedPubMedCentral López-Lluch, G., and P. Navas. 2016. Calorie restriction as an intervention in ageing. The Journal of Physiology 594 (8): 2043–2060.PubMedPubMedCentral
92.
Zurück zum Zitat Starr, M.E., A.M. Steele, D.A. Cohen, and H. Saito. 2016. Short-term dietary restriction rescues mice from lethal abdominal sepsis and endotoxemia and reduces the inflammatory/coagulant potential of adipose tissue. Critical Care Medicine 44 (7): e509–e519.PubMedPubMedCentral Starr, M.E., A.M. Steele, D.A. Cohen, and H. Saito. 2016. Short-term dietary restriction rescues mice from lethal abdominal sepsis and endotoxemia and reduces the inflammatory/coagulant potential of adipose tissue. Critical Care Medicine 44 (7): e509–e519.PubMedPubMedCentral
93.
Zurück zum Zitat Hasegawa, A., H. Iwasaka, S. Hagiwara, N. Asai, T. Nishida, and T. Noguchi. 2012. Alternate day calorie restriction improves systemic inflammation in a mouse model of sepsis induced by cecal ligation and puncture. The Journal of Surgical Research 174 (1): 136–141.PubMed Hasegawa, A., H. Iwasaka, S. Hagiwara, N. Asai, T. Nishida, and T. Noguchi. 2012. Alternate day calorie restriction improves systemic inflammation in a mouse model of sepsis induced by cecal ligation and puncture. The Journal of Surgical Research 174 (1): 136–141.PubMed
94.
Zurück zum Zitat Arabi, Y.M., A.S. Aldawood, S.H. Haddad, H.M. Al-Dorzi, H.M. Tamim, G. Jones, S. Mehta, L. McIntyre, O. Solaiman, M.H. Sakkijha, et al. 2015. Permissive underfeeding or standard enteral feeding in critically ill adults. The New England Journal of Medicine 372 (25): 2398–2408.PubMed Arabi, Y.M., A.S. Aldawood, S.H. Haddad, H.M. Al-Dorzi, H.M. Tamim, G. Jones, S. Mehta, L. McIntyre, O. Solaiman, M.H. Sakkijha, et al. 2015. Permissive underfeeding or standard enteral feeding in critically ill adults. The New England Journal of Medicine 372 (25): 2398–2408.PubMed
95.
Zurück zum Zitat Donnino, M.W., L.W. Andersen, M. Chase, K.M. Berg, M. Tidswell, T. Giberson, R. Wolfe, A. Moskowitz, H. Smithline, L. Ngo, M.N. Cocchi, and Center for Resuscitation Science Research Group. 2016. Randomized, double-blind, placebo-controlled trial of thiamine as a metabolic resuscitator in septic shock: a pilot study. Critical Care Medicine 44 (2): 360–367.PubMedPubMedCentral Donnino, M.W., L.W. Andersen, M. Chase, K.M. Berg, M. Tidswell, T. Giberson, R. Wolfe, A. Moskowitz, H. Smithline, L. Ngo, M.N. Cocchi, and Center for Resuscitation Science Research Group. 2016. Randomized, double-blind, placebo-controlled trial of thiamine as a metabolic resuscitator in septic shock: a pilot study. Critical Care Medicine 44 (2): 360–367.PubMedPubMedCentral
96.
Zurück zum Zitat Donnino, M.W., E. Carney, M.N. Cocchi, I. Barbash, M. Chase, N. Joyce, P.P. Chou, and L. Ngo. 2010. Thiamine deficiency in critically ill patients with sepsis. Journal of Critical Care 25 (4): 576–581.PubMed Donnino, M.W., E. Carney, M.N. Cocchi, I. Barbash, M. Chase, N. Joyce, P.P. Chou, and L. Ngo. 2010. Thiamine deficiency in critically ill patients with sepsis. Journal of Critical Care 25 (4): 576–581.PubMed
97.
Zurück zum Zitat Costa, N.A., A.L. Gut, Dorna M. de Souza, J.A. Pimentel, S.M. Cozzolino, P.S. Azevedo, A.A. Fernandes, L.A. Zornoff, S.A. de Paiva, and M.F. Minicucci. 2014. Serum thiamine concentration and oxidative stress as predictors of mortality in patients with septic shock. Journal of Critical Care 29 (2): 249–252.PubMed Costa, N.A., A.L. Gut, Dorna M. de Souza, J.A. Pimentel, S.M. Cozzolino, P.S. Azevedo, A.A. Fernandes, L.A. Zornoff, S.A. de Paiva, and M.F. Minicucci. 2014. Serum thiamine concentration and oxidative stress as predictors of mortality in patients with septic shock. Journal of Critical Care 29 (2): 249–252.PubMed
98.
Zurück zum Zitat Nuzzo, E., K.M. Berg, L.W. Andersen, J. Balkema, S. Montissol, M.N. Cocchi, X. Liu, and M.W. Donnino. 2015. Pyruvate dehydrogenase activity is decreased in the peripheral blood mononuclear cells of patients with Sepsis. A prospective observational trial. Annals of the American Thoracic Society 12 (11): 1662–1666.PubMedPubMedCentral Nuzzo, E., K.M. Berg, L.W. Andersen, J. Balkema, S. Montissol, M.N. Cocchi, X. Liu, and M.W. Donnino. 2015. Pyruvate dehydrogenase activity is decreased in the peripheral blood mononuclear cells of patients with Sepsis. A prospective observational trial. Annals of the American Thoracic Society 12 (11): 1662–1666.PubMedPubMedCentral
99.
Zurück zum Zitat McCall, C.E., M. Zabalawi, T. Liu, A. Martin, D.L. Long, N.L. Buechler, Arts RJW, M. Netea, B.K. Yoza, P.W. Stacpoole, et al. 2018. Pyruvate dehydrogenase complex stimulation promotes immunometabolic homeostasis and sepsis survival. JCI insight 3 (15). McCall, C.E., M. Zabalawi, T. Liu, A. Martin, D.L. Long, N.L. Buechler, Arts RJW, M. Netea, B.K. Yoza, P.W. Stacpoole, et al. 2018. Pyruvate dehydrogenase complex stimulation promotes immunometabolic homeostasis and sepsis survival. JCI insight 3 (15).
100.
Zurück zum Zitat Woolum, J.A., E.L. Abner, A. Kelly, M.L. Thompson Bastin, P.E. Morris, and A.H. Flannery. 2018. Effect of thiamine administration on lactate clearance and mortality in patients with septic shock. Critical Care Medicine 46 (11): 1747–1752.PubMed Woolum, J.A., E.L. Abner, A. Kelly, M.L. Thompson Bastin, P.E. Morris, and A.H. Flannery. 2018. Effect of thiamine administration on lactate clearance and mortality in patients with septic shock. Critical Care Medicine 46 (11): 1747–1752.PubMed
101.
Zurück zum Zitat Kim, J., L. Arnaout, and D. Remick. 2019. Hydrocortisone, ascorbic acid and thiamine (HAT) therapy decreases oxidative stress, improves cardiovascular function and improves survival in murine Sepsis. Shock (Augusta, Ga). Kim, J., L. Arnaout, and D. Remick. 2019. Hydrocortisone, ascorbic acid and thiamine (HAT) therapy decreases oxidative stress, improves cardiovascular function and improves survival in murine Sepsis. Shock (Augusta, Ga).
102.
Zurück zum Zitat Marik, P.E., V. Khangoora, R. Rivera, M.H. Hooper, and J. Catravas. 2017. Hydrocortisone, vitamin C, and thiamine for the treatment of severe Sepsis and septic shock: a retrospective before-after study. Chest 151 (6): 1229–1238.PubMed Marik, P.E., V. Khangoora, R. Rivera, M.H. Hooper, and J. Catravas. 2017. Hydrocortisone, vitamin C, and thiamine for the treatment of severe Sepsis and septic shock: a retrospective before-after study. Chest 151 (6): 1229–1238.PubMed
103.
Zurück zum Zitat Litwak, J.J., N. Cho, H.B. Nguyen, K. Moussavi, and T. Bushell. 2019. Vitamin C, hydrocortisone, and thiamine for the treatment of severe sepsis and septic shock: a retrospective analysis of real-world application. Journal of clinical medicine 8 (4). Litwak, J.J., N. Cho, H.B. Nguyen, K. Moussavi, and T. Bushell. 2019. Vitamin C, hydrocortisone, and thiamine for the treatment of severe sepsis and septic shock: a retrospective analysis of real-world application. Journal of clinical medicine 8 (4).
104.
Zurück zum Zitat Deng, S., Y. Ai, H. Gong, Q. Feng, X. Li, C. Chen, Z. Liu, Y. Wang, Q. Peng, and L. Zhang. 2018. Mitochondrial dynamics and protective effects of a mitochondrial division inhibitor, Mdivi-1, in lipopolysaccharide-induced brain damage. Biochemical and Biophysical Research Communications 496 (3): 865–871.PubMed Deng, S., Y. Ai, H. Gong, Q. Feng, X. Li, C. Chen, Z. Liu, Y. Wang, Q. Peng, and L. Zhang. 2018. Mitochondrial dynamics and protective effects of a mitochondrial division inhibitor, Mdivi-1, in lipopolysaccharide-induced brain damage. Biochemical and Biophysical Research Communications 496 (3): 865–871.PubMed
105.
Zurück zum Zitat Fredriksson, K., I. Tjäder, P. Keller, N. Petrovic, B. Ahlman, C. Schéele, J. Wernerman, J.A. Timmons, and O. Rooyackers. 2008. Dysregulation of mitochondrial dynamics and the muscle transcriptome in ICU patients suffering from sepsis induced multiple organ failure. PLoS One 3 (11): e3686.PubMedPubMedCentral Fredriksson, K., I. Tjäder, P. Keller, N. Petrovic, B. Ahlman, C. Schéele, J. Wernerman, J.A. Timmons, and O. Rooyackers. 2008. Dysregulation of mitochondrial dynamics and the muscle transcriptome in ICU patients suffering from sepsis induced multiple organ failure. PLoS One 3 (11): e3686.PubMedPubMedCentral
106.
Zurück zum Zitat Cooper, C.E., and G.C. Brown. 2008. The inhibition of mitochondrial cytochrome oxidase by the gases carbon monoxide, nitric oxide, hydrogen cyanide and hydrogen sulfide: chemical mechanism and physiological significance. Journal of Bioenergetics and Biomembranes 40 (5): 533–539.PubMed Cooper, C.E., and G.C. Brown. 2008. The inhibition of mitochondrial cytochrome oxidase by the gases carbon monoxide, nitric oxide, hydrogen cyanide and hydrogen sulfide: chemical mechanism and physiological significance. Journal of Bioenergetics and Biomembranes 40 (5): 533–539.PubMed
107.
Zurück zum Zitat Zegdi, R., D. Perrin, M. Burdin, R. Boiteau, and A. Tenaillon. 2002. Increased endogenous carbon monoxide production in severe sepsis. Intensive Care Medicine 28 (6): 793–796.PubMed Zegdi, R., D. Perrin, M. Burdin, R. Boiteau, and A. Tenaillon. 2002. Increased endogenous carbon monoxide production in severe sepsis. Intensive Care Medicine 28 (6): 793–796.PubMed
108.
Zurück zum Zitat Li, L., M. Bhatia, Y.Z. Zhu, Y.C. Zhu, R.D. Ramnath, Z.J. Wang, F.B. Anuar, M. Whiteman, M. Salto-Tellez, and P.K. Moore. 2005. Hydrogen sulfide is a novel mediator of lipopolysaccharide-induced inflammation in the mouse. FASEB Journal : Official Publication of the Federation of American Societies for Experimental Biology 19 (9): 1196–1198. Li, L., M. Bhatia, Y.Z. Zhu, Y.C. Zhu, R.D. Ramnath, Z.J. Wang, F.B. Anuar, M. Whiteman, M. Salto-Tellez, and P.K. Moore. 2005. Hydrogen sulfide is a novel mediator of lipopolysaccharide-induced inflammation in the mouse. FASEB Journal : Official Publication of the Federation of American Societies for Experimental Biology 19 (9): 1196–1198.
109.
Zurück zum Zitat Ahmad, A., D. Gerö, G. Olah, and C. Szabo. 2016. Effect of endotoxemia in mice genetically deficient in cystathionine-γ-lyase, cystathionine-β-synthase or 3-mercaptopyruvate sulfurtransferase. International Journal of Molecular Medicine 38 (6): 1683–1692.PubMedPubMedCentral Ahmad, A., D. Gerö, G. Olah, and C. Szabo. 2016. Effect of endotoxemia in mice genetically deficient in cystathionine-γ-lyase, cystathionine-β-synthase or 3-mercaptopyruvate sulfurtransferase. International Journal of Molecular Medicine 38 (6): 1683–1692.PubMedPubMedCentral
110.
Zurück zum Zitat Yu, J., J. Shi, D. Wang, S. Dong, Y. Zhang, M. Wang, L. Gong, Q. Fu, and D. Liu. 2016. Heme oxygenase-1/carbon monoxide-regulated mitochondrial dynamic equilibrium contributes to the attenuation of endotoxin-induced acute lung injury in rats and in lipopolysaccharide-activated macrophages. Anesthesiology 125 (6): 1190–1201.PubMed Yu, J., J. Shi, D. Wang, S. Dong, Y. Zhang, M. Wang, L. Gong, Q. Fu, and D. Liu. 2016. Heme oxygenase-1/carbon monoxide-regulated mitochondrial dynamic equilibrium contributes to the attenuation of endotoxin-induced acute lung injury in rats and in lipopolysaccharide-activated macrophages. Anesthesiology 125 (6): 1190–1201.PubMed
111.
Zurück zum Zitat Zhang, H.X., J.M. Du, Z.N. Ding, X.Y. Zhu, L. Jiang, and Y.J. Liu. 2017. Hydrogen sulfide prevents diaphragm weakness in cecal ligation puncture-induced sepsis by preservation of mitochondrial function. American Journal of Translational Research 9 (7): 3270–3281.PubMedPubMedCentral Zhang, H.X., J.M. Du, Z.N. Ding, X.Y. Zhu, L. Jiang, and Y.J. Liu. 2017. Hydrogen sulfide prevents diaphragm weakness in cecal ligation puncture-induced sepsis by preservation of mitochondrial function. American Journal of Translational Research 9 (7): 3270–3281.PubMedPubMedCentral
112.
Zurück zum Zitat Wagner, F., K. Wagner, S. Weber, B. Stahl, M.W. Knöferl, M. Huber-Lang, D.H. Seitz, P. Asfar, E. Calzia, U. Senftleben, et al. 2011. Inflammatory effects of hypothermia and inhaled H2S during resuscitated, hyperdynamic murine septic shock. Shock (Augusta, Ga) 35 (4): 396–402. Wagner, F., K. Wagner, S. Weber, B. Stahl, M.W. Knöferl, M. Huber-Lang, D.H. Seitz, P. Asfar, E. Calzia, U. Senftleben, et al. 2011. Inflammatory effects of hypothermia and inhaled H2S during resuscitated, hyperdynamic murine septic shock. Shock (Augusta, Ga) 35 (4): 396–402.
113.
Zurück zum Zitat Ferlito, M., Q. Wang, W.B. Fulton, P.M. Colombani, L. Marchionni, K. Fox-Talbot, N. Paolocci, and C. Steenbergen. 2014. Hydrogen sulfide [corrected] increases survival during sepsis: protective effect of CHOP inhibition. Journal of immunology (Baltimore, Md : 1950) 192 (4): 1806–1814. Ferlito, M., Q. Wang, W.B. Fulton, P.M. Colombani, L. Marchionni, K. Fox-Talbot, N. Paolocci, and C. Steenbergen. 2014. Hydrogen sulfide [corrected] increases survival during sepsis: protective effect of CHOP inhibition. Journal of immunology (Baltimore, Md : 1950) 192 (4): 1806–1814.
114.
Zurück zum Zitat Liu, J., J. Li, P. Tian, B. Guli, G. Weng, L. Li, and Q. Cheng. 2019. HS attenuates sepsis-induced cardiac dysfunction via a PI3K/Akt-dependent mechanism. Experimental and Therapeutic Medicine 17 (5): 4064–4072.PubMedPubMedCentral Liu, J., J. Li, P. Tian, B. Guli, G. Weng, L. Li, and Q. Cheng. 2019. HS attenuates sepsis-induced cardiac dysfunction via a PI3K/Akt-dependent mechanism. Experimental and Therapeutic Medicine 17 (5): 4064–4072.PubMedPubMedCentral
115.
Zurück zum Zitat Zhang, H., S.M. Moochhala, and M. Bhatia. 2008. Endogenous hydrogen sulfide regulates inflammatory response by activating the ERK pathway in polymicrobial sepsis. Journal of immunology (Baltimore, Md : 1950) 181 (6): 4320–4331. Zhang, H., S.M. Moochhala, and M. Bhatia. 2008. Endogenous hydrogen sulfide regulates inflammatory response by activating the ERK pathway in polymicrobial sepsis. Journal of immunology (Baltimore, Md : 1950) 181 (6): 4320–4331.
116.
Zurück zum Zitat Otterbein, L.E., F.H. Bach, J. Alam, M. Soares, H. Tao Lu, M. Wysk, R.J. Davis, R.A. Flavell, and A.M. Choi. 2000. Carbon monoxide has anti-inflammatory effects involving the mitogen-activated protein kinase pathway. Nature Medicine 6 (4): 422–428.PubMed Otterbein, L.E., F.H. Bach, J. Alam, M. Soares, H. Tao Lu, M. Wysk, R.J. Davis, R.A. Flavell, and A.M. Choi. 2000. Carbon monoxide has anti-inflammatory effects involving the mitogen-activated protein kinase pathway. Nature Medicine 6 (4): 422–428.PubMed
117.
Zurück zum Zitat Mazzola, S., M. Forni, M. Albertini, M.L. Bacci, A. Zannoni, F. Gentilini, M. Lavitrano, F.H. Bach, L.E. Otterbein, and M.G. Clement. 2005. Carbon monoxide pretreatment prevents respiratory derangement and ameliorates hyperacute endotoxic shock in pigs. FASEB Journal : Official Publication of the Federation of American Societies for Experimental Biology 19 (14): 2045–2047. Mazzola, S., M. Forni, M. Albertini, M.L. Bacci, A. Zannoni, F. Gentilini, M. Lavitrano, F.H. Bach, L.E. Otterbein, and M.G. Clement. 2005. Carbon monoxide pretreatment prevents respiratory derangement and ameliorates hyperacute endotoxic shock in pigs. FASEB Journal : Official Publication of the Federation of American Societies for Experimental Biology 19 (14): 2045–2047.
118.
Zurück zum Zitat Mitchell, L.A., M.M. Channell, C.M. Royer, S.W. Ryter, A.M. Choi, and J.D. McDonald. 2010. Evaluation of inhaled carbon monoxide as an anti-inflammatory therapy in a nonhuman primate model of lung inflammation. American journal of physiology Lung cellular and molecular physiology 299 (6): L891–L897.PubMed Mitchell, L.A., M.M. Channell, C.M. Royer, S.W. Ryter, A.M. Choi, and J.D. McDonald. 2010. Evaluation of inhaled carbon monoxide as an anti-inflammatory therapy in a nonhuman primate model of lung inflammation. American journal of physiology Lung cellular and molecular physiology 299 (6): L891–L897.PubMed
119.
Zurück zum Zitat Unuma, K., T. Aki, S. Nagano, R. Watanabe, and K. Uemura. 2018. The down-regulation of cardiac contractile proteins underlies myocardial depression during sepsis and is mitigated by carbon monoxide. Biochemical and Biophysical Research Communications 495 (2): 1668–1674.PubMed Unuma, K., T. Aki, S. Nagano, R. Watanabe, and K. Uemura. 2018. The down-regulation of cardiac contractile proteins underlies myocardial depression during sepsis and is mitigated by carbon monoxide. Biochemical and Biophysical Research Communications 495 (2): 1668–1674.PubMed
120.
Zurück zum Zitat Zhang, W., A. Tao, T. Lan, G. Cepinskas, R. Kao, C.M. Martin, and T. Rui. 2017. Carbon monoxide releasing molecule-3 improves myocardial function in mice with sepsis by inhibiting NLRP3 inflammasome activation in cardiac fibroblasts. Basic Research in Cardiology 112 (2): 16.PubMed Zhang, W., A. Tao, T. Lan, G. Cepinskas, R. Kao, C.M. Martin, and T. Rui. 2017. Carbon monoxide releasing molecule-3 improves myocardial function in mice with sepsis by inhibiting NLRP3 inflammasome activation in cardiac fibroblasts. Basic Research in Cardiology 112 (2): 16.PubMed
121.
Zurück zum Zitat Lancel, S., S.M. Hassoun, R. Favory, B. Decoster, R. Motterlini, and R. Neviere. 2009. Carbon monoxide rescues mice from lethal sepsis by supporting mitochondrial energetic metabolism and activating mitochondrial biogenesis. The Journal of Pharmacology and Experimental Therapeutics 329 (2): 641–648.PubMed Lancel, S., S.M. Hassoun, R. Favory, B. Decoster, R. Motterlini, and R. Neviere. 2009. Carbon monoxide rescues mice from lethal sepsis by supporting mitochondrial energetic metabolism and activating mitochondrial biogenesis. The Journal of Pharmacology and Experimental Therapeutics 329 (2): 641–648.PubMed
122.
Zurück zum Zitat Wang, P., J. Huang, Y. Li, R. Chang, H. Wu, J. Lin, and Z. Huang. 2015. Exogenous carbon monoxide decreases sepsis-induced acute kidney injury and inhibits NLRP3 inflammasome activation in rats. International Journal of Molecular Sciences 16 (9): 20595–20608.PubMedPubMedCentral Wang, P., J. Huang, Y. Li, R. Chang, H. Wu, J. Lin, and Z. Huang. 2015. Exogenous carbon monoxide decreases sepsis-induced acute kidney injury and inhibits NLRP3 inflammasome activation in rats. International Journal of Molecular Sciences 16 (9): 20595–20608.PubMedPubMedCentral
123.
Zurück zum Zitat Shi, J., J.B. Yu, W. Liu, D. Wang, Y. Zhang, L.R. Gong, S.A. Dong, and D.Q. Liu. 2016. Carbon monoxide alleviates lipopolysaccharide-induced oxidative stress injury through suppressing the expression of Fis1 in NR8383 cells. Experimental Cell Research 349 (1): 162–167.PubMed Shi, J., J.B. Yu, W. Liu, D. Wang, Y. Zhang, L.R. Gong, S.A. Dong, and D.Q. Liu. 2016. Carbon monoxide alleviates lipopolysaccharide-induced oxidative stress injury through suppressing the expression of Fis1 in NR8383 cells. Experimental Cell Research 349 (1): 162–167.PubMed
124.
Zurück zum Zitat Mayr, F.B., A. Spiel, J. Leitner, C. Marsik, P. Germann, R. Ullrich, O. Wagner, and B. Jilma. 2005. Effects of carbon monoxide inhalation during experimental endotoxemia in humans. American Journal of Respiratory and Critical Care Medicine 171 (4): 354–360.PubMed Mayr, F.B., A. Spiel, J. Leitner, C. Marsik, P. Germann, R. Ullrich, O. Wagner, and B. Jilma. 2005. Effects of carbon monoxide inhalation during experimental endotoxemia in humans. American Journal of Respiratory and Critical Care Medicine 171 (4): 354–360.PubMed
125.
Zurück zum Zitat Marik, P.E. 2018. Vitamin C for the treatment of sepsis: the scientific rationale. Pharmacology & Therapeutics 189: 63–70. Marik, P.E. 2018. Vitamin C for the treatment of sepsis: the scientific rationale. Pharmacology & Therapeutics 189: 63–70.
126.
Zurück zum Zitat Galley, H.F., M.J. Davies, and N.R. Webster. 1996. Ascorbyl radical formation in patients with sepsis: effect of ascorbate loading. Free Radical Biology & Medicine 20 (1): 139–143. Galley, H.F., M.J. Davies, and N.R. Webster. 1996. Ascorbyl radical formation in patients with sepsis: effect of ascorbate loading. Free Radical Biology & Medicine 20 (1): 139–143.
127.
Zurück zum Zitat Borrelli, E., P. Roux-Lombard, G.E. Grau, E. Girardin, B. Ricou, J. Dayer, and P.M. Suter. 1996. Plasma concentrations of cytokines, their soluble receptors, and antioxidant vitamins can predict the development of multiple organ failure in patients at risk. Critical Care Medicine 24 (3): 392–397.PubMed Borrelli, E., P. Roux-Lombard, G.E. Grau, E. Girardin, B. Ricou, J. Dayer, and P.M. Suter. 1996. Plasma concentrations of cytokines, their soluble receptors, and antioxidant vitamins can predict the development of multiple organ failure in patients at risk. Critical Care Medicine 24 (3): 392–397.PubMed
128.
Zurück zum Zitat Fowler, A.A., A.A. Syed, S. Knowlson, R. Sculthorpe, D. Farthing, C. DeWilde, C.A. Farthing, T.L. Larus, E. Martin, D.F. Brophy, et al. 2014. Phase I safety trial of intravenous ascorbic acid in patients with severe sepsis. Journal of Translational Medicine 12: 32.PubMedPubMedCentral Fowler, A.A., A.A. Syed, S. Knowlson, R. Sculthorpe, D. Farthing, C. DeWilde, C.A. Farthing, T.L. Larus, E. Martin, D.F. Brophy, et al. 2014. Phase I safety trial of intravenous ascorbic acid in patients with severe sepsis. Journal of Translational Medicine 12: 32.PubMedPubMedCentral
129.
Zurück zum Zitat Zabet, M.H., M. Mohammadi, M. Ramezani, and H. Khalili. Effect of high-dose ascorbic acid on vasopressor's requirement in septic shock. Journal of research in pharmacy practice 2016, 5 (2). Zabet, M.H., M. Mohammadi, M. Ramezani, and H. Khalili. Effect of high-dose ascorbic acid on vasopressor's requirement in septic shock. Journal of research in pharmacy practice 2016, 5 (2).
130.
Zurück zum Zitat Fowler, A.A., J.D. Truwit, R.D. Hite, P.E. Morris, C. DeWilde, A. Priday, B. Fisher, L.R. Thacker, R. Natarajan, D.F. Brophy, et al. 2019. Effect of vitamin C infusion on organ failure and biomarkers of inflammation and vascular injury in patients with sepsis and severe acute respiratory failure: the CITRIS-ALI randomized clinical trial. Jama 322 (13): 1261–1270.PubMedPubMedCentral Fowler, A.A., J.D. Truwit, R.D. Hite, P.E. Morris, C. DeWilde, A. Priday, B. Fisher, L.R. Thacker, R. Natarajan, D.F. Brophy, et al. 2019. Effect of vitamin C infusion on organ failure and biomarkers of inflammation and vascular injury in patients with sepsis and severe acute respiratory failure: the CITRIS-ALI randomized clinical trial. Jama 322 (13): 1261–1270.PubMedPubMedCentral
131.
Zurück zum Zitat Fujii, T., N. Luethi, P.J. Young, D.R. Frei, G.M. Eastwood, C.J. French, A.M. Deane, Y. Shehabi, L.A. Hajjar, G. Oliveira, et al. 2020. Effect of vitamin C, hydrocortisone, and thiamine vs hydrocortisone alone on time alive and free of vasopressor support among patients with septic shock: The VITAMINS randomized clinical trial. Jama 323 (5): 423–431.PubMedCentral Fujii, T., N. Luethi, P.J. Young, D.R. Frei, G.M. Eastwood, C.J. French, A.M. Deane, Y. Shehabi, L.A. Hajjar, G. Oliveira, et al. 2020. Effect of vitamin C, hydrocortisone, and thiamine vs hydrocortisone alone on time alive and free of vasopressor support among patients with septic shock: The VITAMINS randomized clinical trial. Jama 323 (5): 423–431.PubMedCentral
132.
Zurück zum Zitat Prauchner, C.A. 2017. Oxidative stress in sepsis: pathophysiological implications justifying antioxidant co-therapy. Burns : journal of the International Society for Burn Injuries 43 (3): 471–485. Prauchner, C.A. 2017. Oxidative stress in sepsis: pathophysiological implications justifying antioxidant co-therapy. Burns : journal of the International Society for Burn Injuries 43 (3): 471–485.
Metadaten
Titel
Sepsis-Induced Myocardial Dysfunction (SIMD): the Pathophysiological Mechanisms and Therapeutic Strategies Targeting Mitochondria
verfasst von
Yao Lin
Yinchuan Xu
Zhaocai Zhang
Publikationsdatum
24.04.2020
Verlag
Springer US
Erschienen in
Inflammation / Ausgabe 4/2020
Print ISSN: 0360-3997
Elektronische ISSN: 1573-2576
DOI
https://doi.org/10.1007/s10753-020-01233-w

Weitere Artikel der Ausgabe 4/2020

Inflammation 4/2020 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Erhebliches Risiko für Kehlkopfkrebs bei mäßiger Dysplasie

29.05.2024 Larynxkarzinom Nachrichten

Fast ein Viertel der Personen mit mäßig dysplastischen Stimmlippenläsionen entwickelt einen Kehlkopftumor. Solche Personen benötigen daher eine besonders enge ärztliche Überwachung.

Nach Herzinfarkt mit Typ-1-Diabetes schlechtere Karten als mit Typ 2?

29.05.2024 Herzinfarkt Nachrichten

Bei Menschen mit Typ-2-Diabetes sind die Chancen, einen Myokardinfarkt zu überleben, in den letzten 15 Jahren deutlich gestiegen – nicht jedoch bei Betroffenen mit Typ 1.

15% bedauern gewählte Blasenkrebs-Therapie

29.05.2024 Urothelkarzinom Nachrichten

Ob Patienten und Patientinnen mit neu diagnostiziertem Blasenkrebs ein Jahr später Bedauern über die Therapieentscheidung empfinden, wird einer Studie aus England zufolge von der Radikalität und dem Erfolg des Eingriffs beeinflusst.

Costims – das nächste heiße Ding in der Krebstherapie?

28.05.2024 Onkologische Immuntherapie Nachrichten

„Kalte“ Tumoren werden heiß – CD28-kostimulatorische Antikörper sollen dies ermöglichen. Am besten könnten diese in Kombination mit BiTEs und Checkpointhemmern wirken. Erste klinische Studien laufen bereits.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.