Skip to main content
Erschienen in: Journal of Assisted Reproduction and Genetics 9-10/2009

01.10.2009 | GENETICS

Genomic imprinting disorders in humans: a mini-review

verfasst von: Merlin G. Butler

Erschienen in: Journal of Assisted Reproduction and Genetics | Ausgabe 9-10/2009

Einloggen, um Zugang zu erhalten

Abstract

Mammals inherit two complete sets of chromosomes, one from the father and one from the mother, and most autosomal genes are expressed from both maternal and paternal alleles. Imprinted genes show expression from only one member of the gene pair (allele) and their expression are determined by the parent during production of the gametes. Imprinted genes represent only a small subset of mammalian genes that are present but not imprinted in other vertebrates. Genomic imprints are erased in both germlines and reset accordingly; thus, reversible depending on the parent of origin and leads to differential expression in the course of development. Genomic imprinting has been studied in humans since the early 1980’s and accounts for several human disorders. The first report in humans occurred in Prader-Willi syndrome due to a paternal deletion of chromosome 15 or uniparental disomy 15 (both chromosome 15s from only one parent) and similar genetic disturbances were reported later in Angelman syndrome.
Literatur
1.
Zurück zum Zitat Butler MG, Palmer CG. Parental origin of chromosome 15 deletion in Prader-Willi syndrome. Lancet. 1983;1(8336):1285–6.CrossRefPubMed Butler MG, Palmer CG. Parental origin of chromosome 15 deletion in Prader-Willi syndrome. Lancet. 1983;1(8336):1285–6.CrossRefPubMed
2.
Zurück zum Zitat Nicholls RD, Knoll JH, Butler MG, Karam S, Lalande M. Genetic imprinting suggested by maternal heterodisomy in nondeletion Prader-Willi syndrome. Nature. 1989;342(6247):281–5.CrossRefPubMed Nicholls RD, Knoll JH, Butler MG, Karam S, Lalande M. Genetic imprinting suggested by maternal heterodisomy in nondeletion Prader-Willi syndrome. Nature. 1989;342(6247):281–5.CrossRefPubMed
3.
Zurück zum Zitat Bartolomei MS, Tilghman SM. Genomic imprinting in mammals. Annu Rev Genet. 1997;31:493–525.CrossRefPubMed Bartolomei MS, Tilghman SM. Genomic imprinting in mammals. Annu Rev Genet. 1997;31:493–525.CrossRefPubMed
5.
Zurück zum Zitat Delaval K, Wagschal A, Feil R. Epigenetic deregulation of imprinting in congenital diseases of aberrant growth. Bioessays. 2006;28(5):453–9.CrossRefPubMed Delaval K, Wagschal A, Feil R. Epigenetic deregulation of imprinting in congenital diseases of aberrant growth. Bioessays. 2006;28(5):453–9.CrossRefPubMed
6.
Zurück zum Zitat Platonov ES, Isaev DA. Genomic imprinting in the epigenetics of mammals. Genetika. 2006;42(9):1235–49.PubMed Platonov ES, Isaev DA. Genomic imprinting in the epigenetics of mammals. Genetika. 2006;42(9):1235–49.PubMed
7.
Zurück zum Zitat Murphy SK, Jirtle RL. Imprinting evolution and the price of silence. Bioessays. 2003;25(6):577–88.CrossRefPubMed Murphy SK, Jirtle RL. Imprinting evolution and the price of silence. Bioessays. 2003;25(6):577–88.CrossRefPubMed
8.
Zurück zum Zitat Haig D, Graham C. Genomic imprinting and the strange case of the insulin-like growth factor II receptor. Cell. 1991;64(6):1045–6.CrossRefPubMed Haig D, Graham C. Genomic imprinting and the strange case of the insulin-like growth factor II receptor. Cell. 1991;64(6):1045–6.CrossRefPubMed
9.
10.
Zurück zum Zitat Niemitz EL, Feinberg AP. Epigenetics and assisted reproductive technology: a call for investigation. Am J Hum Genet. 2004;74(4):599–609.CrossRefPubMed Niemitz EL, Feinberg AP. Epigenetics and assisted reproductive technology: a call for investigation. Am J Hum Genet. 2004;74(4):599–609.CrossRefPubMed
11.
Zurück zum Zitat Luedi PP, Dietrich FS, Weidman JR, Bosko JM, Jirtle RL, Hartemink AJ. Computational and experimental identification of novel human imprinted genes. Genome Res. 2007;17(12):1723–30.CrossRefPubMed Luedi PP, Dietrich FS, Weidman JR, Bosko JM, Jirtle RL, Hartemink AJ. Computational and experimental identification of novel human imprinted genes. Genome Res. 2007;17(12):1723–30.CrossRefPubMed
12.
Zurück zum Zitat Butler MG. Imprinting disorders: non-Mendelian mechanisms affecting growth. J Pediatr Endocrinol Metab. 2002;15(Suppl 5):1279–88.PubMed Butler MG. Imprinting disorders: non-Mendelian mechanisms affecting growth. J Pediatr Endocrinol Metab. 2002;15(Suppl 5):1279–88.PubMed
13.
Zurück zum Zitat Falk MJ, Curtis CA, Bass NE, Zinn AB, Schwartz S. Maternal uniparental disomy chromosome 14: case report and literature review. Pediatr Neurol. 2005;32(2):116–20.CrossRefPubMed Falk MJ, Curtis CA, Bass NE, Zinn AB, Schwartz S. Maternal uniparental disomy chromosome 14: case report and literature review. Pediatr Neurol. 2005;32(2):116–20.CrossRefPubMed
14.
Zurück zum Zitat Temple K, Shrubb V, Lever M, Bullman H, Mackey DJG. Isolated imprinting mutation of the DLK1/GTL2 locus associated with a clinical presentation of maternal uniparental disomy of chromosome 14. J Med Genet. 2007;44:637–40.CrossRefPubMed Temple K, Shrubb V, Lever M, Bullman H, Mackey DJG. Isolated imprinting mutation of the DLK1/GTL2 locus associated with a clinical presentation of maternal uniparental disomy of chromosome 14. J Med Genet. 2007;44:637–40.CrossRefPubMed
15.
Zurück zum Zitat Luedi PP, Hartemink AJ, Jirtle RL. Genome-wide prediction of imprinted murine genes. Genome Res. 2005;15(6):875–84.CrossRefPubMed Luedi PP, Hartemink AJ, Jirtle RL. Genome-wide prediction of imprinted murine genes. Genome Res. 2005;15(6):875–84.CrossRefPubMed
16.
Zurück zum Zitat Zakharova IS, Shevchenko AI, Zakian SM. Monoallelic gene expression in mammals. Chromosoma. 2009;118(3):279–90.CrossRefPubMed Zakharova IS, Shevchenko AI, Zakian SM. Monoallelic gene expression in mammals. Chromosoma. 2009;118(3):279–90.CrossRefPubMed
17.
Zurück zum Zitat Eggermann T, Eggermann K, Schonherr N. Growth retardation versus overgrowth: Silver-Russell syndrome is genetically opposite to Beckwith-Wiedemann syndrome. Trends Genet. 2008;24(4):195–204.CrossRefPubMed Eggermann T, Eggermann K, Schonherr N. Growth retardation versus overgrowth: Silver-Russell syndrome is genetically opposite to Beckwith-Wiedemann syndrome. Trends Genet. 2008;24(4):195–204.CrossRefPubMed
18.
Zurück zum Zitat Bliek J, Verde G, Callaway J, Maas SM, De Crescenzo A, Sparago A, et al. Hypomethylation at multiple maternally methylated imprinted regions including PLAGL1 and GNAS loci in Beckwith-Wiedemann syndrome. Eur J Hum Genet. 2009;17(5):611–9.CrossRefPubMed Bliek J, Verde G, Callaway J, Maas SM, De Crescenzo A, Sparago A, et al. Hypomethylation at multiple maternally methylated imprinted regions including PLAGL1 and GNAS loci in Beckwith-Wiedemann syndrome. Eur J Hum Genet. 2009;17(5):611–9.CrossRefPubMed
19.
Zurück zum Zitat Barton SC, Surani MA, Norris ML. Role of paternal and maternal genomes in mouse development. Nature. 1984;311(5984):374–6.CrossRefPubMed Barton SC, Surani MA, Norris ML. Role of paternal and maternal genomes in mouse development. Nature. 1984;311(5984):374–6.CrossRefPubMed
20.
Zurück zum Zitat McGrath J, Solter D. Inability of mouse blastomere nuclei transferred to enucleated zygotes to support development in vitro. Science. 1984;226(4680):1317–9.CrossRefPubMed McGrath J, Solter D. Inability of mouse blastomere nuclei transferred to enucleated zygotes to support development in vitro. Science. 1984;226(4680):1317–9.CrossRefPubMed
21.
Zurück zum Zitat Cattanach BM, Kirk M. Differential activity of maternally and paternally derived chromosome regions in mice. Nature. 1985;315(6019):496–798.CrossRefPubMed Cattanach BM, Kirk M. Differential activity of maternally and paternally derived chromosome regions in mice. Nature. 1985;315(6019):496–798.CrossRefPubMed
22.
Zurück zum Zitat Cattanach BM, Beechey CV, Peters J. Interactions between imprinting effects: summary and review. Cytogenet Genome Res. 2006;113(1–4):17–23.CrossRefPubMed Cattanach BM, Beechey CV, Peters J. Interactions between imprinting effects: summary and review. Cytogenet Genome Res. 2006;113(1–4):17–23.CrossRefPubMed
23.
Zurück zum Zitat Willadsen SM, Janzen RE, McAlistre RJ. The viability of late morulae and blastocysts produced by nuclear transplantation in cattle. Theriogenology. 1991;35:161–70.CrossRef Willadsen SM, Janzen RE, McAlistre RJ. The viability of late morulae and blastocysts produced by nuclear transplantation in cattle. Theriogenology. 1991;35:161–70.CrossRef
24.
Zurück zum Zitat Walker SK, Hartwich KM, Seamark RF. The production of unusually large offspring following embryo manipulation: concepts and challenges. Theriogenology. 1996;45:111–20.CrossRef Walker SK, Hartwich KM, Seamark RF. The production of unusually large offspring following embryo manipulation: concepts and challenges. Theriogenology. 1996;45:111–20.CrossRef
25.
Zurück zum Zitat Kruip TAM, den Daas JHG. In vitro produced and cloned embryos: effects on pregnancy, parturition and offspring. Theriogenology. 1997;47:141–52.CrossRef Kruip TAM, den Daas JHG. In vitro produced and cloned embryos: effects on pregnancy, parturition and offspring. Theriogenology. 1997;47:141–52.CrossRef
26.
Zurück zum Zitat Young LE, Fernandes K, McEvoy TG. Epigenetic change in IGF2R is associated with fetal overgrowth after sheep embryo culture. Nat Genet. 2001;27:153–4.CrossRefPubMed Young LE, Fernandes K, McEvoy TG. Epigenetic change in IGF2R is associated with fetal overgrowth after sheep embryo culture. Nat Genet. 2001;27:153–4.CrossRefPubMed
27.
Zurück zum Zitat Doherty AS, Mann MR, Tremblay KD, Bartolomei MS, Schultz RM. Differential effects of culture on imprinted H19 expression in the preimplantation mouse embryo. Biol Reprod. 2000;62(6):1526–35.CrossRefPubMed Doherty AS, Mann MR, Tremblay KD, Bartolomei MS, Schultz RM. Differential effects of culture on imprinted H19 expression in the preimplantation mouse embryo. Biol Reprod. 2000;62(6):1526–35.CrossRefPubMed
28.
Zurück zum Zitat DeBaun MR, Neimitz EL, Feinberg AP. Association of in vitro fertilization with Beckwith-Wiedemann syndrome and epigenetic alterations of LIT1 and H19. Am J Hum Genet. 2003;72:156–60.CrossRefPubMed DeBaun MR, Neimitz EL, Feinberg AP. Association of in vitro fertilization with Beckwith-Wiedemann syndrome and epigenetic alterations of LIT1 and H19. Am J Hum Genet. 2003;72:156–60.CrossRefPubMed
29.
Zurück zum Zitat Maher TR, Brueton LA, Bowdin SC. Beckwith-Wiedemann syndrome and assisted reproduction technology (ART). J Med Genet. 2003;40:62–4.CrossRefPubMed Maher TR, Brueton LA, Bowdin SC. Beckwith-Wiedemann syndrome and assisted reproduction technology (ART). J Med Genet. 2003;40:62–4.CrossRefPubMed
30.
Zurück zum Zitat Schieve LA, Meikle SF, Ferre C, Peterson HB, Jeng G, Wilcox LS. Low and very low birth weight in infants conceived with use of assisted reproductive technology. N Engl J Med. 2002;346(10):731–7.CrossRefPubMed Schieve LA, Meikle SF, Ferre C, Peterson HB, Jeng G, Wilcox LS. Low and very low birth weight in infants conceived with use of assisted reproductive technology. N Engl J Med. 2002;346(10):731–7.CrossRefPubMed
31.
Zurück zum Zitat Manipalviratn S, DeCherney A, Segars J. Imprinting disorders and assisted reproductive technology. Fertil Steril. 2009;91(2):305–15.CrossRefPubMed Manipalviratn S, DeCherney A, Segars J. Imprinting disorders and assisted reproductive technology. Fertil Steril. 2009;91(2):305–15.CrossRefPubMed
32.
Zurück zum Zitat Cox GF, Burger JL, Mau UA. Intracytoplasmic sperm injection may increase the risk of imprinting defects. Am J Hum Genet. 2002;71:162–4.CrossRefPubMed Cox GF, Burger JL, Mau UA. Intracytoplasmic sperm injection may increase the risk of imprinting defects. Am J Hum Genet. 2002;71:162–4.CrossRefPubMed
33.
Zurück zum Zitat Moll AC, Imhof SM, Cruysberg JR. Schouten-van Meeteren AY, Boers M, van Leeuwen FE. Incidence of retinoblastoma in children born after in-vitro fertilization. Lancet. 2003;361(9354):309–10.CrossRefPubMed Moll AC, Imhof SM, Cruysberg JR. Schouten-van Meeteren AY, Boers M, van Leeuwen FE. Incidence of retinoblastoma in children born after in-vitro fertilization. Lancet. 2003;361(9354):309–10.CrossRefPubMed
34.
Zurück zum Zitat Butler MG. Prader-Willi syndrome: current understanding of cause and diagnosis. Am J Med Genet. 1990;35(3):319–32.CrossRefPubMed Butler MG. Prader-Willi syndrome: current understanding of cause and diagnosis. Am J Med Genet. 1990;35(3):319–32.CrossRefPubMed
35.
Zurück zum Zitat Butler MG, Thompson T. Prader-Willi syndrome: clinical and genetic finding. The Endocrinologist. 2000;10:3S–16.CrossRef Butler MG, Thompson T. Prader-Willi syndrome: clinical and genetic finding. The Endocrinologist. 2000;10:3S–16.CrossRef
36.
37.
Zurück zum Zitat Bittel DC, Butler MG. Prader-Willi syndrome: clinical genetics, cytogenetics and molecular biology. Expert Rev Mol Med. 2005;7(14):1–20.CrossRefPubMed Bittel DC, Butler MG. Prader-Willi syndrome: clinical genetics, cytogenetics and molecular biology. Expert Rev Mol Med. 2005;7(14):1–20.CrossRefPubMed
38.
Zurück zum Zitat Prader A, Labhart A, Willi H. Ein syndrom von adipositas, kleinwuchs, kryptorchismus und oligophrenie nach myatonieartigem zustand im neugeborenenalter. Schweiz Med Wochenschr. 1956;86:1260–1. Prader A, Labhart A, Willi H. Ein syndrom von adipositas, kleinwuchs, kryptorchismus und oligophrenie nach myatonieartigem zustand im neugeborenenalter. Schweiz Med Wochenschr. 1956;86:1260–1.
39.
Zurück zum Zitat Ledbetter DH, Riccardi VM, Airhart SD, Strobel RJ, Keenan BS, Crawford JD. Deletions of chromosome 15 as a cause of the Prader-Willi syndrome. N Engl J Med. 1981;304(6):325–9.PubMedCrossRef Ledbetter DH, Riccardi VM, Airhart SD, Strobel RJ, Keenan BS, Crawford JD. Deletions of chromosome 15 as a cause of the Prader-Willi syndrome. N Engl J Med. 1981;304(6):325–9.PubMedCrossRef
40.
Zurück zum Zitat Butler MG, Lee PDK, Whitman BY. In: Butler MG, Lee PDK, Whitman BY, editors. Management of Prader-Willi syndrome. 3rd ed. New York: Springer-Verlag; 2006. p. 1–550. Butler MG, Lee PDK, Whitman BY. In: Butler MG, Lee PDK, Whitman BY, editors. Management of Prader-Willi syndrome. 3rd ed. New York: Springer-Verlag; 2006. p. 1–550.
41.
Zurück zum Zitat Williams CA. Angelman syndrome. In: Butler MG, Meaney FJ, editors. Genetics of developmental disabilities. 1st ed. Boca Raton: Taylor & Francis; 2005. p. 319–36. Williams CA. Angelman syndrome. In: Butler MG, Meaney FJ, editors. Genetics of developmental disabilities. 1st ed. Boca Raton: Taylor & Francis; 2005. p. 319–36.
42.
Zurück zum Zitat Butler MG, Fischer W, Kibiryeva N, Bittel DC. Array comparative genomic hybridization (aCGH) analysis in Prader-Willi syndrome. Am J Med Genet. 2008;146(7):854–60.CrossRefPubMed Butler MG, Fischer W, Kibiryeva N, Bittel DC. Array comparative genomic hybridization (aCGH) analysis in Prader-Willi syndrome. Am J Med Genet. 2008;146(7):854–60.CrossRefPubMed
43.
Zurück zum Zitat Butler MG, Bittel DC, Kibiryeva N, Talebizadeh Z, Thompson T. Behavioral differences among subjects with Prader-Willi syndrome and type I or type II deletion and maternal disomy. Pediatrics. 2004;113(3 Pt 1):565–73.CrossRefPubMed Butler MG, Bittel DC, Kibiryeva N, Talebizadeh Z, Thompson T. Behavioral differences among subjects with Prader-Willi syndrome and type I or type II deletion and maternal disomy. Pediatrics. 2004;113(3 Pt 1):565–73.CrossRefPubMed
44.
Zurück zum Zitat Nicholls RD, Knepper JL. Genome organization, function, and imprinting in Prader-Willi and Angelman syndromes. Annu Rev Genomics Hum Genet. 2001;2:153–75.CrossRefPubMed Nicholls RD, Knepper JL. Genome organization, function, and imprinting in Prader-Willi and Angelman syndromes. Annu Rev Genomics Hum Genet. 2001;2:153–75.CrossRefPubMed
45.
Zurück zum Zitat Butler MG. Prader-Willi syndrome: an example of genomic imprinting. In: Butler MG, Meaney FJ, editors. Genetics of developmental disabilities. 1st ed. Boca Raton: Taylor & Francis; 2005. p. 279–318. Butler MG. Prader-Willi syndrome: an example of genomic imprinting. In: Butler MG, Meaney FJ, editors. Genetics of developmental disabilities. 1st ed. Boca Raton: Taylor & Francis; 2005. p. 279–318.
46.
Zurück zum Zitat Sahoo T, del Gaudio D, German JR, Shinawi M, Peters SU, Person RE, et al. Prader-Willi phenotype caused by paternal deficiency for the HBII-85 C/D box small nucleolar RNA cluster. Nat Genet. 2008;40(6):719–21.CrossRefPubMed Sahoo T, del Gaudio D, German JR, Shinawi M, Peters SU, Person RE, et al. Prader-Willi phenotype caused by paternal deficiency for the HBII-85 C/D box small nucleolar RNA cluster. Nat Genet. 2008;40(6):719–21.CrossRefPubMed
47.
Zurück zum Zitat Cassidy SB, Lai LW, Erickson RP, Magnuson L, Thomas E, Gendron R, et al. Trisomy 15 with loss of the paternal 15 as a cause of Prader-Willi syndrome due to maternal disomy. Am J Hum Genet. 1992;51(4):701–8.PubMed Cassidy SB, Lai LW, Erickson RP, Magnuson L, Thomas E, Gendron R, et al. Trisomy 15 with loss of the paternal 15 as a cause of Prader-Willi syndrome due to maternal disomy. Am J Hum Genet. 1992;51(4):701–8.PubMed
48.
Zurück zum Zitat Silver HK, Kiyasu W, George J, Deamer WC. Syndrome of congenital hemihypertrophy, shortness of stature, and elevated urinary gonadotropins. Pediatrics. 1953;12(4):368–76.PubMed Silver HK, Kiyasu W, George J, Deamer WC. Syndrome of congenital hemihypertrophy, shortness of stature, and elevated urinary gonadotropins. Pediatrics. 1953;12(4):368–76.PubMed
49.
Zurück zum Zitat Russell A. A syndrome of intra-uterine dwarfism recognizable at birth with cranio-facial dysostosis, disproportionately short arms, and other anomalies (5 examples). Proc R Soc Med. 1954;47(12):1040–4.PubMed Russell A. A syndrome of intra-uterine dwarfism recognizable at birth with cranio-facial dysostosis, disproportionately short arms, and other anomalies (5 examples). Proc R Soc Med. 1954;47(12):1040–4.PubMed
50.
Zurück zum Zitat Jones KL, ed. Smith’s recognizable patterns of human malformation. 6th ed. Philadelphia: W.B. Saunders Company; 2006. p. 1–954. Jones KL, ed. Smith’s recognizable patterns of human malformation. 6th ed. Philadelphia: W.B. Saunders Company; 2006. p. 1–954.
51.
Zurück zum Zitat Abu-Amero S, Monk D, Frost J, Preece M, Stanier P, Moore GE. The genetic aetiology of Silver-Russell syndrome. J Med Genet. 2008;45(4):193–9.CrossRefPubMed Abu-Amero S, Monk D, Frost J, Preece M, Stanier P, Moore GE. The genetic aetiology of Silver-Russell syndrome. J Med Genet. 2008;45(4):193–9.CrossRefPubMed
52.
Zurück zum Zitat Yoshihashi H, Maeyama K, Kosaki R, Ogata T, Tsukahara M, Goto Y, et al. Imprinting of human GRB10 and its mutations in two patients with Russell-Silver syndrome. Am J Hum Genet. 2000;67(2):476–82.CrossRefPubMed Yoshihashi H, Maeyama K, Kosaki R, Ogata T, Tsukahara M, Goto Y, et al. Imprinting of human GRB10 and its mutations in two patients with Russell-Silver syndrome. Am J Hum Genet. 2000;67(2):476–82.CrossRefPubMed
53.
Zurück zum Zitat Bullman H, Lever M, Robinson DO, Mackay DJ, Holder SE, Wakeling EL. Mosaic maternal uniparental disomy of chromosome 11 in a patient with Silver-Russell syndrome. J Med Genet. 2008;45(6):396–9.CrossRefPubMed Bullman H, Lever M, Robinson DO, Mackay DJ, Holder SE, Wakeling EL. Mosaic maternal uniparental disomy of chromosome 11 in a patient with Silver-Russell syndrome. J Med Genet. 2008;45(6):396–9.CrossRefPubMed
54.
Zurück zum Zitat Wiedemann HR. Complex malformatif familial avec hernie ombilicale et macroglossie – un “syndrome nouveau”? J Genet Hum. 1964;13:223.PubMed Wiedemann HR. Complex malformatif familial avec hernie ombilicale et macroglossie – un “syndrome nouveau”? J Genet Hum. 1964;13:223.PubMed
55.
Zurück zum Zitat Beckwith JB. Macroglossia, Omphalocele, adrenal cytomegaly, gigantism, and hyperplasic visceromegaly. Birth Defects. 1969;5(2):188. Beckwith JB. Macroglossia, Omphalocele, adrenal cytomegaly, gigantism, and hyperplasic visceromegaly. Birth Defects. 1969;5(2):188.
56.
Zurück zum Zitat Pettenati MJ, Haines JL, Higgins RR, Wappner RS, Palmer CG, Weaver DD. Wiedemann-Beckwith syndrome: Presentation of clinical and cytogenetic data on 22 new cases and review of the literature. Hum Genet. 1986;74(2):143–54.CrossRefPubMed Pettenati MJ, Haines JL, Higgins RR, Wappner RS, Palmer CG, Weaver DD. Wiedemann-Beckwith syndrome: Presentation of clinical and cytogenetic data on 22 new cases and review of the literature. Hum Genet. 1986;74(2):143–54.CrossRefPubMed
57.
Zurück zum Zitat Viville M, Surani MA. Toward unraveling the Igf2/H19 imprinted domain. Bioessays. 1995;17(10):835–8.CrossRefPubMed Viville M, Surani MA. Toward unraveling the Igf2/H19 imprinted domain. Bioessays. 1995;17(10):835–8.CrossRefPubMed
58.
Zurück zum Zitat Albright F, Burnett CH, Smith PH, Parson W. Pseudo-hypoparathyroidism-an example of ‘Seabright-Bantam syndrome’: report of three cases. Endocrinology. 1942;30:922–32. Albright F, Burnett CH, Smith PH, Parson W. Pseudo-hypoparathyroidism-an example of ‘Seabright-Bantam syndrome’: report of three cases. Endocrinology. 1942;30:922–32.
59.
60.
61.
Zurück zum Zitat Fitch N. Albright’s hereditary osteodystrophy: a review. Am J Med Genet. 1982;11(1):11–29.CrossRefPubMed Fitch N. Albright’s hereditary osteodystrophy: a review. Am J Med Genet. 1982;11(1):11–29.CrossRefPubMed
62.
Zurück zum Zitat Levine MA. Clinical spectrum and pathogenesis of pseudohypoparathyroidism. Rev Endocr Metab Disord. 2000;1(4):265–74.CrossRefPubMed Levine MA. Clinical spectrum and pathogenesis of pseudohypoparathyroidism. Rev Endocr Metab Disord. 2000;1(4):265–74.CrossRefPubMed
63.
Zurück zum Zitat Wang JC, Passage MB, Yen PH, Shapiro LJ, Mohandas TK. Uniparental heterodisomy for chromosome 14 in a phenotypically abnormal familial balanced 13/14 Robertsonian translocation carrier. Am J Hum Genet. 1991;48(6):1069–74.PubMed Wang JC, Passage MB, Yen PH, Shapiro LJ, Mohandas TK. Uniparental heterodisomy for chromosome 14 in a phenotypically abnormal familial balanced 13/14 Robertsonian translocation carrier. Am J Hum Genet. 1991;48(6):1069–74.PubMed
64.
Zurück zum Zitat Temple IK, Cockwell A, Hassold T, Pettay D, Jacobs P. Maternal uniparental disomy for chromosome 14. J Med Genet. 1991;28(8):511–4.CrossRefPubMed Temple IK, Cockwell A, Hassold T, Pettay D, Jacobs P. Maternal uniparental disomy for chromosome 14. J Med Genet. 1991;28(8):511–4.CrossRefPubMed
65.
Zurück zum Zitat Berends MJ, Hordijk R, Scheffer H, Oosterwijk JC, Halley DJ, Sorgedrager N. Two cases of maternal uniparental disomy 14 with a phenotype overlapping with the Prader-Willi phenotype. Am J Med Genet. 1999;84(1):76–9.CrossRefPubMed Berends MJ, Hordijk R, Scheffer H, Oosterwijk JC, Halley DJ, Sorgedrager N. Two cases of maternal uniparental disomy 14 with a phenotype overlapping with the Prader-Willi phenotype. Am J Med Genet. 1999;84(1):76–9.CrossRefPubMed
66.
Zurück zum Zitat Cotter PD, Kaffe S, McCurdy LD, Jhaveri M, Willner JP, Hirschhorn K. Paternal uniparental disomy for chromosome 14: a case report and review. Am J Med Genet. 1997;70(1):74–9.CrossRefPubMed Cotter PD, Kaffe S, McCurdy LD, Jhaveri M, Willner JP, Hirschhorn K. Paternal uniparental disomy for chromosome 14: a case report and review. Am J Med Genet. 1997;70(1):74–9.CrossRefPubMed
Metadaten
Titel
Genomic imprinting disorders in humans: a mini-review
verfasst von
Merlin G. Butler
Publikationsdatum
01.10.2009
Verlag
Springer US
Erschienen in
Journal of Assisted Reproduction and Genetics / Ausgabe 9-10/2009
Print ISSN: 1058-0468
Elektronische ISSN: 1573-7330
DOI
https://doi.org/10.1007/s10815-009-9353-3

Weitere Artikel der Ausgabe 9-10/2009

Journal of Assisted Reproduction and Genetics 9-10/2009 Zur Ausgabe

Mammakarzinom: Brustdichte beeinflusst rezidivfreies Überleben

26.05.2024 Mammakarzinom Nachrichten

Frauen, die zum Zeitpunkt der Brustkrebsdiagnose eine hohe mammografische Brustdichte aufweisen, haben ein erhöhtes Risiko für ein baldiges Rezidiv, legen neue Daten nahe.

Mehr Lebenszeit mit Abemaciclib bei fortgeschrittenem Brustkrebs?

24.05.2024 Mammakarzinom Nachrichten

In der MONARCHE-3-Studie lebten Frauen mit fortgeschrittenem Hormonrezeptor-positivem, HER2-negativem Brustkrebs länger, wenn sie zusätzlich zu einem nicht steroidalen Aromatasehemmer mit Abemaciclib behandelt wurden; allerdings verfehlte der numerische Zugewinn die statistische Signifikanz.

Blutdrucksenkung könnte Uterusmyome verhindern

Frauen mit unbehandelter oder neu auftretender Hypertonie haben ein deutlich erhöhtes Risiko für Uterusmyome. Eine Therapie mit Antihypertensiva geht hingegen mit einer verringerten Inzidenz der gutartigen Tumoren einher.

„Übersichtlicher Wegweiser“: Lauterbachs umstrittener Klinik-Atlas ist online

17.05.2024 Klinik aktuell Nachrichten

Sie sei „ethisch geboten“, meint Gesundheitsminister Karl Lauterbach: mehr Transparenz über die Qualität von Klinikbehandlungen. Um sie abzubilden, lässt er gegen den Widerstand vieler Länder einen virtuellen Klinik-Atlas freischalten.

Update Gynäkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert – ganz bequem per eMail.