Skip to main content
Erschienen in: Journal of Medical Systems 11/2022

01.11.2022 | Original Paper

Monkeypox Virus Detection Using Pre-trained Deep Learning-based Approaches

verfasst von: Chiranjibi Sitaula, Tej Bahadur Shahi

Erschienen in: Journal of Medical Systems | Ausgabe 11/2022

Einloggen, um Zugang zu erhalten

Abstract

Monkeypox virus is emerging slowly with the decline of COVID-19 virus infections around the world. People are afraid of it, thinking that it would appear as a pandemic like COVID-19. As such, it is crucial to detect them earlier before widespread community transmission. AI-based detection could help identify them at the early stage. In this paper, we aim to compare 13 different pre-trained deep learning (DL) models for the Monkeypox virus detection. For this, we initially fine-tune them with the addition of universal custom layers for all of them and analyse the results using four well-established measures: Precision, Recall, F1-score, and Accuracy. After the identification of the best-performing DL models, we ensemble them to improve the overall performance using a majority voting over the probabilistic outputs obtained from them. We perform our experiments on a publicly available dataset, which results in average Precision, Recall, F1-score, and Accuracy of 85.44%, 85.47%, 85.40%, and 87.13%, respectively with the help of our proposed ensemble approach. These encouraging results, which outperform the state-of-the-art methods, suggest that the proposed approach is applicable to health practitioners for mass screening.
Literatur
1.
Zurück zum Zitat Breman JG, Steniowski M, Zanotto E, Gromyko A, Arita I, et al. (1980) Human monkeypox, 1970-79. Bulletin of the World Health Organization 58(2):165PubMedPubMedCentral Breman JG, Steniowski M, Zanotto E, Gromyko A, Arita I, et al. (1980) Human monkeypox, 1970-79. Bulletin of the World Health Organization 58(2):165PubMedPubMedCentral
2.
Zurück zum Zitat Nolen LD, Osadebe L, Katomba J, Likofata J, Mukadi D, Monroe B, Doty J, Hughes CM, Kabamba J, Malekani J, et al. (2016) Extended human-to-human transmission during a monkeypox outbreak in the democratic republic of the congo. Emerging infectious diseases 22(6):1014CrossRef Nolen LD, Osadebe L, Katomba J, Likofata J, Mukadi D, Monroe B, Doty J, Hughes CM, Kabamba J, Malekani J, et al. (2016) Extended human-to-human transmission during a monkeypox outbreak in the democratic republic of the congo. Emerging infectious diseases 22(6):1014CrossRef
3.
Zurück zum Zitat Reynolds MG, Emerson GL, Pukuta E, Karhemere S, Muyembe JJ, Bikindou A, McCollum AM, Moses C, Wilkins K, Zhao H, et al. (2013) Detection of human monkeypox in the republic of the congo following intensive community education. The American Journal of Tropical Medicine and Hygiene 88(5):982CrossRef Reynolds MG, Emerson GL, Pukuta E, Karhemere S, Muyembe JJ, Bikindou A, McCollum AM, Moses C, Wilkins K, Zhao H, et al. (2013) Detection of human monkeypox in the republic of the congo following intensive community education. The American Journal of Tropical Medicine and Hygiene 88(5):982CrossRef
5.
Zurück zum Zitat Sitaula C, Shahi TB, Aryal S, Marzbanrad F (2021b) Fusion of multi-scale bag of deep visual words features of chest x-ray images to detect covid-19 infection. Scientific reports 11(1):1–12CrossRef Sitaula C, Shahi TB, Aryal S, Marzbanrad F (2021b) Fusion of multi-scale bag of deep visual words features of chest x-ray images to detect covid-19 infection. Scientific reports 11(1):1–12CrossRef
6.
Zurück zum Zitat Shahi TB, Sitaula C, Neupane A, Guo W (2022b) Fruit classification using attention-based mobilenetv2 for industrial applications. Plos one 17(2):e0264586CrossRef Shahi TB, Sitaula C, Neupane A, Guo W (2022b) Fruit classification using attention-based mobilenetv2 for industrial applications. Plos one 17(2):e0264586CrossRef
7.
Zurück zum Zitat Sitaula C, Basnet A, Mainali A, Shahi TB (2021a) Deep learning-based methods for sentiment analysis on nepali covid-19-related tweets. Computational Intelligence and Neuroscience 2021 Sitaula C, Basnet A, Mainali A, Shahi TB (2021a) Deep learning-based methods for sentiment analysis on nepali covid-19-related tweets. Computational Intelligence and Neuroscience 2021
8.
Zurück zum Zitat Shahi T, Sitaula C, Paudel N (2022a) A hybrid feature extraction method for nepali covid-19-related tweets classification. Computational Intelligence and Neuroscience 2022 Shahi T, Sitaula C, Paudel N (2022a) A hybrid feature extraction method for nepali covid-19-related tweets classification. Computational Intelligence and Neuroscience 2022
10.
Zurück zum Zitat Madhavan MV, Khamparia A, Gupta D, Pande S, Tiwari P, Hossain MS (2021) Res-covnet: An internet of medical health things driven covid-19 framework using transfer learning. Neural Computing and Applications pp 1–14 Madhavan MV, Khamparia A, Gupta D, Pande S, Tiwari P, Hossain MS (2021) Res-covnet: An internet of medical health things driven covid-19 framework using transfer learning. Neural Computing and Applications pp 1–14
11.
Zurück zum Zitat He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 770–778 He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 770–778
12.
Zurück zum Zitat Bhatt T, Kumar V, Pande S, Malik R, Khamparia A, Gupta D (2021) A Review on COVID-19, Springer International Publishing, chap 2 Bhatt T, Kumar V, Pande S, Malik R, Khamparia A, Gupta D (2021) A Review on COVID-19, Springer International Publishing, chap 2
13.
Zurück zum Zitat Yadav N, Alfayeed SM, Khamparia A, Pandey B, Thanh DN, Pande S (2022) Hsv model-based segmentation driven facial acne detection using deep learning. Expert Systems 39(3):e12760CrossRef Yadav N, Alfayeed SM, Khamparia A, Pandey B, Thanh DN, Pande S (2022) Hsv model-based segmentation driven facial acne detection using deep learning. Expert Systems 39(3):e12760CrossRef
14.
Zurück zum Zitat Sandeep R, Vishal K, Shamanth M, Chethan K (2022) Diagnosis of visible diseases using cnns. In: Proceedings of International Conference on Communication and Artificial Intelligence, Springer, pp 459–468 Sandeep R, Vishal K, Shamanth M, Chethan K (2022) Diagnosis of visible diseases using cnns. In: Proceedings of International Conference on Communication and Artificial Intelligence, Springer, pp 459–468
15.
Zurück zum Zitat Simonyan K, Zisserman A (2015) Very deep convolutional networks for large-scale image recognition. In: International Conference on Learning Representations Simonyan K, Zisserman A (2015) Very deep convolutional networks for large-scale image recognition. In: International Conference on Learning Representations
16.
Zurück zum Zitat Lara JVM, Velásquez RMA (2022) Low-cost image analysis with convolutional neural network for herpes zoster. Biomedical Signal Processing and Control 71:103250CrossRef Lara JVM, Velásquez RMA (2022) Low-cost image analysis with convolutional neural network for herpes zoster. Biomedical Signal Processing and Control 71:103250CrossRef
17.
Zurück zum Zitat Glock K, Napier C, Gary T, Gupta V, Gigante J, Schaffner W, Wang Q (2021) Measles rash identification using transfer learning and deep convolutional neural networks. In: 2021 IEEE International Conference on Big Data (Big Data), IEEE, pp 3905–3910 Glock K, Napier C, Gary T, Gupta V, Gigante J, Schaffner W, Wang Q (2021) Measles rash identification using transfer learning and deep convolutional neural networks. In: 2021 IEEE International Conference on Big Data (Big Data), IEEE, pp 3905–3910
18.
Zurück zum Zitat Sarumi OA (2020) Machine learning-based big data analytics framework for ebola outbreak surveillance. In: International Conference on Intelligent Systems Design and Applications, Springer, pp 580–589 Sarumi OA (2020) Machine learning-based big data analytics framework for ebola outbreak surveillance. In: International Conference on Intelligent Systems Design and Applications, Springer, pp 580–589
19.
Zurück zum Zitat Ahsan MM, Uddin MR, Farjana M, Sakib AN, Momin KA, Luna SA (2022a) Image data collection and implementation of deep learning-based model in detecting monkeypox disease using modified vgg16. arXiv preprint arXiv:2206.01862 Ahsan MM, Uddin MR, Farjana M, Sakib AN, Momin KA, Luna SA (2022a) Image data collection and implementation of deep learning-based model in detecting monkeypox disease using modified vgg16. arXiv preprint arXiv:​2206.​01862
21.
Zurück zum Zitat Selvaraju RR, Cogswell M, Das A, Vedantam R, Parikh D, Batra D (2017) Grad-cam: Visual explanations from deep networks via gradient-based localization. In: Proceedings of the IEEE international conference on computer vision, pp 618–626 Selvaraju RR, Cogswell M, Das A, Vedantam R, Parikh D, Batra D (2017) Grad-cam: Visual explanations from deep networks via gradient-based localization. In: Proceedings of the IEEE international conference on computer vision, pp 618–626
22.
Zurück zum Zitat Ribeiro MT, Singh S, Guestrin C (2016) Why should I trust you?: Explaining the predictions of any classifier. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, August 13-17, 2016, pp 1135–1144 Ribeiro MT, Singh S, Guestrin C (2016) Why should I trust you?: Explaining the predictions of any classifier. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, August 13-17, 2016, pp 1135–1144
23.
Zurück zum Zitat Deng J, Dong W, Socher R, Li LJ, Li K, Fei-Fei L (2009) Imagenet: A large-scale hierarchical image database. In: 2009 IEEE conference on computer vision and pattern recognition, Ieee, pp 248–255 Deng J, Dong W, Socher R, Li LJ, Li K, Fei-Fei L (2009) Imagenet: A large-scale hierarchical image database. In: 2009 IEEE conference on computer vision and pattern recognition, Ieee, pp 248–255
24.
Zurück zum Zitat Pan SJ, Yang Q (2009) A survey on transfer learning. IEEE Transactions on knowledge and data engineering 22(10):1345–1359CrossRef Pan SJ, Yang Q (2009) A survey on transfer learning. IEEE Transactions on knowledge and data engineering 22(10):1345–1359CrossRef
25.
Zurück zum Zitat Chollet F (2017) Xception: Deep learning with depthwise separable convolutions. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 1251–1258 Chollet F (2017) Xception: Deep learning with depthwise separable convolutions. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 1251–1258
26.
Zurück zum Zitat Howard AG, Zhu M, Chen B, Kalenichenko D, Wang W, Weyand T, Andreetto M, Adam H (2017) Mobilenets: Efficient convolutional neural networks for mobile vision applications. arXiv preprint arXiv:1704.04861 Howard AG, Zhu M, Chen B, Kalenichenko D, Wang W, Weyand T, Andreetto M, Adam H (2017) Mobilenets: Efficient convolutional neural networks for mobile vision applications. arXiv preprint arXiv:​1704.​04861
27.
Zurück zum Zitat Tan M, Le Q (2019) Efficientnet: Rethinking model scaling for convolutional neural networks. In: International conference on machine learning, PMLR, pp 6105–6114 Tan M, Le Q (2019) Efficientnet: Rethinking model scaling for convolutional neural networks. In: International conference on machine learning, PMLR, pp 6105–6114
28.
Zurück zum Zitat Szegedy C, Vanhoucke V, Ioffe S, Shlens J, Wojna Z (2016) Rethinking the inception architecture for computer vision. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 2818–2826 Szegedy C, Vanhoucke V, Ioffe S, Shlens J, Wojna Z (2016) Rethinking the inception architecture for computer vision. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 2818–2826
29.
Zurück zum Zitat Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC (2018) Mobilenetv2: Inverted residuals and linear bottlenecks. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 4510–4520 Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC (2018) Mobilenetv2: Inverted residuals and linear bottlenecks. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 4510–4520
30.
Zurück zum Zitat Huang G, Liu Z, Van Der Maaten L, Weinberger KQ (2017) Densely connected convolutional networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 4700–4708 Huang G, Liu Z, Van Der Maaten L, Weinberger KQ (2017) Densely connected convolutional networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 4700–4708
32.
Zurück zum Zitat Rossum G (1995) Python reference manual. Tech. rep., Amsterdam, The Netherlands Rossum G (1995) Python reference manual. Tech. rep., Amsterdam, The Netherlands
33.
Zurück zum Zitat Sitaula C, Hossain MB (2021) Attention-based vgg-16 model for covid-19 chest x-ray image classification. Applied Intelligence 51(5):2850–2863CrossRef Sitaula C, Hossain MB (2021) Attention-based vgg-16 model for covid-19 chest x-ray image classification. Applied Intelligence 51(5):2850–2863CrossRef
34.
Zurück zum Zitat Islam MZ, Islam MM, Asraf A (2020) A combined deep cnn-lstm network for the detection of novel coronavirus (covid-19) using x-ray images. Informatics in medicine unlocked 20:100412CrossRef Islam MZ, Islam MM, Asraf A (2020) A combined deep cnn-lstm network for the detection of novel coronavirus (covid-19) using x-ray images. Informatics in medicine unlocked 20:100412CrossRef
35.
Zurück zum Zitat Sitaula C, Aryal S (2021) New bag of deep visual words based features to classify chest x-ray images for covid-19 diagnosis. Health information science and systems 9(1):1–12CrossRef Sitaula C, Aryal S (2021) New bag of deep visual words based features to classify chest x-ray images for covid-19 diagnosis. Health information science and systems 9(1):1–12CrossRef
Metadaten
Titel
Monkeypox Virus Detection Using Pre-trained Deep Learning-based Approaches
verfasst von
Chiranjibi Sitaula
Tej Bahadur Shahi
Publikationsdatum
01.11.2022
Verlag
Springer US
Erschienen in
Journal of Medical Systems / Ausgabe 11/2022
Print ISSN: 0148-5598
Elektronische ISSN: 1573-689X
DOI
https://doi.org/10.1007/s10916-022-01868-2

Weitere Artikel der Ausgabe 11/2022

Journal of Medical Systems 11/2022 Zur Ausgabe