Skip to main content
Erschienen in: Current Atherosclerosis Reports 2/2015

01.02.2015 | Genetics (AJ Marian, Section Editor)

Epigenetic Reprogramming in Atherosclerosis

verfasst von: Vincenzo Grimaldi, Maria Teresa Vietri, Concetta Schiano, Antonietta Picascia, Maria Rosaria De Pascale, Carmela Fiorito, Amelia Casamassimi, Claudio Napoli

Erschienen in: Current Atherosclerosis Reports | Ausgabe 2/2015

Einloggen, um Zugang zu erhalten

Abstract

Recent data support the involvement of epigenetic alterations in the pathogenesis of atherosclerosis. The most widely investigated epigenetic mechanism is DNA methylation although also histone code changes occur during the diverse steps of atherosclerosis, such as endothelial cell proliferation, vascular smooth muscle cell (SMC) differentiation, and inflammatory pathway activation. In this review, we focus on the main genes that are epigenetically modified during the atherogenic process, particularly nitric oxide synthase (NOS), estrogen receptors (ERs), collagen type XV alpha 1 (COL15A1), vascular endothelial growth factor receptor (VEGFR), and ten-eleven translocation (TET), which are involved in endothelial dysfunction; gamma interferon (IFN-γ), forkhead box p3 (FOXP3), and tumor necrosis factor-α (TNF-α), associated with atherosclerotic inflammatory process; and p66shc, lectin-like oxLDL receptor (LOX1), and apolipoprotein E (APOE) genes, which are regulated by high cholesterol and homocysteine (Hcy) levels. Furthermore, we also discuss the role of non-coding RNAs (ncRNA) in atherosclerosis. NcRNAs are involved in epigenetic regulation of endothelial function, SMC proliferation, cholesterol synthesis, lipid metabolism, and inflammatory response.
Literatur
1.
Zurück zum Zitat Libby P, Ridker PM, Hansson GK. Progress and challenges in translating the biology of atherosclerosis. Nature. 2011;473:317–25.PubMedCrossRef Libby P, Ridker PM, Hansson GK. Progress and challenges in translating the biology of atherosclerosis. Nature. 2011;473:317–25.PubMedCrossRef
2.
3.
Zurück zum Zitat Barrès R, Osler ME, Yan J, et al. Non-CpG methylation of the PGC-1alpha promoter through DNMT3B controls mitochondrial density. Cell Metab. 2009;10:189–98.PubMedCrossRef Barrès R, Osler ME, Yan J, et al. Non-CpG methylation of the PGC-1alpha promoter through DNMT3B controls mitochondrial density. Cell Metab. 2009;10:189–98.PubMedCrossRef
4.
Zurück zum Zitat Udali S, Guarini P, Moruzzi S, et al. Cardiovascular epigenetics: from DNA methylation to microRNAs. Mol Asp Med. 2013;34:883–901.CrossRef Udali S, Guarini P, Moruzzi S, et al. Cardiovascular epigenetics: from DNA methylation to microRNAs. Mol Asp Med. 2013;34:883–901.CrossRef
5.
Zurück zum Zitat Granger A, Abdullah I, Huebner F, et al. Histone deacetylase inhibition reduces myocardial ischemia-reperfusion injury in mice. FASEB J. 2008;22:3549–60.PubMedCentralPubMedCrossRef Granger A, Abdullah I, Huebner F, et al. Histone deacetylase inhibition reduces myocardial ischemia-reperfusion injury in mice. FASEB J. 2008;22:3549–60.PubMedCentralPubMedCrossRef
6.
Zurück zum Zitat Turunen MP, Aavik E, Ylä-Herttuala S. Epigenetics and atherosclerosis. Biochim Biophys Acta. 2009;1790:886–91.PubMedCrossRef Turunen MP, Aavik E, Ylä-Herttuala S. Epigenetics and atherosclerosis. Biochim Biophys Acta. 2009;1790:886–91.PubMedCrossRef
7.••
Zurück zum Zitat Napoli C, Crudele V, Soricelli A, et al. Primary prevention of atherosclerosis: a clinical challenge for the reversal of epigenetic mechanisms? Circulation. 2012;125:2363–73. First relevant review on the topic of epigenetics and early human atherigenesis.PubMedCrossRef Napoli C, Crudele V, Soricelli A, et al. Primary prevention of atherosclerosis: a clinical challenge for the reversal of epigenetic mechanisms? Circulation. 2012;125:2363–73. First relevant review on the topic of epigenetics and early human atherigenesis.PubMedCrossRef
8.
9.
Zurück zum Zitat Paneni F, Costantino S, Volpe M, et al. Epigenetic signatures and vascular risk in type 2 diabetes: a clinical perspective. Atherosclerosis. 2013;230:191–7.PubMedCrossRef Paneni F, Costantino S, Volpe M, et al. Epigenetic signatures and vascular risk in type 2 diabetes: a clinical perspective. Atherosclerosis. 2013;230:191–7.PubMedCrossRef
10.
Zurück zum Zitat Krishna SM, Dear A, Craig JM, Norman PE, Golledge J. The potential role of homocysteine mediated DNA methylation and associated epigenetic changes in abdominal aortic aneurysm formation. Atherosclerosis. 2013;228:295–305.PubMedCrossRef Krishna SM, Dear A, Craig JM, Norman PE, Golledge J. The potential role of homocysteine mediated DNA methylation and associated epigenetic changes in abdominal aortic aneurysm formation. Atherosclerosis. 2013;228:295–305.PubMedCrossRef
11.
Zurück zum Zitat Sato N, Maehara N, Su GH, Goggins M. Effects of 5-aza-2’-deoxycytidine on matrix metalloproteinase expression and pancreatic cancer cell invasiveness. J Natl Cancer Inst. 2003;19:327.CrossRef Sato N, Maehara N, Su GH, Goggins M. Effects of 5-aza-2’-deoxycytidine on matrix metalloproteinase expression and pancreatic cancer cell invasiveness. J Natl Cancer Inst. 2003;19:327.CrossRef
12.
Zurück zum Zitat Borghini A, Cervelli T, Galli A, et al. DNA modifications in atherosclerosis: from the past to the future. Atherosclerosis. 2013;230:202–9.PubMedCrossRef Borghini A, Cervelli T, Galli A, et al. DNA modifications in atherosclerosis: from the past to the future. Atherosclerosis. 2013;230:202–9.PubMedCrossRef
13.
Zurück zum Zitat Leung A, Trac C, Jin W, et al. Novel long noncoding RNAs are regulated by angiotensin II in vascular smooth muscle cells. Circ Res. 2013;113:266–78.PubMedCentralPubMedCrossRef Leung A, Trac C, Jin W, et al. Novel long noncoding RNAs are regulated by angiotensin II in vascular smooth muscle cells. Circ Res. 2013;113:266–78.PubMedCentralPubMedCrossRef
14.
Zurück zum Zitat Lacolley P, Regnault V, Nicoletti A, Li Z, Michel JB. The vascular smooth muscle cell in arterial pathology: a cell that can take on multiple roles. Cardiovasc Res. 2012;95:194–204.PubMedCrossRef Lacolley P, Regnault V, Nicoletti A, Li Z, Michel JB. The vascular smooth muscle cell in arterial pathology: a cell that can take on multiple roles. Cardiovasc Res. 2012;95:194–204.PubMedCrossRef
16.
Zurück zum Zitat Pons D, de Vries FR, van den Elsen PJ, et al. Epigenetic histone acetylation modifiers in vascular remodelling: new targets for therapy in cardiovascular disease. Eur Heart J. 2009;30:266–77.PubMedCrossRef Pons D, de Vries FR, van den Elsen PJ, et al. Epigenetic histone acetylation modifiers in vascular remodelling: new targets for therapy in cardiovascular disease. Eur Heart J. 2009;30:266–77.PubMedCrossRef
17.
Zurück zum Zitat Napoli C, Paolisso G, Casamassimi A, et al. Effects of nitric oxide on cell proliferation: novel insights. J Am Coll Cardiol. 2013;62:89–95.PubMedCrossRef Napoli C, Paolisso G, Casamassimi A, et al. Effects of nitric oxide on cell proliferation: novel insights. J Am Coll Cardiol. 2013;62:89–95.PubMedCrossRef
18.
Zurück zum Zitat Yan MS, Matouk CC, Marsden PA. Epigenetics of the vascular endothelium. J Appl Physiol (1985). 2010;109:916–26.CrossRef Yan MS, Matouk CC, Marsden PA. Epigenetics of the vascular endothelium. J Appl Physiol (1985). 2010;109:916–26.CrossRef
19.
Zurück zum Zitat Chan Y, Fish JE, D’Abreo C, et al. The cell-specific expression of endothelial nitric-oxide synthase: a role for DNA methylation. J Biol Chem. 2004;279:35087–100.PubMedCrossRef Chan Y, Fish JE, D’Abreo C, et al. The cell-specific expression of endothelial nitric-oxide synthase: a role for DNA methylation. J Biol Chem. 2004;279:35087–100.PubMedCrossRef
20.
Zurück zum Zitat Breton CV, Park C, Siegmund K, et al. NOS1 methylation and carotid artery intima-media thickness in children. Circ Cardiovasc Genet. 2014;7:116–22.PubMedCrossRef Breton CV, Park C, Siegmund K, et al. NOS1 methylation and carotid artery intima-media thickness in children. Circ Cardiovasc Genet. 2014;7:116–22.PubMedCrossRef
21.
Zurück zum Zitat Connelly JJ, Cherepanova OA, Doss JF, et al. Epigenetic regulation of COL15A1 in smooth muscle cell replicative aging and atherosclerosis. Hum Mol Genet. 2013;22:5107–20.PubMedCentralPubMedCrossRef Connelly JJ, Cherepanova OA, Doss JF, et al. Epigenetic regulation of COL15A1 in smooth muscle cell replicative aging and atherosclerosis. Hum Mol Genet. 2013;22:5107–20.PubMedCentralPubMedCrossRef
22.
Zurück zum Zitat Zawadzki C, Chatelain N, Delestre M, et al. Tissue factor pathway inhibitor-2 gene methylation is associated with low expression in carotid atherosclerotic plaques. Atherosclerosis. 2009;204:4–14.CrossRef Zawadzki C, Chatelain N, Delestre M, et al. Tissue factor pathway inhibitor-2 gene methylation is associated with low expression in carotid atherosclerotic plaques. Atherosclerosis. 2009;204:4–14.CrossRef
23.••
Zurück zum Zitat Liu R, Jin Y, Tang WH, et al. Ten-eleven translocation-2 (TET2) is a master regulator of smooth muscle cell plasticity. Circulation. 2013;128:2047–57. This study demonstrated evidence on the involvement of ten-eleven translocation-2 (TET2) in control of vascular smooth muscle cell (VSMC) plasticity and development of vascular disease.PubMedCentralPubMedCrossRef Liu R, Jin Y, Tang WH, et al. Ten-eleven translocation-2 (TET2) is a master regulator of smooth muscle cell plasticity. Circulation. 2013;128:2047–57. This study demonstrated evidence on the involvement of ten-eleven translocation-2 (TET2) in control of vascular smooth muscle cell (VSMC) plasticity and development of vascular disease.PubMedCentralPubMedCrossRef
24.••
Zurück zum Zitat Yamada Y, Nishida T, Horibe H, et al. Identification of hypo- and hypermethylated genes related to atherosclerosis by a genome-wide analysis of DNA methylation. Int J Mol Med. 2014;33:1355–63. An important genome-wide analysis of DNA methylation comparing atheromatous plaque lesions with corresponding plaque-free tissue that have confirmed the contribution of epigenetics to the pathogenesis of atherosclerosis.PubMed Yamada Y, Nishida T, Horibe H, et al. Identification of hypo- and hypermethylated genes related to atherosclerosis by a genome-wide analysis of DNA methylation. Int J Mol Med. 2014;33:1355–63. An important genome-wide analysis of DNA methylation comparing atheromatous plaque lesions with corresponding plaque-free tissue that have confirmed the contribution of epigenetics to the pathogenesis of atherosclerosis.PubMed
25.
Zurück zum Zitat Findeisen HM, Gizard F, Zhao Y, et al. Epigenetic regulation of vascular smooth muscle cell proliferation and neointima formation by histone deacetylase inhibition. Arterioscler Thromb Vasc Biol. 2011;31:851–60.PubMedCentralPubMedCrossRef Findeisen HM, Gizard F, Zhao Y, et al. Epigenetic regulation of vascular smooth muscle cell proliferation and neointima formation by histone deacetylase inhibition. Arterioscler Thromb Vasc Biol. 2011;31:851–60.PubMedCentralPubMedCrossRef
26.
27.
Zurück zum Zitat Fish JE, Matouk CC, Rachlis A, et al. The expression of endothelial nitric-oxide synthase is controlled by a cell-specific histone code. J Biol Chem. 2005;280:24824–38.PubMedCrossRef Fish JE, Matouk CC, Rachlis A, et al. The expression of endothelial nitric-oxide synthase is controlled by a cell-specific histone code. J Biol Chem. 2005;280:24824–38.PubMedCrossRef
28.
Zurück zum Zitat Xiao Q, Zeng L, Zhang Z, et al. Sca-1+ progenitors derived from embryonic stem cells differentiate into endothelial cells capable of vascular repair after arterial injury. Arterioscler Thromb Vasc Biol. 2006;26:2244–51.PubMedCrossRef Xiao Q, Zeng L, Zhang Z, et al. Sca-1+ progenitors derived from embryonic stem cells differentiate into endothelial cells capable of vascular repair after arterial injury. Arterioscler Thromb Vasc Biol. 2006;26:2244–51.PubMedCrossRef
29.
Zurück zum Zitat Zampetaki A, Zeng L, Margariti A, et al. Histone deacetylase 3 is critical in endothelial survival and atherosclerosis development in response to disturbed flow. Circulation. 2010;121:132–42.PubMedCrossRef Zampetaki A, Zeng L, Margariti A, et al. Histone deacetylase 3 is critical in endothelial survival and atherosclerosis development in response to disturbed flow. Circulation. 2010;121:132–42.PubMedCrossRef
30.•
Zurück zum Zitat Hoeksema MA, Gijbels MJ, Van den Bossche J, et al. Targeting macrophage histone deacetylase 3 stabilizes atherosclerotic lesions. EMBO Mol Med. 2014;6:1124–32. Study that shown a link between histone modification and plaque vulnerability to rupture suggesting that epigenetic mechanisms could represent a potential novel therapeutic target in atherosclerosis.PubMedCentralPubMedCrossRef Hoeksema MA, Gijbels MJ, Van den Bossche J, et al. Targeting macrophage histone deacetylase 3 stabilizes atherosclerotic lesions. EMBO Mol Med. 2014;6:1124–32. Study that shown a link between histone modification and plaque vulnerability to rupture suggesting that epigenetic mechanisms could represent a potential novel therapeutic target in atherosclerosis.PubMedCentralPubMedCrossRef
31.
Zurück zum Zitat Cao Q, Rong S, Repa JJ, et al. Histone deacetylase 9 represses cholesterol efflux and alternatively activated macrophages in atherosclerosis development. Arterioscler Thromb Vasc Biol. 2014;34:1871–9.PubMedCrossRef Cao Q, Rong S, Repa JJ, et al. Histone deacetylase 9 represses cholesterol efflux and alternatively activated macrophages in atherosclerosis development. Arterioscler Thromb Vasc Biol. 2014;34:1871–9.PubMedCrossRef
32.
Zurück zum Zitat Zhou B, Margariti A, Zeng L, et al. Splicing of histone deacetylase 7 modulates smooth muscle cell proliferation and neointima formation through nuclear β-catenin translocation. Arterioscler Thromb Vasc Biol. 2011;31:2676–84.PubMedCrossRef Zhou B, Margariti A, Zeng L, et al. Splicing of histone deacetylase 7 modulates smooth muscle cell proliferation and neointima formation through nuclear β-catenin translocation. Arterioscler Thromb Vasc Biol. 2011;31:2676–84.PubMedCrossRef
33.
Zurück zum Zitat Kavurma MM, Figg N, Bennett MR, et al. Oxidative stress regulates IGF1R expression in vascular smooth-muscle cells via p53 and HDAC recruitment. Biochem J. 2007;407:79–87.PubMedCentralPubMedCrossRef Kavurma MM, Figg N, Bennett MR, et al. Oxidative stress regulates IGF1R expression in vascular smooth-muscle cells via p53 and HDAC recruitment. Biochem J. 2007;407:79–87.PubMedCentralPubMedCrossRef
34.
Zurück zum Zitat Han S, Uludag MO, Usanmaz SE, et al. Resveratrol affects histone 3 lysine 27 methylation of vessels and blood biomarkers in DOCA salt-induced hypertension. Mol Biol Rep. 2014. doi:10.1007/s11033-014-3737-x. Han S, Uludag MO, Usanmaz SE, et al. Resveratrol affects histone 3 lysine 27 methylation of vessels and blood biomarkers in DOCA salt-induced hypertension. Mol Biol Rep. 2014. doi:10.​1007/​s11033-014-3737-x.
35.
Zurück zum Zitat Mathew OP, Ranganna K, Yatsu FM. Butyrate, an HDAC inhibitor, stimulates interplay between different posttranslational modifications of histone H3 and differently alters G1-specific cell cycle proteins in vascular smooth muscle cells. Biomed Pharmacother. 2010;64:733–40.PubMedCentralPubMedCrossRef Mathew OP, Ranganna K, Yatsu FM. Butyrate, an HDAC inhibitor, stimulates interplay between different posttranslational modifications of histone H3 and differently alters G1-specific cell cycle proteins in vascular smooth muscle cells. Biomed Pharmacother. 2010;64:733–40.PubMedCentralPubMedCrossRef
36.
Zurück zum Zitat Pandey D, Sikka G, Bergman Y, et al. Transcriptional regulation of endothelial arginase 2 by histone deacetylase 2. Arterioscler Thromb Vasc Biol. 2014;34:1556–66.PubMedCrossRef Pandey D, Sikka G, Bergman Y, et al. Transcriptional regulation of endothelial arginase 2 by histone deacetylase 2. Arterioscler Thromb Vasc Biol. 2014;34:1556–66.PubMedCrossRef
37.
Zurück zum Zitat Ji R, Cheng Y, Yue J, et al. MicroRNA expression signature and antisense-mediated depletion reveal an essential role of microRNA in vascular neointimal lesion formation. Circ Res. 2007;100:1579–88.PubMedCrossRef Ji R, Cheng Y, Yue J, et al. MicroRNA expression signature and antisense-mediated depletion reveal an essential role of microRNA in vascular neointimal lesion formation. Circ Res. 2007;100:1579–88.PubMedCrossRef
38.
Zurück zum Zitat Wang M, Li W, Chang GQ, et al. MicroRNA-21 regulates vascular smooth muscle cell function via targeting tropomyosin 1 in arteriosclerosis obliterans of lower extremities. Arterioscler Thromb Vasc Biol. 2011;31:2044–53.PubMedCrossRef Wang M, Li W, Chang GQ, et al. MicroRNA-21 regulates vascular smooth muscle cell function via targeting tropomyosin 1 in arteriosclerosis obliterans of lower extremities. Arterioscler Thromb Vasc Biol. 2011;31:2044–53.PubMedCrossRef
39.
Zurück zum Zitat Li T, Cao H, Zhuang J, et al. Identification of miR-130a, miR-27b and miR-210 as serum biomarkers for atherosclerosis obliterans. Clin Chim Acta. 2011;412:66–70.PubMedCrossRef Li T, Cao H, Zhuang J, et al. Identification of miR-130a, miR-27b and miR-210 as serum biomarkers for atherosclerosis obliterans. Clin Chim Acta. 2011;412:66–70.PubMedCrossRef
41.
Zurück zum Zitat Holdt LM, Beutner F, Scholz M, et al. ANRIL expression is associated with atherosclerosis risk at chromosome 9p21. Arterioscler Thromb Vasc Biol. 2010;30:620–7.PubMedCrossRef Holdt LM, Beutner F, Scholz M, et al. ANRIL expression is associated with atherosclerosis risk at chromosome 9p21. Arterioscler Thromb Vasc Biol. 2010;30:620–7.PubMedCrossRef
42.
Zurück zum Zitat Motterle A, Pu X, Wood H, et al. Functional analyses of coronary artery disease associated variation on chromosome 9p21 in vascular smooth muscle cells. Hum Mol Genet. 2012;21:4021–9.PubMedCentralPubMedCrossRef Motterle A, Pu X, Wood H, et al. Functional analyses of coronary artery disease associated variation on chromosome 9p21 in vascular smooth muscle cells. Hum Mol Genet. 2012;21:4021–9.PubMedCentralPubMedCrossRef
43.
Zurück zum Zitat Holdt LM, Hoffmann S, Sass K, et al. Alu elements in ANRIL non-coding RNA at chromosome 9p21 modulate atherogenic cell functions through trans-regulation of gene networks. PLoS Genet. 2013;9:e1003588.PubMedCentralPubMedCrossRef Holdt LM, Hoffmann S, Sass K, et al. Alu elements in ANRIL non-coding RNA at chromosome 9p21 modulate atherogenic cell functions through trans-regulation of gene networks. PLoS Genet. 2013;9:e1003588.PubMedCentralPubMedCrossRef
44.
Zurück zum Zitat Papatheodorou L, Weiss N. Vascular oxidant stress and inflammation in hyperhomocysteinemia. Antioxid Redox Signa. 2007;9:1941–58.CrossRef Papatheodorou L, Weiss N. Vascular oxidant stress and inflammation in hyperhomocysteinemia. Antioxid Redox Signa. 2007;9:1941–58.CrossRef
45.
Zurück zum Zitat Duell PB, Malinow MR. Homocysteine: an important risk factor for atherosclerotic vascular disease. Curr Opin Lipidol. 1997;8:28–34.PubMedCrossRef Duell PB, Malinow MR. Homocysteine: an important risk factor for atherosclerotic vascular disease. Curr Opin Lipidol. 1997;8:28–34.PubMedCrossRef
46.
47.
Zurück zum Zitat Castro R, Rivera I, Struys EA, et al. Increased homocysteine and S-adenosylhomocysteine concentrations and DNA hypomethylation in vascular disease. Clin Chem. 2003;49:1292.PubMedCrossRef Castro R, Rivera I, Struys EA, et al. Increased homocysteine and S-adenosylhomocysteine concentrations and DNA hypomethylation in vascular disease. Clin Chem. 2003;49:1292.PubMedCrossRef
48.
Zurück zum Zitat Hiltunen MO, Turunen MP, Häkkinen TP, et al. DNA hypomethylation and methyltransferase expression in atherosclerotic lesions. Vasc Med. 2002;7:5–11.PubMedCrossRef Hiltunen MO, Turunen MP, Häkkinen TP, et al. DNA hypomethylation and methyltransferase expression in atherosclerotic lesions. Vasc Med. 2002;7:5–11.PubMedCrossRef
49.
Zurück zum Zitat Lund G, Andersson L, Lauria M, et al. DNA methylation polymorphisms precede any histological sign of atherosclerosis in mice lacking apolipoprotein E. J Biol Chem. 2004;279:29147–54.PubMedCrossRef Lund G, Andersson L, Lauria M, et al. DNA methylation polymorphisms precede any histological sign of atherosclerosis in mice lacking apolipoprotein E. J Biol Chem. 2004;279:29147–54.PubMedCrossRef
50.
Zurück zum Zitat Kim YR, Kim CS, Naqvi A, et al. Epigenetic upregulation of p66shc mediates low-density lipoprotein cholesterol-induced endothelial cell dysfunction. Am J Physiol Heart Circ Physiol. 2012;303:H189–96.PubMedCentralPubMedCrossRef Kim YR, Kim CS, Naqvi A, et al. Epigenetic upregulation of p66shc mediates low-density lipoprotein cholesterol-induced endothelial cell dysfunction. Am J Physiol Heart Circ Physiol. 2012;303:H189–96.PubMedCentralPubMedCrossRef
51.
Zurück zum Zitat Napoli C, Martin-Padura I, de Nigris F, et al. Deletion of the p66Shc longevity gene reduces systemic and tissue oxidative stress, vascular cell apoptosis, and early atherogenesis in mice fed a high-fat diet. Proc Natl Acad Sci U S A. 2003;100:2112–6.PubMedCentralPubMedCrossRef Napoli C, Martin-Padura I, de Nigris F, et al. Deletion of the p66Shc longevity gene reduces systemic and tissue oxidative stress, vascular cell apoptosis, and early atherogenesis in mice fed a high-fat diet. Proc Natl Acad Sci U S A. 2003;100:2112–6.PubMedCentralPubMedCrossRef
52.
Zurück zum Zitat Kumar A, Kumar S, Vikram A, et al. Histone and DNA methylation-mediated epigenetic downregulation of endothelial Kruppel-like factor 2 by low-density lipoprotein cholesterol. Arterioscler Thromb Vasc Biol. 2013;33:1936–42.PubMedCrossRef Kumar A, Kumar S, Vikram A, et al. Histone and DNA methylation-mediated epigenetic downregulation of endothelial Kruppel-like factor 2 by low-density lipoprotein cholesterol. Arterioscler Thromb Vasc Biol. 2013;33:1936–42.PubMedCrossRef
53.
Zurück zum Zitat Mitra S, Khaidakov M, Lu J, Ayyadevara S, et al. Prior exposure to oxidized low-density lipoprotein limits apoptosis in subsequent generations of endothelial cells by altering promoter methylation. Am J Physiol Heart Circ Physiol. 2011;301:H506–13.PubMedCrossRef Mitra S, Khaidakov M, Lu J, Ayyadevara S, et al. Prior exposure to oxidized low-density lipoprotein limits apoptosis in subsequent generations of endothelial cells by altering promoter methylation. Am J Physiol Heart Circ Physiol. 2011;301:H506–13.PubMedCrossRef
54.
Zurück zum Zitat Guay SP, Brisson D, Lamarche B, et al. DNA methylation variations at CETP and LPL gene promoter loci: new molecular biomarkers associated with blood lipid profile variability. Atherosclerosis. 2013;228:413–20.PubMedCrossRef Guay SP, Brisson D, Lamarche B, et al. DNA methylation variations at CETP and LPL gene promoter loci: new molecular biomarkers associated with blood lipid profile variability. Atherosclerosis. 2013;228:413–20.PubMedCrossRef
55.
Zurück zum Zitat Guay SP, Brisson D, Lamarche B, et al. Epipolymorphisms within lipoprotein genes contribute independently to plasma lipid levels in familial hypercholesterolemia. Epigenetics. 2014;9:718–29.PubMedCrossRef Guay SP, Brisson D, Lamarche B, et al. Epipolymorphisms within lipoprotein genes contribute independently to plasma lipid levels in familial hypercholesterolemia. Epigenetics. 2014;9:718–29.PubMedCrossRef
56.
Zurück zum Zitat Newman PE. Can reduced folic acid and vitamin B12 levels cause deficient DNA methylation producing mutations which initiate atherosclerosis? Med Hypotheses. 1999;53:421–4.PubMedCrossRef Newman PE. Can reduced folic acid and vitamin B12 levels cause deficient DNA methylation producing mutations which initiate atherosclerosis? Med Hypotheses. 1999;53:421–4.PubMedCrossRef
57.
Zurück zum Zitat Jamaluddin MD, Chen I, Yang F, et al. Homocysteine inhibits endothelial cell growth via DNA hypomethylation of the cyclin A gene. Blood. 2007;110:3648–55.PubMedCentralPubMedCrossRef Jamaluddin MD, Chen I, Yang F, et al. Homocysteine inhibits endothelial cell growth via DNA hypomethylation of the cyclin A gene. Blood. 2007;110:3648–55.PubMedCentralPubMedCrossRef
58.
Zurück zum Zitat Sharma P, Kumar J, Garg G, et al. Detection of altered global DNA methylation in coronary artery disease patients. DNA Cell Biol. 2008;27:357–65.PubMedCrossRef Sharma P, Kumar J, Garg G, et al. Detection of altered global DNA methylation in coronary artery disease patients. DNA Cell Biol. 2008;27:357–65.PubMedCrossRef
59.
Zurück zum Zitat Zaina S, Lindholm MW, Lund G. Nutrition and aberrant DNA methylation patterns in atherosclerosis: more than just hyperhomocysteinemia? J Nutr. 2005;135:5–8.PubMed Zaina S, Lindholm MW, Lund G. Nutrition and aberrant DNA methylation patterns in atherosclerosis: more than just hyperhomocysteinemia? J Nutr. 2005;135:5–8.PubMed
60.
Zurück zum Zitat Zhu JH, Chen JZ, Wang XX, et al. Homocysteine accelerates senescence and reduces proliferation of endothelial progenitor cells. J Mol Cell Cardiol. 2006;40:648–52.PubMedCrossRef Zhu JH, Chen JZ, Wang XX, et al. Homocysteine accelerates senescence and reduces proliferation of endothelial progenitor cells. J Mol Cell Cardiol. 2006;40:648–52.PubMedCrossRef
61.
Zurück zum Zitat Richards JB, Valdes AM, Gardner JP, et al. Homocysteine levels and leukocyte telomere length. Atherosclerosis. 2008;200:271–7.PubMedCrossRef Richards JB, Valdes AM, Gardner JP, et al. Homocysteine levels and leukocyte telomere length. Atherosclerosis. 2008;200:271–7.PubMedCrossRef
62.
Zurück zum Zitat Zhang D, Wen X, Wu W, et al. Homocysteine-related hTERT DNA demethylation contributes to shortened leukocyte telomere length in atherosclerosis. Atherosclerosis. 2013;231:173–9.PubMedCrossRef Zhang D, Wen X, Wu W, et al. Homocysteine-related hTERT DNA demethylation contributes to shortened leukocyte telomere length in atherosclerosis. Atherosclerosis. 2013;231:173–9.PubMedCrossRef
63.
Zurück zum Zitat Niu PP, Cao Y, Gong T, et al. Hypermethylation of DDAH2 promoter contributes to the dysfunction of endothelial progenitor cells in coronary artery disease patients. J Transl Med. 2014;12:170.PubMedCentralPubMedCrossRef Niu PP, Cao Y, Gong T, et al. Hypermethylation of DDAH2 promoter contributes to the dysfunction of endothelial progenitor cells in coronary artery disease patients. J Transl Med. 2014;12:170.PubMedCentralPubMedCrossRef
64.•
Zurück zum Zitat Zaina S, Heyn H, Carmona FJ, et al. A DNA methylation map of human atherosclerosis. Circ Cardiovasc Genet. 2014;7:692–700. An interesting study showing the gain of DNA methylation in atherosclerotic lesions emphasizing the opportunity to use demethylating agents for therapeutic benefit. Zaina S, Heyn H, Carmona FJ, et al. A DNA methylation map of human atherosclerosis. Circ Cardiovasc Genet. 2014;7:692–700. An interesting study showing the gain of DNA methylation in atherosclerotic lesions emphasizing the opportunity to use demethylating agents for therapeutic benefit.
65.
Zurück zum Zitat Li L, Xie J, Zhang M, Wang S. Homocysteine harasses the imprinting expression of IGF2 and H19 by demethylation of differentially methylated region between IGF2/H19 genes. Acta Biochim Biophys Sin (Shanghai). 2009;41:464–71.CrossRef Li L, Xie J, Zhang M, Wang S. Homocysteine harasses the imprinting expression of IGF2 and H19 by demethylation of differentially methylated region between IGF2/H19 genes. Acta Biochim Biophys Sin (Shanghai). 2009;41:464–71.CrossRef
66.••
Zurück zum Zitat Flowers E, Froelicher ES, Aouizerat BE. MicroRNA regulation of lipid metabolism. Metabolism. 2013;62:12–20. Relevant review on the topic of miRNAs as emergent players in lipid metabolism.PubMedCentralPubMedCrossRef Flowers E, Froelicher ES, Aouizerat BE. MicroRNA regulation of lipid metabolism. Metabolism. 2013;62:12–20. Relevant review on the topic of miRNAs as emergent players in lipid metabolism.PubMedCentralPubMedCrossRef
67.
Zurück zum Zitat Rayner KJ, Esau CC, Hussain FN, et al. Inhibition of miR-33a/b in non-human primates raises plasma HDL and lowers VLDL triglycerides. Nature. 2011;478:404–7.PubMedCentralPubMedCrossRef Rayner KJ, Esau CC, Hussain FN, et al. Inhibition of miR-33a/b in non-human primates raises plasma HDL and lowers VLDL triglycerides. Nature. 2011;478:404–7.PubMedCentralPubMedCrossRef
68.
Zurück zum Zitat Iliopoulos D, Drosatos K, Hiyama Y, et al. MicroRNA-370 controls the expression of microRNA-122 and Cpt1alpha and affects lipid metabolism. J Lipid Res. 2010;51:1513–23.PubMedCentralPubMedCrossRef Iliopoulos D, Drosatos K, Hiyama Y, et al. MicroRNA-370 controls the expression of microRNA-122 and Cpt1alpha and affects lipid metabolism. J Lipid Res. 2010;51:1513–23.PubMedCentralPubMedCrossRef
69.
Zurück zum Zitat Ramírez CM, Rotllan N, Vlassov AV, et al. Control of cholesterol metabolism and plasma high-density lipoprotein levels by microRNA-144. Circ Res. 2013;112:1592–601.PubMedCentralPubMedCrossRef Ramírez CM, Rotllan N, Vlassov AV, et al. Control of cholesterol metabolism and plasma high-density lipoprotein levels by microRNA-144. Circ Res. 2013;112:1592–601.PubMedCentralPubMedCrossRef
70.
Zurück zum Zitat Kang MH, Zhang LH, Wijesekara N, et al. Regulation of ABCA1 protein expression and function in hepatic and pancreatic islet cells by miR-145. Arterioscler Thromb Vasc Biol. 2013;33:2724–32.PubMedCrossRef Kang MH, Zhang LH, Wijesekara N, et al. Regulation of ABCA1 protein expression and function in hepatic and pancreatic islet cells by miR-145. Arterioscler Thromb Vasc Biol. 2013;33:2724–32.PubMedCrossRef
71.
Zurück zum Zitat Zhao R, Feng J, He G. miR-613 regulates cholesterol efflux by targeting LXRα and ABCA1 in PPARγ activated THP-1 macrophages. Biochem Biophys Res Commun. 2014;448:329–34.PubMedCrossRef Zhao R, Feng J, He G. miR-613 regulates cholesterol efflux by targeting LXRα and ABCA1 in PPARγ activated THP-1 macrophages. Biochem Biophys Res Commun. 2014;448:329–34.PubMedCrossRef
72.
Zurück zum Zitat Ramirez CM, Dávalos A, Goedeke L, et al. MicroRNA-758 regulates cholesterol efflux through posttranscriptional repression of ATP-binding cassette transporter A1. Arterioscler Thromb Vasc Biol. 2011;31:2707–14.PubMedCentralPubMedCrossRef Ramirez CM, Dávalos A, Goedeke L, et al. MicroRNA-758 regulates cholesterol efflux through posttranscriptional repression of ATP-binding cassette transporter A1. Arterioscler Thromb Vasc Biol. 2011;31:2707–14.PubMedCentralPubMedCrossRef
73.
Zurück zum Zitat Vickers KC, Landstreet SR, Levin MG, et al. MicroRNA-223 coordinates cholesterol homeostasis. Proc Natl Acad Sci U S A. 2014;111:14518–23.PubMedCrossRef Vickers KC, Landstreet SR, Levin MG, et al. MicroRNA-223 coordinates cholesterol homeostasis. Proc Natl Acad Sci U S A. 2014;111:14518–23.PubMedCrossRef
74.
Zurück zum Zitat Vinod M, Chennamsetty I, Colin S, et al. miR-206 controls LXRα expression and promotes LXR-mediated cholesterol efflux in macrophages. Biochim Biophys Acta. 2014;1841:827–35.PubMedCentralPubMedCrossRef Vinod M, Chennamsetty I, Colin S, et al. miR-206 controls LXRα expression and promotes LXR-mediated cholesterol efflux in macrophages. Biochim Biophys Acta. 2014;1841:827–35.PubMedCentralPubMedCrossRef
75.
Zurück zum Zitat Zhang E, Wu Y. MicroRNAs: important modulators of oxLDL-mediated signaling in atherosclerosis. J Atheroscler Thromb. 2013;20:215–27.PubMedCrossRef Zhang E, Wu Y. MicroRNAs: important modulators of oxLDL-mediated signaling in atherosclerosis. J Atheroscler Thromb. 2013;20:215–27.PubMedCrossRef
76.
Zurück zum Zitat Woollard KJ. Immunological aspects of atherosclerosis. Clin Sci (Lond). 2013;125:221–35.CrossRef Woollard KJ. Immunological aspects of atherosclerosis. Clin Sci (Lond). 2013;125:221–35.CrossRef
77.
Zurück zum Zitat Wierda RJ, Geutskens SB, Jukema JW, et al. Epigenetics in atherosclerosis and inflammation. J Cell Mol Med. 2010;14:1225–40.PubMedCrossRef Wierda RJ, Geutskens SB, Jukema JW, et al. Epigenetics in atherosclerosis and inflammation. J Cell Mol Med. 2010;14:1225–40.PubMedCrossRef
78.
Zurück zum Zitat Tao R, de Zoeten EF, Ozkaynak E, et al. Deacetylase inhibition promotes the generation and function of regulatory T cells. Nat Med. 2007;13:1299–307.PubMedCrossRef Tao R, de Zoeten EF, Ozkaynak E, et al. Deacetylase inhibition promotes the generation and function of regulatory T cells. Nat Med. 2007;13:1299–307.PubMedCrossRef
80.
Zurück zum Zitat Jia L, Zhu L, Wang JZ, et al. Methylation of FOXP3 in regulatory T cells is related to the severity of coronary artery disease. Atherosclerosis. 2013;228:346–52.PubMedCrossRef Jia L, Zhu L, Wang JZ, et al. Methylation of FOXP3 in regulatory T cells is related to the severity of coronary artery disease. Atherosclerosis. 2013;228:346–52.PubMedCrossRef
81.
Zurück zum Zitat Sahinarslan A, Kocaman SA, Topal S, et al. The relation of serum monocyte chemoattractant protein-1 level with coronary atherosclerotic burden and collateral degree in stable coronary artery disease. Turk Kardiyol Dern Ars. 2011;39:269–75.PubMedCrossRef Sahinarslan A, Kocaman SA, Topal S, et al. The relation of serum monocyte chemoattractant protein-1 level with coronary atherosclerotic burden and collateral degree in stable coronary artery disease. Turk Kardiyol Dern Ars. 2011;39:269–75.PubMedCrossRef
82.
Zurück zum Zitat Wang J, Jiang Y, Yang A, et al. Hyperhomocysteinemia-induced monocyte chemoattractant protein-1 promoter DNA methylation by nuclear factor-κB/DNA methyltransferase 1 in apolipoprotein E-deficient mice. Biores Open Access. 2013;2:118–27.PubMedCentralPubMedCrossRef Wang J, Jiang Y, Yang A, et al. Hyperhomocysteinemia-induced monocyte chemoattractant protein-1 promoter DNA methylation by nuclear factor-κB/DNA methyltransferase 1 in apolipoprotein E-deficient mice. Biores Open Access. 2013;2:118–27.PubMedCentralPubMedCrossRef
83.
Zurück zum Zitat Liu XL, Zhang PF, Ding SF, et al. Local gene silencing of monocyte chemoattractant protein-1 prevents vulnerable plaque disruption in apolipoprotein e-knockout mice. PLoS One. 2012;7:33497.CrossRef Liu XL, Zhang PF, Ding SF, et al. Local gene silencing of monocyte chemoattractant protein-1 prevents vulnerable plaque disruption in apolipoprotein e-knockout mice. PLoS One. 2012;7:33497.CrossRef
84.
Zurück zum Zitat Choi JH, Nam KH, Kim J, et al. Trichostatin A exacerbates atherosclerosis in low density lipoprotein receptor-deficient mice. Arterioscler Thromb Vasc Biol. 2005;25:2404–9.PubMedCrossRef Choi JH, Nam KH, Kim J, et al. Trichostatin A exacerbates atherosclerosis in low density lipoprotein receptor-deficient mice. Arterioscler Thromb Vasc Biol. 2005;25:2404–9.PubMedCrossRef
85.
Zurück zum Zitat Okamoto H, Fujioka Y, Takahashi A, et al. Trichostatin A, an inhibitor of histone deacetylase, inhibits smooth muscle cell proliferation via induction of p21(WAF1). J Atheroscler Thromb. 2006;13:183–91.PubMedCrossRef Okamoto H, Fujioka Y, Takahashi A, et al. Trichostatin A, an inhibitor of histone deacetylase, inhibits smooth muscle cell proliferation via induction of p21(WAF1). J Atheroscler Thromb. 2006;13:183–91.PubMedCrossRef
86.•
Zurück zum Zitat Bekkering S, Quintin J, Joosten LA, et al. Oxidized low-density lipoprotein induces long-term proinflammatory cytokine production and foam cell formation via epigenetic reprogramming of monocytes. Arterioscler Thromb Vasc Biol. 2014;34:1731–8. This important study described the effect of oxLDL to induce a long-lasting proinflammatory phenotype in monocytes which accelerates atherosclerosis by proinflammatory cytokine production.PubMedCrossRef Bekkering S, Quintin J, Joosten LA, et al. Oxidized low-density lipoprotein induces long-term proinflammatory cytokine production and foam cell formation via epigenetic reprogramming of monocytes. Arterioscler Thromb Vasc Biol. 2014;34:1731–8. This important study described the effect of oxLDL to induce a long-lasting proinflammatory phenotype in monocytes which accelerates atherosclerosis by proinflammatory cytokine production.PubMedCrossRef
87.
Zurück zum Zitat Ansel KM, Djuretic I, Tanasa B, Rao A. Regulation of Th2 differentiation and Il4 locus accessibility. Annu Rev Immunol. 2006;24:607–56.PubMedCrossRef Ansel KM, Djuretic I, Tanasa B, Rao A. Regulation of Th2 differentiation and Il4 locus accessibility. Annu Rev Immunol. 2006;24:607–56.PubMedCrossRef
88.
Zurück zum Zitat Floess S, Freyer J, Siewert C, et al. Epigenetic control of the foxp3 locus in regulatory T cells. PLoS Biol. 2007;5:38.CrossRef Floess S, Freyer J, Siewert C, et al. Epigenetic control of the foxp3 locus in regulatory T cells. PLoS Biol. 2007;5:38.CrossRef
89.
Zurück zum Zitat Wang B, Morinobu A, Horiuchi M, et al. Butyrate inhibits functional differentiation of human monocyte-derived dendritic cells. Cell Immunol. 2008;253:54–8.PubMedCrossRef Wang B, Morinobu A, Horiuchi M, et al. Butyrate inhibits functional differentiation of human monocyte-derived dendritic cells. Cell Immunol. 2008;253:54–8.PubMedCrossRef
90.
Zurück zum Zitat Kong X, Fang M, Li P, et al. HDAC2 deacetylates class II transactivator and suppresses its activity in macrophages and smooth muscle cells. J Mol Cell Cardiol. 2009;46:292–9.PubMedCrossRef Kong X, Fang M, Li P, et al. HDAC2 deacetylates class II transactivator and suppresses its activity in macrophages and smooth muscle cells. J Mol Cell Cardiol. 2009;46:292–9.PubMedCrossRef
91.
Zurück zum Zitat Zhou J, Wang KC, Wu W, et al. MicroRNA-21 targets peroxisome proliferators-activated receptor-alpha in an autoregulatory loop to modulate flow-induced endothelial inflammation. Proc Natl Acad Sci U S A. 2011;108:10355–60.PubMedCentralPubMedCrossRef Zhou J, Wang KC, Wu W, et al. MicroRNA-21 targets peroxisome proliferators-activated receptor-alpha in an autoregulatory loop to modulate flow-induced endothelial inflammation. Proc Natl Acad Sci U S A. 2011;108:10355–60.PubMedCentralPubMedCrossRef
92.
Zurück zum Zitat Martin MM, Lee EJ, Buckenberger JA, Schmittgen TD, Elton TS. MicroRNA-155 regulates human angiotensin II type 1 receptor expression in fibroblasts. J Biol Chem. 2006;281:18277–84.PubMedCrossRef Martin MM, Lee EJ, Buckenberger JA, Schmittgen TD, Elton TS. MicroRNA-155 regulates human angiotensin II type 1 receptor expression in fibroblasts. J Biol Chem. 2006;281:18277–84.PubMedCrossRef
93.••
Zurück zum Zitat Schober A, Nazari-Jahantigh M, Wei Y, Bidzhekov K, et al. MicroRNA-126-5p promotes endothelial proliferation and limits atherosclerosis by suppressing Dlk1. Nat Med. 2014;20:368–76. This study addresses interesting aspects of fow-dependent regulation of endothelial cell homeostasis. In addition the authors identified miR-126-5p and its target Dlk1 as major regulators of endothelial repair.PubMedCrossRef Schober A, Nazari-Jahantigh M, Wei Y, Bidzhekov K, et al. MicroRNA-126-5p promotes endothelial proliferation and limits atherosclerosis by suppressing Dlk1. Nat Med. 2014;20:368–76. This study addresses interesting aspects of fow-dependent regulation of endothelial cell homeostasis. In addition the authors identified miR-126-5p and its target Dlk1 as major regulators of endothelial repair.PubMedCrossRef
94.
Zurück zum Zitat Wu XY, Fan WD, Fang R, Wu GF. Regulation of microRNA-155 in endothelial inflammation by targeting nuclear factor (NF)-κB P65. J Cell Biochem. 2014;115:1928–36.PubMed Wu XY, Fan WD, Fang R, Wu GF. Regulation of microRNA-155 in endothelial inflammation by targeting nuclear factor (NF)-κB P65. J Cell Biochem. 2014;115:1928–36.PubMed
95.
Zurück zum Zitat Du F, Yu F, Wang Y, et al. MicroRNA-155 deficiency results in decreased macrophage inflammation and attenuated atherogenesis in apolipoprotein E-deficient mice. Arterioscler Thromb Vasc Biol. 2014;34:759–67.PubMedCrossRef Du F, Yu F, Wang Y, et al. MicroRNA-155 deficiency results in decreased macrophage inflammation and attenuated atherogenesis in apolipoprotein E-deficient mice. Arterioscler Thromb Vasc Biol. 2014;34:759–67.PubMedCrossRef
96.
Zurück zum Zitat Di Gregoli K, Jenkins N, Salter R, et al. MicroRNA-24 regulates macrophage behavior and retards atherosclerosis. Arterioscler Thromb Vasc Biol. 2014;34:1990–2000.PubMedCrossRef Di Gregoli K, Jenkins N, Salter R, et al. MicroRNA-24 regulates macrophage behavior and retards atherosclerosis. Arterioscler Thromb Vasc Biol. 2014;34:1990–2000.PubMedCrossRef
97.
Zurück zum Zitat Fan X, Wang E, Wang X, et al. MicroRNA-21 is a unique signature associated with coronary plaque instability in humans by regulating matrix metalloproteinase-9 via reversion-inducing cysteine-rich protein with Kazal motifs. Exp Mol Pathol. 2014;96:242–9.PubMedCrossRef Fan X, Wang E, Wang X, et al. MicroRNA-21 is a unique signature associated with coronary plaque instability in humans by regulating matrix metalloproteinase-9 via reversion-inducing cysteine-rich protein with Kazal motifs. Exp Mol Pathol. 2014;96:242–9.PubMedCrossRef
98.
Zurück zum Zitat Napoli C. Developmental mechanisms involved in the primary prevention of atherosclerosis and cardiovascular disease. Curr Atheroscler Rep. 2011;13:170–5. Napoli C. Developmental mechanisms involved in the primary prevention of atherosclerosis and cardiovascular disease. Curr Atheroscler Rep. 2011;13:170–5.
Metadaten
Titel
Epigenetic Reprogramming in Atherosclerosis
verfasst von
Vincenzo Grimaldi
Maria Teresa Vietri
Concetta Schiano
Antonietta Picascia
Maria Rosaria De Pascale
Carmela Fiorito
Amelia Casamassimi
Claudio Napoli
Publikationsdatum
01.02.2015
Verlag
Springer US
Erschienen in
Current Atherosclerosis Reports / Ausgabe 2/2015
Print ISSN: 1523-3804
Elektronische ISSN: 1534-6242
DOI
https://doi.org/10.1007/s11883-014-0476-3

Weitere Artikel der Ausgabe 2/2015

Current Atherosclerosis Reports 2/2015 Zur Ausgabe

Coronary Heart Disease (E Gianos and B Shah, Section Editor)

Percutaneous Versus Surgical Management of Lower Extremity Peripheral Artery Disease

Statin Drugs (BS Wiggins, Section Editor)

Statins and Cataracts—a Visual Insight

Women and Ischemic Heart Disease (M Gulati, Section Editor)

Female-Specific Factors for IHD: Across the Reproductive Lifespan

Coronary Heart Disease (E Gianos and B Shah, Section Editor)

Carotid Stenosis: From Diagnosis to Management, Where Do We Stand?

Statin Drugs (BS Wiggins, Section Editor)

A Review of Statin Use and Prostate Cancer

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Erhebliches Risiko für Kehlkopfkrebs bei mäßiger Dysplasie

29.05.2024 Larynxkarzinom Nachrichten

Fast ein Viertel der Personen mit mäßig dysplastischen Stimmlippenläsionen entwickelt einen Kehlkopftumor. Solche Personen benötigen daher eine besonders enge ärztliche Überwachung.

Nach Herzinfarkt mit Typ-1-Diabetes schlechtere Karten als mit Typ 2?

29.05.2024 Herzinfarkt Nachrichten

Bei Menschen mit Typ-2-Diabetes sind die Chancen, einen Myokardinfarkt zu überleben, in den letzten 15 Jahren deutlich gestiegen – nicht jedoch bei Betroffenen mit Typ 1.

15% bedauern gewählte Blasenkrebs-Therapie

29.05.2024 Urothelkarzinom Nachrichten

Ob Patienten und Patientinnen mit neu diagnostiziertem Blasenkrebs ein Jahr später Bedauern über die Therapieentscheidung empfinden, wird einer Studie aus England zufolge von der Radikalität und dem Erfolg des Eingriffs beeinflusst.

Costims – das nächste heiße Ding in der Krebstherapie?

28.05.2024 Onkologische Immuntherapie Nachrichten

„Kalte“ Tumoren werden heiß – CD28-kostimulatorische Antikörper sollen dies ermöglichen. Am besten könnten diese in Kombination mit BiTEs und Checkpointhemmern wirken. Erste klinische Studien laufen bereits.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.