Skip to main content
Erschienen in: Current Hypertension Reports 3/2016

01.03.2016 | Hypertension and the Kidney (RM Carey, Section Editor)

Major Autonomic Neuroregulatory Pathways Underlying Short- and Long-Term Control of Cardiovascular Function

verfasst von: Ibrahim M. Salman

Erschienen in: Current Hypertension Reports | Ausgabe 3/2016

Einloggen, um Zugang zu erhalten

Abstract

Short-term and long-term blood pressure (BP) regulation and its maintenance at levels adequate to perfuse tissue organs involve an integrated action of multiple neural, cardiovascular, renal, endocrine and local tissue control systems. In the recent year, there has been a growing interest in the understanding of neural pathways key to BP control. For instance, through major advances in studies using both anesthetized and conscious animals, our knowledge of the essential neural mechanisms that subserve the baroreceptor, cardiopulmonary and chemoreceptor reflexes, and those evoked by the activation of stress pathways has dramatically increased. While the importance of these neural pathways in the maintenance of cardiovascular homeostasis is well established, the recognition of the central processing nuclei that integrate various afferent inputs to produce synchronous adjustments of autonomic outflows is still progressively expanding. Based on the literature provided thus far, the present review provides an overview in relation to the important neural determinants of BP control and later offers a concise description of major neuronal pathways that control autonomic outflows to the cardiovascular system in the short and long term.
Literatur
1.
Zurück zum Zitat Loewy AD, Spyer KM. Central regulation of autonomic functions. USA: Oxford University Press; 1990. Loewy AD, Spyer KM. Central regulation of autonomic functions. USA: Oxford University Press; 1990.
3.
Zurück zum Zitat Waugh A, Grant A. Ross & Wilson anatomy and physiology in health and illness. UK: Elsevier Health Sciences; 2010. Waugh A, Grant A. Ross & Wilson anatomy and physiology in health and illness. UK: Elsevier Health Sciences; 2010.
4.
Zurück zum Zitat Levy MN. Neural and reflex control of the circulation. In: Garfein O, editor. Current Concepts in cardiovascular physiology. Elsevier Science. 2012. p. 145. Levy MN. Neural and reflex control of the circulation. In: Garfein O, editor. Current Concepts in cardiovascular physiology. Elsevier Science. 2012. p. 145.
6.
Zurück zum Zitat Jones J, Natarajan A, Jose P. Cardiovascular and autonomic influences on blood pressure. In: Portman R, Sorof J, Ingelfinger J, editors. Pediatric hypertension. Clinical hypertension and vascular diseases: Humana Press. 2004. p. 23–43. Jones J, Natarajan A, Jose P. Cardiovascular and autonomic influences on blood pressure. In: Portman R, Sorof J, Ingelfinger J, editors. Pediatric hypertension. Clinical hypertension and vascular diseases: Humana Press. 2004. p. 23–43.
7.
Zurück zum Zitat Crick SJ, Wharton J, Sheppard MN, Royston D, Yacoub MH, Anderson RH, et al. Innervation of the human cardiac conduction system. A quantitative immunohistochemical and histochemical study. Circulation. 1994;89(4):1697–708.PubMedCrossRef Crick SJ, Wharton J, Sheppard MN, Royston D, Yacoub MH, Anderson RH, et al. Innervation of the human cardiac conduction system. A quantitative immunohistochemical and histochemical study. Circulation. 1994;89(4):1697–708.PubMedCrossRef
8.
Zurück zum Zitat Ito M, Zipes DP. Efferent sympathetic and vagal innervation of the canine right ventricle. Circulation. 1994;90(3):1459–68.PubMedCrossRef Ito M, Zipes DP. Efferent sympathetic and vagal innervation of the canine right ventricle. Circulation. 1994;90(3):1459–68.PubMedCrossRef
10.•
Zurück zum Zitat Hasan W. Autonomic cardiac innervation: development and adult plasticity. Organogenesis. 2013;9(3):176–93. doi:10.4161/org.24892. A focused review on postganglionic ANS neurons, which demonstrates developmental programs governing autonomic nerve differentiation, survival and nerve patterning in cardiac physiology and pathology and that a crosstalk between both limbs of the autonomic nervous system is critical for maintenance of normal cardiac rhythm and function. PubMedPubMedCentralCrossRef Hasan W. Autonomic cardiac innervation: development and adult plasticity. Organogenesis. 2013;9(3):176–93. doi:10.​4161/​org.​24892. A focused review on postganglionic ANS neurons, which demonstrates developmental programs governing autonomic nerve differentiation, survival and nerve patterning in cardiac physiology and pathology and that a crosstalk between both limbs of the autonomic nervous system is critical for maintenance of normal cardiac rhythm and function. PubMedPubMedCentralCrossRef
12.
Zurück zum Zitat Dzimiri N. Receptor crosstalk. Implications for cardiovascular function, disease and therapy. Eur J Biochem / FEBS. 2002;269(19):4713–30.CrossRef Dzimiri N. Receptor crosstalk. Implications for cardiovascular function, disease and therapy. Eur J Biochem / FEBS. 2002;269(19):4713–30.CrossRef
13.
Zurück zum Zitat Gray AL, Johnson TA, Ardell JL, Massari VJ. Parasympathetic control of the heart. II. A novel interganglionic intrinsic cardiac circuit mediates neural control of heart rate. J Appl Physiol (Bethesda, Md: 1985). 2004;96(6):2273–8. doi:10.1152/japplphysiol.00616.2003.CrossRef Gray AL, Johnson TA, Ardell JL, Massari VJ. Parasympathetic control of the heart. II. A novel interganglionic intrinsic cardiac circuit mediates neural control of heart rate. J Appl Physiol (Bethesda, Md: 1985). 2004;96(6):2273–8. doi:10.​1152/​japplphysiol.​00616.​2003.CrossRef
14.
Zurück zum Zitat Johnson TA, Gray AL, Lauenstein JM, Newton SS, Massari VJ. Parasympathetic control of the heart. I. An interventriculo-septal ganglion is the major source of the vagal intracardiac innervation of the ventricles. J Appl Physiol (Bethesda, Md: 1985). 2004;96(6):2265–72. doi:10.1152/japplphysiol.00620.2003.CrossRef Johnson TA, Gray AL, Lauenstein JM, Newton SS, Massari VJ. Parasympathetic control of the heart. I. An interventriculo-septal ganglion is the major source of the vagal intracardiac innervation of the ventricles. J Appl Physiol (Bethesda, Md: 1985). 2004;96(6):2265–72. doi:10.​1152/​japplphysiol.​00620.​2003.CrossRef
15.
Zurück zum Zitat Ardell JL, Randall WC, Cannon WJ, Schmacht DC, Tasdemiroglu E. Differential sympathetic regulation of automatic, conductile, and contractile tissue in dog heart. Am J Physiol. 1988;255(5 Pt 2):H1050–9.PubMed Ardell JL, Randall WC, Cannon WJ, Schmacht DC, Tasdemiroglu E. Differential sympathetic regulation of automatic, conductile, and contractile tissue in dog heart. Am J Physiol. 1988;255(5 Pt 2):H1050–9.PubMed
16.
Zurück zum Zitat Hirakawa N, Morimoto M, Totoki T. Sympathetic innervation of the young canine heart using antero- and retrograde axonal tracer methods. Brain Res Bull. 1993;31(6):673–80.PubMedCrossRef Hirakawa N, Morimoto M, Totoki T. Sympathetic innervation of the young canine heart using antero- and retrograde axonal tracer methods. Brain Res Bull. 1993;31(6):673–80.PubMedCrossRef
17.
Zurück zum Zitat Crick SJ, Sheppard MN, Ho SY, Anderson RH. Localisation and quantitation of autonomic innervation in the porcine heart I: conduction system. J Anat. 1999;195(Pt 3):341–57.PubMedPubMedCentralCrossRef Crick SJ, Sheppard MN, Ho SY, Anderson RH. Localisation and quantitation of autonomic innervation in the porcine heart I: conduction system. J Anat. 1999;195(Pt 3):341–57.PubMedPubMedCentralCrossRef
18.
Zurück zum Zitat Furukawa Y, Narita M, Takei M, Kobayashi O, Haniuda M, Chiba S. Differential intracardiac sympathetic and parasympathetic innervation to the SA and AV nodes in anesthetized dog hearts. Jpn J Pharmacol. 1991;55(3):381–90.PubMedCrossRef Furukawa Y, Narita M, Takei M, Kobayashi O, Haniuda M, Chiba S. Differential intracardiac sympathetic and parasympathetic innervation to the SA and AV nodes in anesthetized dog hearts. Jpn J Pharmacol. 1991;55(3):381–90.PubMedCrossRef
19.
Zurück zum Zitat Furukawa Y, Wallick DW, Martin PJ, Levy MN. Chronotropic and dromotropic responses to stimulation of intracardiac sympathetic nerves to sinoatrial or atrioventricular nodal region in anesthetized dogs. Circ Res. 1990;66(5):1391–9.PubMedCrossRef Furukawa Y, Wallick DW, Martin PJ, Levy MN. Chronotropic and dromotropic responses to stimulation of intracardiac sympathetic nerves to sinoatrial or atrioventricular nodal region in anesthetized dogs. Circ Res. 1990;66(5):1391–9.PubMedCrossRef
20.
Zurück zum Zitat Gatti PJ, Johnson TA, Massari VJ. Can neurons in the nucleus ambiguus selectively regulate cardiac rate and atrio-ventricular conduction? J Auton Nerv Syst. 1996;57(1–2):123–7.PubMedCrossRef Gatti PJ, Johnson TA, Massari VJ. Can neurons in the nucleus ambiguus selectively regulate cardiac rate and atrio-ventricular conduction? J Auton Nerv Syst. 1996;57(1–2):123–7.PubMedCrossRef
21.
Zurück zum Zitat Schauerte P, Mischke K, Plisiene J, Waldmann M, Zarse M, Stellbrink C, et al. Catheter stimulation of cardiac parasympathetic nerves in humans: a novel approach to the cardiac autonomic nervous system. Circulation. 2001;104(20):2430–5.PubMedCrossRef Schauerte P, Mischke K, Plisiene J, Waldmann M, Zarse M, Stellbrink C, et al. Catheter stimulation of cardiac parasympathetic nerves in humans: a novel approach to the cardiac autonomic nervous system. Circulation. 2001;104(20):2430–5.PubMedCrossRef
22.
Zurück zum Zitat Stramba-Badiale M, Vanoli E, De Ferrari GM, Cerati D, Foreman RD, Schwartz PJ. Sympathetic-parasympathetic interaction and accentuated antagonism in conscious dogs. Am J Physiol. 1991;260(2 Pt 2):H335–40.PubMed Stramba-Badiale M, Vanoli E, De Ferrari GM, Cerati D, Foreman RD, Schwartz PJ. Sympathetic-parasympathetic interaction and accentuated antagonism in conscious dogs. Am J Physiol. 1991;260(2 Pt 2):H335–40.PubMed
23.
Zurück zum Zitat Uijtdehaage SH, Thayer JF. Accentuated antagonism in the control of human heart rate. Clin Auton Res. 2000;10(3):107–10.PubMedCrossRef Uijtdehaage SH, Thayer JF. Accentuated antagonism in the control of human heart rate. Clin Auton Res. 2000;10(3):107–10.PubMedCrossRef
24.
Zurück zum Zitat Kawada T, Sugimachi M, Shishido T, Miyano H, Sato T, Yoshimura R, et al. Simultaneous identification of static and dynamic vagosympathetic interactions in regulating heart rate. Am J Physiol. 1999;276(3 Pt 2):R782–9.PubMed Kawada T, Sugimachi M, Shishido T, Miyano H, Sato T, Yoshimura R, et al. Simultaneous identification of static and dynamic vagosympathetic interactions in regulating heart rate. Am J Physiol. 1999;276(3 Pt 2):R782–9.PubMed
25.
Zurück zum Zitat Bevan JA, Su C. Distribution theory of resistance of neurogenic vasoconstriction to alpha-receptor blockade in the rabbit. Circ Res. 1971;28(2):179–87.PubMedCrossRef Bevan JA, Su C. Distribution theory of resistance of neurogenic vasoconstriction to alpha-receptor blockade in the rabbit. Circ Res. 1971;28(2):179–87.PubMedCrossRef
28.
Zurück zum Zitat Guimarães S, Moura D. Vascular adrenoceptors: an update. Pharmacol Rev. 2001;53(2):319–56.PubMed Guimarães S, Moura D. Vascular adrenoceptors: an update. Pharmacol Rev. 2001;53(2):319–56.PubMed
29.
Zurück zum Zitat Sweeney HL, Bowman BF, Stull JT. Myosin light chain phosphorylation in vertebrate striated muscle: regulation and function. Am J Physiol. 1993;264(5 Pt 1):C1085–95.PubMed Sweeney HL, Bowman BF, Stull JT. Myosin light chain phosphorylation in vertebrate striated muscle: regulation and function. Am J Physiol. 1993;264(5 Pt 1):C1085–95.PubMed
30.
Zurück zum Zitat Cotecchia S, Kobilka BK, Daniel KW, Nolan RD, Lapetina EY, Caron MG, et al. Multiple second messenger pathways of alpha-adrenergic receptor subtypes expressed in eukaryotic cells. J Biol Chem. 1990;265(1):63–9.PubMed Cotecchia S, Kobilka BK, Daniel KW, Nolan RD, Lapetina EY, Caron MG, et al. Multiple second messenger pathways of alpha-adrenergic receptor subtypes expressed in eukaryotic cells. J Biol Chem. 1990;265(1):63–9.PubMed
31.
Zurück zum Zitat Pablo Huidobro-Toro J, Veronica Donoso M. Sympathetic co-transmission: the coordinated action of ATP and noradrenaline and their modulation by neuropeptide Y in human vascular neuroeffector junctions. Eur J Pharmacol. 2004;500(1–3):27–35. doi:10.1016/j.ejphar.2004.07.008.PubMedCrossRef Pablo Huidobro-Toro J, Veronica Donoso M. Sympathetic co-transmission: the coordinated action of ATP and noradrenaline and their modulation by neuropeptide Y in human vascular neuroeffector junctions. Eur J Pharmacol. 2004;500(1–3):27–35. doi:10.​1016/​j.​ejphar.​2004.​07.​008.PubMedCrossRef
34.
Zurück zum Zitat Cao WH, Morrison SF. Differential chemoreceptor reflex responses of adrenal preganglionic neurons. Am J Physiol Regul Integr Comp Physiol. 2001;281(6):R1825–32.PubMed Cao WH, Morrison SF. Differential chemoreceptor reflex responses of adrenal preganglionic neurons. Am J Physiol Regul Integr Comp Physiol. 2001;281(6):R1825–32.PubMed
35.
Zurück zum Zitat Morrison SF, Cao WH. Different adrenal sympathetic preganglionic neurons regulate epinephrine and norepinephrine secretion. Am J Physiol Regul Integr Comp Physiol. 2000;279(5):R1763–75.PubMed Morrison SF, Cao WH. Different adrenal sympathetic preganglionic neurons regulate epinephrine and norepinephrine secretion. Am J Physiol Regul Integr Comp Physiol. 2000;279(5):R1763–75.PubMed
36.
Zurück zum Zitat Dampney RA, Coleman MJ, Fontes MA, Hirooka Y, Horiuchi J, Li YW, et al. Central mechanisms underlying short- and long-term regulation of the cardiovascular system. Clin Exp Pharmacol Physiol. 2002;29(4):261–8.PubMedCrossRef Dampney RA, Coleman MJ, Fontes MA, Hirooka Y, Horiuchi J, Li YW, et al. Central mechanisms underlying short- and long-term regulation of the cardiovascular system. Clin Exp Pharmacol Physiol. 2002;29(4):261–8.PubMedCrossRef
37.
Zurück zum Zitat Dorward PK, Burke SL, Janig W, Cassell J. Reflex responses to baroreceptor, chemoreceptor and nociceptor inputs in single renal sympathetic neurones in the rabbit and the effects of anaesthesia on them. J Auton Nerv Syst. 1987;18(1):39–54.PubMedCrossRef Dorward PK, Burke SL, Janig W, Cassell J. Reflex responses to baroreceptor, chemoreceptor and nociceptor inputs in single renal sympathetic neurones in the rabbit and the effects of anaesthesia on them. J Auton Nerv Syst. 1987;18(1):39–54.PubMedCrossRef
38.
Zurück zum Zitat Ootsuka Y, Rong W, Kishi E, Koganezawa T, Terui N. Rhythmic activities of the sympatho-excitatory neurons in the medulla of rabbits: neurons controlling cutaneous vasomotion. Auton Neurosci. 2002;101(1–2):48–59.PubMedCrossRef Ootsuka Y, Rong W, Kishi E, Koganezawa T, Terui N. Rhythmic activities of the sympatho-excitatory neurons in the medulla of rabbits: neurons controlling cutaneous vasomotion. Auton Neurosci. 2002;101(1–2):48–59.PubMedCrossRef
40.
Zurück zum Zitat Ichinose M, Saito M, Kondo N, Nishiyasu T. Time-dependent modulation of arterial baroreflex control of muscle sympathetic nerve activity during isometric exercise in humans. Am J Physiol Heart Circ Physiol. 2006;290(4):H1419–26. doi:10.1152/ajpheart.00847.2005.PubMedCrossRef Ichinose M, Saito M, Kondo N, Nishiyasu T. Time-dependent modulation of arterial baroreflex control of muscle sympathetic nerve activity during isometric exercise in humans. Am J Physiol Heart Circ Physiol. 2006;290(4):H1419–26. doi:10.​1152/​ajpheart.​00847.​2005.PubMedCrossRef
41.
Zurück zum Zitat DiBona GF, Jones SY. Effect of sodium intake on sympathetic and hemodynamic response to thermal receptor stimulation. Hypertension. 2003;41(2):261–5.PubMedCrossRef DiBona GF, Jones SY. Effect of sodium intake on sympathetic and hemodynamic response to thermal receptor stimulation. Hypertension. 2003;41(2):261–5.PubMedCrossRef
43.
Zurück zum Zitat DiBona GF, Sawin LL. Renal nerve activity in conscious rats during volume expansion and depletion. Am J Physiol. 1985;248(1 Pt 2):F15–23.PubMed DiBona GF, Sawin LL. Renal nerve activity in conscious rats during volume expansion and depletion. Am J Physiol. 1985;248(1 Pt 2):F15–23.PubMed
45.••
Zurück zum Zitat Ramchandra R, Hood SG, Watson AM, Allen AM, May CN. Central angiotensin type 1 receptor blockade decreases cardiac but not renal sympathetic nerve activity in heart failure. Hypertension. 2012;59(3):634–41. An exquisitely performed observational study which demonstrates, in a sheep animal model of heart failure, target specific differences in levels of efferent sympathetic activity to various vascular beds, suggestive of differential regulation of SNA to different target organs in disease conditions. PubMedPubMedCentralCrossRef Ramchandra R, Hood SG, Watson AM, Allen AM, May CN. Central angiotensin type 1 receptor blockade decreases cardiac but not renal sympathetic nerve activity in heart failure. Hypertension. 2012;59(3):634–41. An exquisitely performed observational study which demonstrates, in a sheep animal model of heart failure, target specific differences in levels of efferent sympathetic activity to various vascular beds, suggestive of differential regulation of SNA to different target organs in disease conditions. PubMedPubMedCentralCrossRef
46.
Zurück zum Zitat Turner MJ, Kawada T, Sugimachi M. Differential dynamic control of cardiac and splanchnic sympathetic nerve activity by the arterial baroreflex. Conf Proc Ann Int Conf IEEE Eng Med Biol Soc IEEE Eng Med Biol Soc Conf. 2013;2013:3809–12. doi:10.1109/embc.2013.6610374. Turner MJ, Kawada T, Sugimachi M. Differential dynamic control of cardiac and splanchnic sympathetic nerve activity by the arterial baroreflex. Conf Proc Ann Int Conf IEEE Eng Med Biol Soc IEEE Eng Med Biol Soc Conf. 2013;2013:3809–12. doi:10.​1109/​embc.​2013.​6610374.
49.
Zurück zum Zitat Park J, Campese VM, Nobakht N, Middlekauff HR. Differential distribution of muscle and skin sympathetic nerve activity in patients with end-stage renal disease. J Appl Physiol (Bethesda, Md: 1985). 2008;105(6):1873–6. doi:10.1152/japplphysiol.90849.2008.CrossRef Park J, Campese VM, Nobakht N, Middlekauff HR. Differential distribution of muscle and skin sympathetic nerve activity in patients with end-stage renal disease. J Appl Physiol (Bethesda, Md: 1985). 2008;105(6):1873–6. doi:10.​1152/​japplphysiol.​90849.​2008.CrossRef
50.
Zurück zum Zitat Ramchandra R, Barrett CJ, Guild SJ, Malpas SC. Evidence of differential control of renal and lumbar sympathetic nerve activity in conscious rabbits. Am J Physiol Regul Integr Comp Physiol. 2006;290(3):20. Ramchandra R, Barrett CJ, Guild SJ, Malpas SC. Evidence of differential control of renal and lumbar sympathetic nerve activity in conscious rabbits. Am J Physiol Regul Integr Comp Physiol. 2006;290(3):20.
51.
Zurück zum Zitat Yao Y, Hildreth CM, Farnham MM, Saha M, Sun QJ, Pilowsky PM, et al. The effect of losartan on differential reflex control of sympathetic nerve activity in chronic kidney disease. J Hypertens. 2015. doi:10.1097/hjh.0000000000000535. Yao Y, Hildreth CM, Farnham MM, Saha M, Sun QJ, Pilowsky PM, et al. The effect of losartan on differential reflex control of sympathetic nerve activity in chronic kidney disease. J Hypertens. 2015. doi:10.​1097/​hjh.​0000000000000535​.
52.
Zurück zum Zitat Reid IA. Interactions between ANG II, sympathetic nervous system, and baroreceptor reflexes in regulation of blood pressure. Am J Physiol. 1992;262:E763–78.PubMed Reid IA. Interactions between ANG II, sympathetic nervous system, and baroreceptor reflexes in regulation of blood pressure. Am J Physiol. 1992;262:E763–78.PubMed
54.
Zurück zum Zitat DiBona GF. Neural control of the kidney: functionally specific renal sympathetic nerve fibers. Am J Physiol Regul Integr Comp Physiol. 2000;279(5):R1517–24.PubMed DiBona GF. Neural control of the kidney: functionally specific renal sympathetic nerve fibers. Am J Physiol Regul Integr Comp Physiol. 2000;279(5):R1517–24.PubMed
55.
Zurück zum Zitat DiBona GF, Sawin LL. Reflex regulation of renal nerve activity in cardiac failure. Am J Physiol. 1994;266(1 Pt 2):R27–39.PubMed DiBona GF, Sawin LL. Reflex regulation of renal nerve activity in cardiac failure. Am J Physiol. 1994;266(1 Pt 2):R27–39.PubMed
57.
Zurück zum Zitat DiBona GF. Nervous kidney. Interaction between renal sympathetic nerves and the renin-angiotensin system in the control of renal function. Hypertension. 2000;36(6):1083–8.PubMedCrossRef DiBona GF. Nervous kidney. Interaction between renal sympathetic nerves and the renin-angiotensin system in the control of renal function. Hypertension. 2000;36(6):1083–8.PubMedCrossRef
58.
Zurück zum Zitat Krauhs JM. Structure of rat aortic baroreceptors and their relationship to connective tissue. J Neurocytol. 1979;8(4):401–14.PubMedCrossRef Krauhs JM. Structure of rat aortic baroreceptors and their relationship to connective tissue. J Neurocytol. 1979;8(4):401–14.PubMedCrossRef
59.
62.
Zurück zum Zitat Andresen MC, Krauhs JM, Brown AM. Relationship of aortic wall and baroreceptor properties during development in normotensive and spontaneously hypertensive rats. Circ Res. 1978;43(5):728–38.PubMedCrossRef Andresen MC, Krauhs JM, Brown AM. Relationship of aortic wall and baroreceptor properties during development in normotensive and spontaneously hypertensive rats. Circ Res. 1978;43(5):728–38.PubMedCrossRef
63.
Zurück zum Zitat Fan W, Andresen MC. Differential frequency-dependent reflex integration of myelinated and nonmyelinated rat aortic baroreceptors. Am J Physiol. 1998;275(2 Pt 2):H632–40.PubMed Fan W, Andresen MC. Differential frequency-dependent reflex integration of myelinated and nonmyelinated rat aortic baroreceptors. Am J Physiol. 1998;275(2 Pt 2):H632–40.PubMed
64.
Zurück zum Zitat Fan W, Schild JH, Andresen MC. Graded and dynamic reflex summation of myelinated and unmyelinated rat aortic baroreceptors. Am J Physiol. 1999;277(3 Pt 2):R748–56.PubMed Fan W, Schild JH, Andresen MC. Graded and dynamic reflex summation of myelinated and unmyelinated rat aortic baroreceptors. Am J Physiol. 1999;277(3 Pt 2):R748–56.PubMed
65.
Zurück zum Zitat Kumada M, Terui N, Kuwaki T. Arterial baroreceptor reflex: its central and peripheral neural mechanisms. Prog Neurobiol. 1990;35(5):331–61.PubMedCrossRef Kumada M, Terui N, Kuwaki T. Arterial baroreceptor reflex: its central and peripheral neural mechanisms. Prog Neurobiol. 1990;35(5):331–61.PubMedCrossRef
66.
Zurück zum Zitat Easton J, Howe A. The distribution of thoracic glomus tissue (aortic bodies) in the rat. Cell Tissue Res. 1983;232(2):349–56.PubMedCrossRef Easton J, Howe A. The distribution of thoracic glomus tissue (aortic bodies) in the rat. Cell Tissue Res. 1983;232(2):349–56.PubMedCrossRef
67.
Zurück zum Zitat Ninomiya I, Nisimaru N, Irisawa H. Sympathetic nerve activity to the spleen, kidney, and heart in response to baroceptor input. Am J Physiol. 1971;221(5):1346–51.PubMed Ninomiya I, Nisimaru N, Irisawa H. Sympathetic nerve activity to the spleen, kidney, and heart in response to baroceptor input. Am J Physiol. 1971;221(5):1346–51.PubMed
68.
Zurück zum Zitat Sapru HN, Gonzalez E, Krieger AJ. Aortic nerve stimulation in the rat: cardiovascular and respiratory responses. Brain Res Bull. 1981;6(5):393–8.PubMedCrossRef Sapru HN, Gonzalez E, Krieger AJ. Aortic nerve stimulation in the rat: cardiovascular and respiratory responses. Brain Res Bull. 1981;6(5):393–8.PubMedCrossRef
69.
Zurück zum Zitat Sapru HN, Krieger AJ. Carotid and aortic chemoreceptor function in the rat. J Appl Physiol. 1977;42(3):344–8.PubMed Sapru HN, Krieger AJ. Carotid and aortic chemoreceptor function in the rat. J Appl Physiol. 1977;42(3):344–8.PubMed
70.
Zurück zum Zitat Andresen MC, Doyle MW, Jin YH, Bailey TW. Cellular mechanisms of baroreceptor integration at the nucleus tractus solitarius. Ann N Y Acad Sci. 2001;940:132–41.PubMedCrossRef Andresen MC, Doyle MW, Jin YH, Bailey TW. Cellular mechanisms of baroreceptor integration at the nucleus tractus solitarius. Ann N Y Acad Sci. 2001;940:132–41.PubMedCrossRef
71.
Zurück zum Zitat Dampney RA. Functional organization of central pathways regulating the cardiovascular system. Physiol Rev. 1994;74(2):323–64.PubMed Dampney RA. Functional organization of central pathways regulating the cardiovascular system. Physiol Rev. 1994;74(2):323–64.PubMed
72.
Zurück zum Zitat Pilowsky PM, Goodchild AK. Baroreceptor reflex pathways and neurotransmitters: 10 years on. J Hypertens. 2002;20(9):1675–88.PubMedCrossRef Pilowsky PM, Goodchild AK. Baroreceptor reflex pathways and neurotransmitters: 10 years on. J Hypertens. 2002;20(9):1675–88.PubMedCrossRef
73.
Zurück zum Zitat Mendelowitz D, Yang M, Andresen MC, Kunze DL. Localization and retention in vitro of fluorescently labeled aortic baroreceptor terminals on neurons from the nucleus tractus solitarius. Brain Res. 1992;581(2):339–43.PubMedCrossRef Mendelowitz D, Yang M, Andresen MC, Kunze DL. Localization and retention in vitro of fluorescently labeled aortic baroreceptor terminals on neurons from the nucleus tractus solitarius. Brain Res. 1992;581(2):339–43.PubMedCrossRef
74.
Zurück zum Zitat Bailey TW, Hermes SM, Andresen MC, Aicher SA. Cranial visceral afferent pathways through the nucleus of the solitary tract to caudal ventrolateral medulla or paraventricular hypothalamus: target-specific synaptic reliability and convergence patterns. J Neurosci Off J Soc Neurosci. 2006;26(46):11893–902. doi:10.1523/jneurosci.2044-06.2006.CrossRef Bailey TW, Hermes SM, Andresen MC, Aicher SA. Cranial visceral afferent pathways through the nucleus of the solitary tract to caudal ventrolateral medulla or paraventricular hypothalamus: target-specific synaptic reliability and convergence patterns. J Neurosci Off J Soc Neurosci. 2006;26(46):11893–902. doi:10.​1523/​jneurosci.​2044-06.​2006.CrossRef
76.
Zurück zum Zitat Potts JT, Paton JF, Mitchell JH, Garry MG, Kline G, Anguelov PT, et al. Contraction-sensitive skeletal muscle afferents inhibit arterial baroreceptor signalling in the nucleus of the solitary tract: role of intrinsic GABA interneurons. Neuroscience. 2003;119(1):201–14.PubMedCrossRef Potts JT, Paton JF, Mitchell JH, Garry MG, Kline G, Anguelov PT, et al. Contraction-sensitive skeletal muscle afferents inhibit arterial baroreceptor signalling in the nucleus of the solitary tract: role of intrinsic GABA interneurons. Neuroscience. 2003;119(1):201–14.PubMedCrossRef
77.
Zurück zum Zitat Sun MK, Guyenet PG. Arterial baroreceptor and vagal inputs to sympathoexcitatory neurons in rat medulla. Am J Physiol. 1987;252(4 Pt 2):R699–709.PubMed Sun MK, Guyenet PG. Arterial baroreceptor and vagal inputs to sympathoexcitatory neurons in rat medulla. Am J Physiol. 1987;252(4 Pt 2):R699–709.PubMed
78.
Zurück zum Zitat Vardhan A, Kachroo A, Sapru HN. Excitatory amino acid receptors in the nucleus tractus solitarius mediate the responses to the stimulation of cardio-pulmonary vagal afferent C fiber endings. Brain Res. 1993;618(1):23–31.PubMedCrossRef Vardhan A, Kachroo A, Sapru HN. Excitatory amino acid receptors in the nucleus tractus solitarius mediate the responses to the stimulation of cardio-pulmonary vagal afferent C fiber endings. Brain Res. 1993;618(1):23–31.PubMedCrossRef
79.
Zurück zum Zitat Akemi Sato M, Vanderlei Menani J, Ubriaco Lopes O, Colombari E. Lesions of the commissural nucleus of the solitary tract reduce arterial pressure in spontaneously hypertensive rats. Hypertension. 2001;38(3 Pt 2):560–4.PubMedCrossRef Akemi Sato M, Vanderlei Menani J, Ubriaco Lopes O, Colombari E. Lesions of the commissural nucleus of the solitary tract reduce arterial pressure in spontaneously hypertensive rats. Hypertension. 2001;38(3 Pt 2):560–4.PubMedCrossRef
80.
Zurück zum Zitat Biaggioni I, Whetsell WO, Jobe J, Nadeau JH. Baroreflex failure in a patient with central nervous system lesions involving the nucleus tractus solitarii. Hypertension. 1994;23(4):491–5.PubMedCrossRef Biaggioni I, Whetsell WO, Jobe J, Nadeau JH. Baroreflex failure in a patient with central nervous system lesions involving the nucleus tractus solitarii. Hypertension. 1994;23(4):491–5.PubMedCrossRef
81.
Zurück zum Zitat Leone C, Gordon FJ. Is L-glutamate a neurotransmitter of baroreceptor information in the nucleus of the tractus solitarius? J Pharmacol Exp Ther. 1989;250(3):953–62.PubMed Leone C, Gordon FJ. Is L-glutamate a neurotransmitter of baroreceptor information in the nucleus of the tractus solitarius? J Pharmacol Exp Ther. 1989;250(3):953–62.PubMed
82.
Zurück zum Zitat Talman WT, Perrone MH, Reis DJ. Evidence for L-glutamate as the neurotransmitter of baroreceptor afferent nerve fibers. Science (New York, NY). 1980;209(4458):813–5.CrossRef Talman WT, Perrone MH, Reis DJ. Evidence for L-glutamate as the neurotransmitter of baroreceptor afferent nerve fibers. Science (New York, NY). 1980;209(4458):813–5.CrossRef
83.
Zurück zum Zitat Polson JW, Dampney RA, Boscan P, Pickering AE, Paton JF. Differential baroreflex control of sympathetic drive by angiotensin II in the nucleus tractus solitarii. Am J Physiol Regul Integr Comp Physiol. 2007;293(5):R1954–60. doi:10.1152/ajpregu.00041.2007.PubMedCrossRef Polson JW, Dampney RA, Boscan P, Pickering AE, Paton JF. Differential baroreflex control of sympathetic drive by angiotensin II in the nucleus tractus solitarii. Am J Physiol Regul Integr Comp Physiol. 2007;293(5):R1954–60. doi:10.​1152/​ajpregu.​00041.​2007.PubMedCrossRef
84.
Zurück zum Zitat Miyawaki T, Suzuki S, Minson J, Arnolda L, Chalmers J, Llewellyn-Smith I, et al. Role of AMPA/kainate receptors in transmission of the sympathetic baroreflex in rat CVLM. Am J Physiol. 1997;272(3 Pt 2):R800–12.PubMed Miyawaki T, Suzuki S, Minson J, Arnolda L, Chalmers J, Llewellyn-Smith I, et al. Role of AMPA/kainate receptors in transmission of the sympathetic baroreflex in rat CVLM. Am J Physiol. 1997;272(3 Pt 2):R800–12.PubMed
86.
Zurück zum Zitat Schreihofer AM, Guyenet PG. The baroreflex and beyond: control of sympathetic vasomotor tone by GABAergic neurons in the ventrolateral medulla. Clin Exp Pharmacol Physiol. 2002;29(5–6):514–21.PubMedCrossRef Schreihofer AM, Guyenet PG. The baroreflex and beyond: control of sympathetic vasomotor tone by GABAergic neurons in the ventrolateral medulla. Clin Exp Pharmacol Physiol. 2002;29(5–6):514–21.PubMedCrossRef
87.
Zurück zum Zitat Cravo SL, Morrison SF. The caudal ventrolateral medulla is a source of tonic sympathoinhibition. Brain Res. 1993;621(1):133–6.PubMedCrossRef Cravo SL, Morrison SF. The caudal ventrolateral medulla is a source of tonic sympathoinhibition. Brain Res. 1993;621(1):133–6.PubMedCrossRef
89.
Zurück zum Zitat Guyenet PG, Filtz TM, Donaldson SR. Role of excitatory amino acids in rat vagal and sympathetic baroreflexes. Brain Res. 1987;407(2):272–84.PubMedCrossRef Guyenet PG, Filtz TM, Donaldson SR. Role of excitatory amino acids in rat vagal and sympathetic baroreflexes. Brain Res. 1987;407(2):272–84.PubMedCrossRef
90.
Zurück zum Zitat Agarwal SK, Gelsema AJ, Calaresu FR. Neurons in rostral VLM are inhibited by chemical stimulation of caudal VLM in rats. Am J Physiol. 1989;257(2 Pt 2):R265–70.PubMed Agarwal SK, Gelsema AJ, Calaresu FR. Neurons in rostral VLM are inhibited by chemical stimulation of caudal VLM in rats. Am J Physiol. 1989;257(2 Pt 2):R265–70.PubMed
91.
Zurück zum Zitat Sved AF, Ito S, Madden CJ. Baroreflex dependent and independent roles of the caudal ventrolateral medulla in cardiovascular regulation. Brain Res Bull. 2000;51(2):129–33.PubMedCrossRef Sved AF, Ito S, Madden CJ. Baroreflex dependent and independent roles of the caudal ventrolateral medulla in cardiovascular regulation. Brain Res Bull. 2000;51(2):129–33.PubMedCrossRef
92.
Zurück zum Zitat Jeske I, Reis DJ, Milner TA. Neurons in the barosensory area of the caudal ventrolateral medulla project monosynaptically on to sympathoexcitatory bulbospinal neurons in the rostral ventrolateral medulla. Neuroscience. 1995;65(2):343–53.PubMedCrossRef Jeske I, Reis DJ, Milner TA. Neurons in the barosensory area of the caudal ventrolateral medulla project monosynaptically on to sympathoexcitatory bulbospinal neurons in the rostral ventrolateral medulla. Neuroscience. 1995;65(2):343–53.PubMedCrossRef
93.
Zurück zum Zitat Lipski J, Kanjhan R, Kruszewska B, Rong WF. Criteria for intracellular identification of pre-sympathetic neurons in the rostral ventrolateral medulla in the rat. Clin Exp Hypertens. 1995;17(1–2):51–65.PubMedCrossRef Lipski J, Kanjhan R, Kruszewska B, Rong WF. Criteria for intracellular identification of pre-sympathetic neurons in the rostral ventrolateral medulla in the rat. Clin Exp Hypertens. 1995;17(1–2):51–65.PubMedCrossRef
94.
Zurück zum Zitat Schreihofer AM, Guyenet PG. Identification of C1 presympathetic neurons in rat rostral ventrolateral medulla by juxtacellular labeling in vivo. J Comp Neurol. 1997;387(4):524–36.PubMedCrossRef Schreihofer AM, Guyenet PG. Identification of C1 presympathetic neurons in rat rostral ventrolateral medulla by juxtacellular labeling in vivo. J Comp Neurol. 1997;387(4):524–36.PubMedCrossRef
95.
Zurück zum Zitat Verberne AJ, Stornetta RL, Guyenet PG. Properties of C1 and other ventrolateral medullary neurones with hypothalamic projections in the rat. J Physiol. 1999;517(Pt 2):477–94.PubMedPubMedCentralCrossRef Verberne AJ, Stornetta RL, Guyenet PG. Properties of C1 and other ventrolateral medullary neurones with hypothalamic projections in the rat. J Physiol. 1999;517(Pt 2):477–94.PubMedPubMedCentralCrossRef
96.
Zurück zum Zitat Sun MK, Guyenet PG. GABA-mediated baroreceptor inhibition of reticulospinal neurons. Am J Physiol. 1985;249(6 Pt 2):R672–80.PubMed Sun MK, Guyenet PG. GABA-mediated baroreceptor inhibition of reticulospinal neurons. Am J Physiol. 1985;249(6 Pt 2):R672–80.PubMed
97.
Zurück zum Zitat Dampney RA, Tagawa T, Horiuchi J, Potts PD, Fontes M, Polson JW. What drives the tonic activity of presympathetic neurons in the rostral ventrolateral medulla? Clin Exp Pharmacol Physiol. 2000;27(12):1049–53.PubMedCrossRef Dampney RA, Tagawa T, Horiuchi J, Potts PD, Fontes M, Polson JW. What drives the tonic activity of presympathetic neurons in the rostral ventrolateral medulla? Clin Exp Pharmacol Physiol. 2000;27(12):1049–53.PubMedCrossRef
98.
Zurück zum Zitat Campos RR, McAllen RM. Cardiac sympathetic premotor neurons. Am J Physiol. 1997;272(2 Pt 2):R615–20.PubMed Campos RR, McAllen RM. Cardiac sympathetic premotor neurons. Am J Physiol. 1997;272(2 Pt 2):R615–20.PubMed
99.
Zurück zum Zitat McAllen RM, Dampney RA. Vasomotor neurons in the rostral ventrolateral medulla are organized topographically with respect to type of vascular bed but not body region. Neurosci Lett. 1990;110(1–2):91–6.PubMedCrossRef McAllen RM, Dampney RA. Vasomotor neurons in the rostral ventrolateral medulla are organized topographically with respect to type of vascular bed but not body region. Neurosci Lett. 1990;110(1–2):91–6.PubMedCrossRef
100.
Zurück zum Zitat McAllen RM, May CN, Shafton AD. Functional anatomy of sympathetic premotor cell groups in the medulla. Clin Exp Hypertens. 1995;17(1–2):209–21.PubMedCrossRef McAllen RM, May CN, Shafton AD. Functional anatomy of sympathetic premotor cell groups in the medulla. Clin Exp Hypertens. 1995;17(1–2):209–21.PubMedCrossRef
101.
Zurück zum Zitat Guyenet PG, Stornetta RL, Abbott SB, Depuy SD, Fortuna MG, Kanbar R. Central CO2 chemoreception and integrated neural mechanisms of cardiovascular and respiratory control. J Appl Physiol (Bethesda, Md: 1985). 2010;108(4):995–1002. doi:10.1152/japplphysiol.00712.2009.CrossRef Guyenet PG, Stornetta RL, Abbott SB, Depuy SD, Fortuna MG, Kanbar R. Central CO2 chemoreception and integrated neural mechanisms of cardiovascular and respiratory control. J Appl Physiol (Bethesda, Md: 1985). 2010;108(4):995–1002. doi:10.​1152/​japplphysiol.​00712.​2009.CrossRef
102.
Zurück zum Zitat Tagawa T, Dampney RA. AT(1) receptors mediate excitatory inputs to rostral ventrolateral medulla pressor neurons from hypothalamus. Hypertension. 1999;34(6):1301–7.PubMedCrossRef Tagawa T, Dampney RA. AT(1) receptors mediate excitatory inputs to rostral ventrolateral medulla pressor neurons from hypothalamus. Hypertension. 1999;34(6):1301–7.PubMedCrossRef
103.
Zurück zum Zitat Izzo PN, Deuchars J, Spyer KM. Localization of cardiac vagal preganglionic motoneurones in the rat: immunocytochemical evidence of synaptic inputs containing 5-hydroxytryptamine. J Comp Neurol. 1993;327(4):572–83.PubMedCrossRef Izzo PN, Deuchars J, Spyer KM. Localization of cardiac vagal preganglionic motoneurones in the rat: immunocytochemical evidence of synaptic inputs containing 5-hydroxytryptamine. J Comp Neurol. 1993;327(4):572–83.PubMedCrossRef
104.
Zurück zum Zitat Nosaka S, Yamamoto T, Yasunaga K. Localization of vagal cardioinhibitory preganglionic neurons with rat brain stem. J Comp Neurol. 1979;186(1):79–92.PubMedCrossRef Nosaka S, Yamamoto T, Yasunaga K. Localization of vagal cardioinhibitory preganglionic neurons with rat brain stem. J Comp Neurol. 1979;186(1):79–92.PubMedCrossRef
105.
Zurück zum Zitat Stuesse SL. Origins of cardiac vagal preganglionic fibers: a retrograde transport study. Brain Res. 1982;236(1):15–25.PubMedCrossRef Stuesse SL. Origins of cardiac vagal preganglionic fibers: a retrograde transport study. Brain Res. 1982;236(1):15–25.PubMedCrossRef
107.
Zurück zum Zitat Wang J, Irnaten M, Neff RA, Venkatesan P, Evans C, Loewy AD, et al. Synaptic and neurotransmitter activation of cardiac vagal neurons in the nucleus ambiguus. Ann N Y Acad Sci. 2001;940:237–46.PubMedCrossRef Wang J, Irnaten M, Neff RA, Venkatesan P, Evans C, Loewy AD, et al. Synaptic and neurotransmitter activation of cardiac vagal neurons in the nucleus ambiguus. Ann N Y Acad Sci. 2001;940:237–46.PubMedCrossRef
108.
Zurück zum Zitat DiMicco JA, Gale K, Hamilton B, Gillis RA. GABA receptor control of parasympathetic outflow to heart: characterization and brainstem localization. Science (New York, NY). 1979;204(4397):1106–9.CrossRef DiMicco JA, Gale K, Hamilton B, Gillis RA. GABA receptor control of parasympathetic outflow to heart: characterization and brainstem localization. Science (New York, NY). 1979;204(4397):1106–9.CrossRef
109.
Zurück zum Zitat Charlton JD, Baertschi AJ. Responses of aortic baroreceptors to changes of aortic blood flow and pressure in rat. Am J Physiol. 1982;242(4):H520–5.PubMed Charlton JD, Baertschi AJ. Responses of aortic baroreceptors to changes of aortic blood flow and pressure in rat. Am J Physiol. 1982;242(4):H520–5.PubMed
110.
Zurück zum Zitat Mandoki JJ, Casa-Tirao B, Molina-Guarneros JA, Jimenez-Orozco FA, Garcia-Mondragon MJ, Maldonado-Espinoza A. Pulsatile diastolic increase and systolic decrease in arterial blood pressure: their mechanism of production and physiological role. Prog Biophys Mol Biol. 2013;112(3):55–7. doi:10.1016/j.pbiomolbio.2013.05.002.PubMedCrossRef Mandoki JJ, Casa-Tirao B, Molina-Guarneros JA, Jimenez-Orozco FA, Garcia-Mondragon MJ, Maldonado-Espinoza A. Pulsatile diastolic increase and systolic decrease in arterial blood pressure: their mechanism of production and physiological role. Prog Biophys Mol Biol. 2013;112(3):55–7. doi:10.​1016/​j.​pbiomolbio.​2013.​05.​002.PubMedCrossRef
111.
Zurück zum Zitat Vasquez EC, Meyrelles SS, Mauad H, Cabral AM, et al. Neural reflex regulation of arterial pressure in pathophysiological conditions: interplay among the baroreflex, the cardiopulmonary reflexes and the chemoreflex. Brazilian journal of medical and biological research = Revista brasileira de pesquisas medicas e biologicas / Sociedade Brasileira de Biofisica. 1997;30(4):521–32. Vasquez EC, Meyrelles SS, Mauad H, Cabral AM, et al. Neural reflex regulation of arterial pressure in pathophysiological conditions: interplay among the baroreflex, the cardiopulmonary reflexes and the chemoreflex. Brazilian journal of medical and biological research = Revista brasileira de pesquisas medicas e biologicas / Sociedade Brasileira de Biofisica. 1997;30(4):521–32.
112.
Zurück zum Zitat Kent BB, Drane JW, Blumenstein B, Manning JW. A mathematical model to assess changes in the baroreceptor reflex. Cardiology. 1972;57(5):295–310.PubMedCrossRef Kent BB, Drane JW, Blumenstein B, Manning JW. A mathematical model to assess changes in the baroreceptor reflex. Cardiology. 1972;57(5):295–310.PubMedCrossRef
113.
Zurück zum Zitat Ma X, Abboud FM, Chapleau MW. Analysis of afferent, central, and efferent components of the baroreceptor reflex in mice. Am J Physiol Regul Integr Comp Physiol. 2002;283(5):R1033–40.PubMedCrossRef Ma X, Abboud FM, Chapleau MW. Analysis of afferent, central, and efferent components of the baroreceptor reflex in mice. Am J Physiol Regul Integr Comp Physiol. 2002;283(5):R1033–40.PubMedCrossRef
114.••
Zurück zum Zitat Salman IM. Current approaches to quantifying tonic and reflex autonomic outflows controlling cardiovascular function in humans and experimental animals. Curr Hypertens Rep. 2015;17(11):84. doi:10.1007/s11906-015-0597-2. A recently published review which provides an overview of the methods and techniques used to assess tonic and reflex autonomic functions in humans and laboratory animals, emphasizing current advances available and providing a brief description of protocols and procedure limitations and usefulness for diagnostic purposes. PubMedCrossRef Salman IM. Current approaches to quantifying tonic and reflex autonomic outflows controlling cardiovascular function in humans and experimental animals. Curr Hypertens Rep. 2015;17(11):84. doi:10.​1007/​s11906-015-0597-2. A recently published review which provides an overview of the methods and techniques used to assess tonic and reflex autonomic functions in humans and laboratory animals, emphasizing current advances available and providing a brief description of protocols and procedure limitations and usefulness for diagnostic purposes. PubMedCrossRef
115.
Zurück zum Zitat Andresen MC. Short- and long-term determinants of baroreceptor function in aged normotensive and spontaneously hypertensive rats. Circ Res. 1984;54(6):750–9.PubMedCrossRef Andresen MC. Short- and long-term determinants of baroreceptor function in aged normotensive and spontaneously hypertensive rats. Circ Res. 1984;54(6):750–9.PubMedCrossRef
116.
Zurück zum Zitat Gonzalez ER, Krieger AJ, Sapru HN. Central resetting of baroreflex in the spontaneously hypertensive rat. Hypertension. 1983;5(3):346–52.PubMedCrossRef Gonzalez ER, Krieger AJ, Sapru HN. Central resetting of baroreflex in the spontaneously hypertensive rat. Hypertension. 1983;5(3):346–52.PubMedCrossRef
118.
Zurück zum Zitat Sapru HN, Wang SC. Modification of aortic barorecptor resetting in the spontaneously hypertensive rat. Am J Physiol. 1976;230(3):664–74.PubMed Sapru HN, Wang SC. Modification of aortic barorecptor resetting in the spontaneously hypertensive rat. Am J Physiol. 1976;230(3):664–74.PubMed
119.
Zurück zum Zitat Wallin BG, Sundlof G. A quantitative study of muscle nerve sympathetic activity in resting normotensive and hypertensive subjects. Hypertension. 1979;1(2):67–77.PubMedCrossRef Wallin BG, Sundlof G. A quantitative study of muscle nerve sympathetic activity in resting normotensive and hypertensive subjects. Hypertension. 1979;1(2):67–77.PubMedCrossRef
120.
Zurück zum Zitat Krieger EM. Mechanisms of complete baroreceptor resetting in hypertension. Drugs. 1988;35 Suppl 6:98–103.PubMedCrossRef Krieger EM. Mechanisms of complete baroreceptor resetting in hypertension. Drugs. 1988;35 Suppl 6:98–103.PubMedCrossRef
121.
Zurück zum Zitat Munch PA, Andresen MC, Brown AM. Rapid resetting of aortic baroreceptors in vitro. Am J Physiol. 1983;244(5):H672–80.PubMed Munch PA, Andresen MC, Brown AM. Rapid resetting of aortic baroreceptors in vitro. Am J Physiol. 1983;244(5):H672–80.PubMed
122.
Zurück zum Zitat Hatton DC, Brooks V, Qi Y, McCarron DA. Cardiovascular response to stress: baroreflex resetting and hemodynamics. Am J Physiol. 1997;272(5 Pt 2):R1588–94.PubMed Hatton DC, Brooks V, Qi Y, McCarron DA. Cardiovascular response to stress: baroreflex resetting and hemodynamics. Am J Physiol. 1997;272(5 Pt 2):R1588–94.PubMed
125.
Zurück zum Zitat Head GA, Burke SL. Renal and cardiac sympathetic baroreflexes in hypertensive rabbits. Clin Exp Pharmacol Physiol. 2001;28(12):972–5.PubMedCrossRef Head GA, Burke SL. Renal and cardiac sympathetic baroreflexes in hypertensive rabbits. Clin Exp Pharmacol Physiol. 2001;28(12):972–5.PubMedCrossRef
126.
Zurück zum Zitat Huber DA, Schreihofer AM. Attenuated baroreflex control of sympathetic nerve activity in obese Zucker rats by central mechanisms. J Physiol. 2010;588(Pt 9):1515–25.PubMedPubMedCentralCrossRef Huber DA, Schreihofer AM. Attenuated baroreflex control of sympathetic nerve activity in obese Zucker rats by central mechanisms. J Physiol. 2010;588(Pt 9):1515–25.PubMedPubMedCentralCrossRef
127.
Zurück zum Zitat Ligtenberg G, Blankestijn PJ, Oey PL, Klein IH, Dijkhorst-Oei LT, Boomsma F, et al. Reduction of sympathetic hyperactivity by enalapril in patients with chronic renal failure. N Engl J Med. 1999;340(17):1321–8.PubMedCrossRef Ligtenberg G, Blankestijn PJ, Oey PL, Klein IH, Dijkhorst-Oei LT, Boomsma F, et al. Reduction of sympathetic hyperactivity by enalapril in patients with chronic renal failure. N Engl J Med. 1999;340(17):1321–8.PubMedCrossRef
129.
Zurück zum Zitat Salman IM, Phillips JK, Ameer OZ, Hildreth CM. Abnormal central control underlies impaired baroreflex control of heart rate and sympathetic nerve activity in female Lewis Polycystic Kidney rats. J Hypertens. 2015;33(7):1418–28. doi:10.1097/hjh.0000000000000572.PubMedCrossRef Salman IM, Phillips JK, Ameer OZ, Hildreth CM. Abnormal central control underlies impaired baroreflex control of heart rate and sympathetic nerve activity in female Lewis Polycystic Kidney rats. J Hypertens. 2015;33(7):1418–28. doi:10.​1097/​hjh.​0000000000000572​.PubMedCrossRef
130.
Zurück zum Zitat Paton JF, Deuchars J, Ahmad Z, Wong LF, Murphy D, Kasparov S. Adenoviral vector demonstrates that angiotensin II-induced depression of the cardiac baroreflex is mediated by endothelial nitric oxide synthase in the nucleus tractus solitarii of the rat. J Physiol. 2001;531(Pt 2):445–58.PubMedPubMedCentralCrossRef Paton JF, Deuchars J, Ahmad Z, Wong LF, Murphy D, Kasparov S. Adenoviral vector demonstrates that angiotensin II-induced depression of the cardiac baroreflex is mediated by endothelial nitric oxide synthase in the nucleus tractus solitarii of the rat. J Physiol. 2001;531(Pt 2):445–58.PubMedPubMedCentralCrossRef
131.
Zurück zum Zitat Brown AM, Saum WR, Tuley FH. A comparison of aortic baroreceptor discharge in normotensive and spontaneously hypertensive rats. Circ Res. 1976;39(4):488–96.PubMedCrossRef Brown AM, Saum WR, Tuley FH. A comparison of aortic baroreceptor discharge in normotensive and spontaneously hypertensive rats. Circ Res. 1976;39(4):488–96.PubMedCrossRef
132.
Zurück zum Zitat Sapru H, Krieger A. Role of receptor elements in baroceptor resetting. Am J Physiol-Heart Circ Physiol. 1979;236(1):H174–H82. Sapru H, Krieger A. Role of receptor elements in baroceptor resetting. Am J Physiol-Heart Circ Physiol. 1979;236(1):H174–H82.
135.
Zurück zum Zitat Mancia G, Grassi G, Ferrari A, Zanchetti A. Reflex cardiovascular regulation in humans. J Cardiovasc Pharmacol. 1985;7 Suppl 3:S152–9.PubMedCrossRef Mancia G, Grassi G, Ferrari A, Zanchetti A. Reflex cardiovascular regulation in humans. J Cardiovasc Pharmacol. 1985;7 Suppl 3:S152–9.PubMedCrossRef
136.
Zurück zum Zitat Merrill DC, Segar JL, McWeeny OJ, Robillard JE. Sympathetic responses to cardiopulmonary vagal afferent stimulation during development. Am J Physiol. 1999;277(4 Pt 2):H1311–6.PubMed Merrill DC, Segar JL, McWeeny OJ, Robillard JE. Sympathetic responses to cardiopulmonary vagal afferent stimulation during development. Am J Physiol. 1999;277(4 Pt 2):H1311–6.PubMed
137.
Zurück zum Zitat Aviado DM, Guevara AD. The Bezold-Jarisch reflex. A historical perspective of cardiopulmonary reflexes. Ann N Y Acad Sci. 2001;940:48–58.PubMedCrossRef Aviado DM, Guevara AD. The Bezold-Jarisch reflex. A historical perspective of cardiopulmonary reflexes. Ann N Y Acad Sci. 2001;940:48–58.PubMedCrossRef
138.••
Zurück zum Zitat Hainsworth R. Cardiovascular control from cardiac and pulmonary vascular receptors. Exp Physiol. 2014;99(2):312–9. doi:10.1113/expphysiol.2013.072637. An excellent review summarizing present knowledge of the function of the cardiopulmonary afferent nerves arising from the heart and the coronary and pulmonary arteries. PubMedCrossRef Hainsworth R. Cardiovascular control from cardiac and pulmonary vascular receptors. Exp Physiol. 2014;99(2):312–9. doi:10.​1113/​expphysiol.​2013.​072637. An excellent review summarizing present knowledge of the function of the cardiopulmonary afferent nerves arising from the heart and the coronary and pulmonary arteries. PubMedCrossRef
139.
Zurück zum Zitat Verberne AJ, Guyenet PG. Medullary pathway of the Bezold-Jarisch reflex in the rat. Am J Physiol. 1992;263(6 Pt 2):R1195–202.PubMed Verberne AJ, Guyenet PG. Medullary pathway of the Bezold-Jarisch reflex in the rat. Am J Physiol. 1992;263(6 Pt 2):R1195–202.PubMed
141.
Zurück zum Zitat Lee TM, Kuo JS, Chai CY. Central integrating mechanism of the Bezold-Jarisch and baroceptor reflexes. Am J Physiol. 1972;222(3):713–20.PubMed Lee TM, Kuo JS, Chai CY. Central integrating mechanism of the Bezold-Jarisch and baroceptor reflexes. Am J Physiol. 1972;222(3):713–20.PubMed
142.
Zurück zum Zitat Su JD, Huang ZS, Wang SL, Lu J. Medullary mechanism of the inhibition on renal sympathetic efferent activities by stimulation of the cervical vagal afferent nerve in rabbits. Sheng li xue bao: Acta Physiologica Sinica. 1996;48(4):410–4.PubMed Su JD, Huang ZS, Wang SL, Lu J. Medullary mechanism of the inhibition on renal sympathetic efferent activities by stimulation of the cervical vagal afferent nerve in rabbits. Sheng li xue bao: Acta Physiologica Sinica. 1996;48(4):410–4.PubMed
144.
Zurück zum Zitat Lovick TA, Coote JH. Effects of volume loading on paraventriculo-spinal neurones in the rat. J Auton Nerv Syst. 1988;25(2–3):135–40.PubMedCrossRef Lovick TA, Coote JH. Effects of volume loading on paraventriculo-spinal neurones in the rat. J Auton Nerv Syst. 1988;25(2–3):135–40.PubMedCrossRef
145.
Zurück zum Zitat Pyner S, Deering J, Coote JH. Right atrial stretch induces renal nerve inhibition and c-fos expression in parvocellular neurones of the paraventricular nucleus in rats. Exp Physiol. 2002;87(1):25–32.PubMedCrossRef Pyner S, Deering J, Coote JH. Right atrial stretch induces renal nerve inhibition and c-fos expression in parvocellular neurones of the paraventricular nucleus in rats. Exp Physiol. 2002;87(1):25–32.PubMedCrossRef
146.
Zurück zum Zitat Yang Z, Wheatley M, Coote JH. Neuropeptides, amines and amino acids as mediators of the sympathetic effects of paraventricular nucleus activation in the rat. Exp Physiol. 2002;87(6):663–74.PubMedCrossRef Yang Z, Wheatley M, Coote JH. Neuropeptides, amines and amino acids as mediators of the sympathetic effects of paraventricular nucleus activation in the rat. Exp Physiol. 2002;87(6):663–74.PubMedCrossRef
147.
Zurück zum Zitat Yang Z, Coote JH. Role of GABA and NO in the paraventricular nucleus-mediated reflex inhibition of renal sympathetic nerve activity following stimulation of right atrial receptors in the rat. Exp Physiol. 2003;88(3):335–42.PubMedCrossRef Yang Z, Coote JH. Role of GABA and NO in the paraventricular nucleus-mediated reflex inhibition of renal sympathetic nerve activity following stimulation of right atrial receptors in the rat. Exp Physiol. 2003;88(3):335–42.PubMedCrossRef
148.
Zurück zum Zitat Yang Z, Bertram D, Coote JH. The role of glutamate and vasopressin in the excitation of RVL neurones by paraventricular neurones. Brain Res. 2001;908(1):99–103.PubMedCrossRef Yang Z, Bertram D, Coote JH. The role of glutamate and vasopressin in the excitation of RVL neurones by paraventricular neurones. Brain Res. 2001;908(1):99–103.PubMedCrossRef
149.
151.
Zurück zum Zitat Karim F, Kidd C, Malpus CM, Penna PE. The effects of stimulation of the left atrial receptors on sympathetic efferent nerve activity. J Physiol. 1972;227(1):243–60.PubMedPubMedCentralCrossRef Karim F, Kidd C, Malpus CM, Penna PE. The effects of stimulation of the left atrial receptors on sympathetic efferent nerve activity. J Physiol. 1972;227(1):243–60.PubMedPubMedCentralCrossRef
152.
153.
Zurück zum Zitat Deering J, Coote JH. Paraventricular neurones elicit a volume expansion-like change of activity in sympathetic nerves to the heart and kidney in the rabbit. Exp Physiol. 2000;85(2):177–86.PubMedCrossRef Deering J, Coote JH. Paraventricular neurones elicit a volume expansion-like change of activity in sympathetic nerves to the heart and kidney in the rabbit. Exp Physiol. 2000;85(2):177–86.PubMedCrossRef
154.
Zurück zum Zitat Carswell F, Hainsworth R, Ledsome JR. The effects of distension of the pulmonary vein-atrial junctions upon peripheral vascular resistance. J Physiol. 1970;207(1):1–14.PubMedPubMedCentralCrossRef Carswell F, Hainsworth R, Ledsome JR. The effects of distension of the pulmonary vein-atrial junctions upon peripheral vascular resistance. J Physiol. 1970;207(1):1–14.PubMedPubMedCentralCrossRef
155.
Zurück zum Zitat Bennett KL, Linden RJ, Mary DASG. The effect of stimulation of atrial receptors on the plasma concentration of vasopressin. Exp Physiol. 1983;68:579–89.CrossRef Bennett KL, Linden RJ, Mary DASG. The effect of stimulation of atrial receptors on the plasma concentration of vasopressin. Exp Physiol. 1983;68:579–89.CrossRef
156.
157.
Zurück zum Zitat Drinkhill MJ, Hicks MN, Mary DA, Pearson MJ. The effect of stimulation of the atrial receptors on plasma renin activity in the dog. J Physiol. 1988;398:411–21.PubMedPubMedCentralCrossRef Drinkhill MJ, Hicks MN, Mary DA, Pearson MJ. The effect of stimulation of the atrial receptors on plasma renin activity in the dog. J Physiol. 1988;398:411–21.PubMedPubMedCentralCrossRef
158.
Zurück zum Zitat Carswell F, Hainsworth R, Ledsome JR. The effects of left atrial distension upon urine flow from the isolated perfused kidney. Quart J Exp Physiol Cognate Med Sci. 1970;55(2):173–82.CrossRef Carswell F, Hainsworth R, Ledsome JR. The effects of left atrial distension upon urine flow from the isolated perfused kidney. Quart J Exp Physiol Cognate Med Sci. 1970;55(2):173–82.CrossRef
159.
Zurück zum Zitat Campagna JA, Carter C. Clinical relevance of the Bezold-Jarisch reflex. Anesthesiology. 2003;98(5):1250–60.PubMedCrossRef Campagna JA, Carter C. Clinical relevance of the Bezold-Jarisch reflex. Anesthesiology. 2003;98(5):1250–60.PubMedCrossRef
161.
Zurück zum Zitat Kaufman MP, Baker DG, Coleridge HM, Coleridge JC. Stimulation by bradykinin of afferent vagal C-fibers with chemosensitive endings in the heart and aorta of the dog. Circ Res. 1980;46(4):476–84.PubMedCrossRef Kaufman MP, Baker DG, Coleridge HM, Coleridge JC. Stimulation by bradykinin of afferent vagal C-fibers with chemosensitive endings in the heart and aorta of the dog. Circ Res. 1980;46(4):476–84.PubMedCrossRef
162.
Zurück zum Zitat Schultz HD. Cardiac vagal chemosensory afferents. Function in pathophysiological states. Ann N Y Acad Sci. 2001;940:59–73.PubMedCrossRef Schultz HD. Cardiac vagal chemosensory afferents. Function in pathophysiological states. Ann N Y Acad Sci. 2001;940:59–73.PubMedCrossRef
163.
Zurück zum Zitat Asanoi H. Application of microneurography to circulatory disorders. Brain and nerve =. Shinkei kenkyu no shinpo. 2009;61(3):270–6.PubMed Asanoi H. Application of microneurography to circulatory disorders. Brain and nerve =. Shinkei kenkyu no shinpo. 2009;61(3):270–6.PubMed
164.
Zurück zum Zitat Ashton JH, Cassidy SS. Reflex depression of cardiovascular function during lung inflation. J Appl Physiol (Bethesda, Md: 1985). 1985;58(1):137–45. Ashton JH, Cassidy SS. Reflex depression of cardiovascular function during lung inflation. J Appl Physiol (Bethesda, Md: 1985). 1985;58(1):137–45.
165.
Zurück zum Zitat Hayano J, Yasuma F, Okada A, Mukai S, Fujinami T. Respiratory sinus arrhythmia. A phenomenon improving pulmonary gas exchange and circulatory efficiency. Circulation. 1996;94(4):842–7.PubMedCrossRef Hayano J, Yasuma F, Okada A, Mukai S, Fujinami T. Respiratory sinus arrhythmia. A phenomenon improving pulmonary gas exchange and circulatory efficiency. Circulation. 1996;94(4):842–7.PubMedCrossRef
166.
Zurück zum Zitat Shepherd JT. The lungs as receptor sites for cardiovascular regulation. Circulation. 1981;63(1):1–10.PubMedCrossRef Shepherd JT. The lungs as receptor sites for cardiovascular regulation. Circulation. 1981;63(1):1–10.PubMedCrossRef
168.•
Zurück zum Zitat Wenker IC, Sobrinho CR, Takakura AC, Mulkey DK, Moreira TS. P2Y1 receptors expressed by C1 neurons determine peripheral chemoreceptor modulation of breathing, sympathetic activity, and blood pressure. Hypertension. 2013;62(2):263–73. doi:10.1161/hypertensionaha.113.01487. An interesting observational study which identifies, in an in vivo anesthetized rat model, P2Y1 receptors within C1 neurons of the RVLM as key determinants of peripheral chemoreceptor regulation of breathing, sympathetic nerve activity and blood pressure. Wenker IC, Sobrinho CR, Takakura AC, Mulkey DK, Moreira TS. P2Y1 receptors expressed by C1 neurons determine peripheral chemoreceptor modulation of breathing, sympathetic activity, and blood pressure. Hypertension. 2013;62(2):263–73. doi:10.​1161/​hypertensionaha.​113.​01487. An interesting observational study which identifies, in an in vivo anesthetized rat model, P2Y1 receptors within C1 neurons of the RVLM as key determinants of peripheral chemoreceptor regulation of breathing, sympathetic nerve activity and blood pressure.
169.
Zurück zum Zitat Marshall JM. Peripheral chemoreceptors and cardiovascular regulation. Physiol Rev. 1994;74(3):543–94.PubMed Marshall JM. Peripheral chemoreceptors and cardiovascular regulation. Physiol Rev. 1994;74(3):543–94.PubMed
170.
Zurück zum Zitat Gonzalez C, Almaraz L, Obeso A, Rigual R. Carotid body chemoreceptors: from natural stimuli to sensory discharges. Physiol Rev. 1994;74(4):829–98.PubMed Gonzalez C, Almaraz L, Obeso A, Rigual R. Carotid body chemoreceptors: from natural stimuli to sensory discharges. Physiol Rev. 1994;74(4):829–98.PubMed
172.
Zurück zum Zitat de Burgh DM, Scott MJ. An analysis of the primary cardiovascular reflex effects of stimulation of the carotid body chemoreceptors in the dog. J Physiol. 1962;162:555–73.CrossRef de Burgh DM, Scott MJ. An analysis of the primary cardiovascular reflex effects of stimulation of the carotid body chemoreceptors in the dog. J Physiol. 1962;162:555–73.CrossRef
173.
Zurück zum Zitat Paton JF, Deuchars J, Li YW, Kasparov S. Properties of solitary tract neurones responding to peripheral arterial chemoreceptors. Neuroscience. 2001;105(1):231–48.PubMedCrossRef Paton JF, Deuchars J, Li YW, Kasparov S. Properties of solitary tract neurones responding to peripheral arterial chemoreceptors. Neuroscience. 2001;105(1):231–48.PubMedCrossRef
175.
Zurück zum Zitat Callera JC, Bonagamba LG, Nosjean A, Laguzzi R, Machado BH. Activation of GABAA but not GABAB receptors in the NTS blocked bradycardia of chemoreflex in awake rats. Am J Physiol. 1999;276(6 Pt 2):H1902–10.PubMed Callera JC, Bonagamba LG, Nosjean A, Laguzzi R, Machado BH. Activation of GABAA but not GABAB receptors in the NTS blocked bradycardia of chemoreflex in awake rats. Am J Physiol. 1999;276(6 Pt 2):H1902–10.PubMed
176.
Zurück zum Zitat Guyenet PG, Koshiya N. Working model of the sympathetic chemoreflex in rats. Clin Exp Hypertens. 1995;17(1–2):167–79.PubMedCrossRef Guyenet PG, Koshiya N. Working model of the sympathetic chemoreflex in rats. Clin Exp Hypertens. 1995;17(1–2):167–79.PubMedCrossRef
177.
Zurück zum Zitat Koshiya N, Huangfu D, Guyenet PG. Ventrolateral medulla and sympathetic chemoreflex in the rat. Brain Res. 1993;609(1–2):174–84.PubMedCrossRef Koshiya N, Huangfu D, Guyenet PG. Ventrolateral medulla and sympathetic chemoreflex in the rat. Brain Res. 1993;609(1–2):174–84.PubMedCrossRef
178.
179.
Zurück zum Zitat Haibara AS, Colombari E, Chianca Jr DA, Bonagamba LG, Machado BH. NMDA receptors in NTS are involved in bradycardic but not in pressor response of chemoreflex. Am J Physiol. 1995;269(4 Pt 2):H1421–7.PubMed Haibara AS, Colombari E, Chianca Jr DA, Bonagamba LG, Machado BH. NMDA receptors in NTS are involved in bradycardic but not in pressor response of chemoreflex. Am J Physiol. 1995;269(4 Pt 2):H1421–7.PubMed
180.
Zurück zum Zitat Callera JC, Sevoz C, Laguzzi R, Machado BH. Microinjection of a serotonin3 receptor agonist into the NTS of unanesthetized rats inhibits the bradycardia evoked by activation of the baro- and chemoreflexes. J Auton Nerv Syst. 1997;63(3):127–36.PubMedCrossRef Callera JC, Sevoz C, Laguzzi R, Machado BH. Microinjection of a serotonin3 receptor agonist into the NTS of unanesthetized rats inhibits the bradycardia evoked by activation of the baro- and chemoreflexes. J Auton Nerv Syst. 1997;63(3):127–36.PubMedCrossRef
182.•
Zurück zum Zitat Guyenet PG, Bayliss DA, Stornetta RL, Fortuna MG, Abbott SB, DePuy SD. Retrotrapezoid nucleus, respiratory chemosensitivity and breathing automaticity. Respir Physiol Neurobiol. 2009;168(1–2):59–68. doi:10.1016/j.resp.2009.02.001. This review summarizes evidence suggesting that neurons within the retrotrapezoid nucleus in the pontomedullary region of the central network innervate the entire ventral respiratory column and control both inspiration and expiration. PubMedPubMedCentralCrossRef Guyenet PG, Bayliss DA, Stornetta RL, Fortuna MG, Abbott SB, DePuy SD. Retrotrapezoid nucleus, respiratory chemosensitivity and breathing automaticity. Respir Physiol Neurobiol. 2009;168(1–2):59–68. doi:10.​1016/​j.​resp.​2009.​02.​001. This review summarizes evidence suggesting that neurons within the retrotrapezoid nucleus in the pontomedullary region of the central network innervate the entire ventral respiratory column and control both inspiration and expiration. PubMedPubMedCentralCrossRef
183.
Zurück zum Zitat Mulkey DK, Stornetta RL, Weston MC, Simmons JR, Parker A, Bayliss DA, et al. Respiratory control by ventral surface chemoreceptor neurons in rats. Nat Neurosci. 2004;7(12):1360–9. doi:10.1038/nn1357.PubMedCrossRef Mulkey DK, Stornetta RL, Weston MC, Simmons JR, Parker A, Bayliss DA, et al. Respiratory control by ventral surface chemoreceptor neurons in rats. Nat Neurosci. 2004;7(12):1360–9. doi:10.​1038/​nn1357.PubMedCrossRef
185.
Zurück zum Zitat Sun Q, Goodchild AK, Pilowsky PM. Firing patterns of pre-Botzinger and Botzinger neurons during hypocapnia in the adult rat. Brain Res. 2001;903(1–2):198–206.PubMedCrossRef Sun Q, Goodchild AK, Pilowsky PM. Firing patterns of pre-Botzinger and Botzinger neurons during hypocapnia in the adult rat. Brain Res. 2001;903(1–2):198–206.PubMedCrossRef
188.
Zurück zum Zitat Guyenet P, Koshiya N. Respiratory-sympathetic integration in the medulla oblongata. In: Kunos G, Ciriello J, editors. Central neural mechanisms in cardiovascular regulation. Boston: Birkhäuser; 1992. p. 226–47.CrossRef Guyenet P, Koshiya N. Respiratory-sympathetic integration in the medulla oblongata. In: Kunos G, Ciriello J, editors. Central neural mechanisms in cardiovascular regulation. Boston: Birkhäuser; 1992. p. 226–47.CrossRef
189.
Zurück zum Zitat Millhorn DE. Neural respiratory and circulatory interaction during chemoreceptor stimulation and cooling of ventral medulla in cats. J Physiol. 1986;370:217–31.PubMedPubMedCentralCrossRef Millhorn DE. Neural respiratory and circulatory interaction during chemoreceptor stimulation and cooling of ventral medulla in cats. J Physiol. 1986;370:217–31.PubMedPubMedCentralCrossRef
191.
Zurück zum Zitat Guyenet PG, Darnall RA, Riley TA. Rostral ventrolateral medulla and sympathorespiratory integration in rats. Am J Physiol. 1990;259(5 Pt 2):R1063–74.PubMed Guyenet PG, Darnall RA, Riley TA. Rostral ventrolateral medulla and sympathorespiratory integration in rats. Am J Physiol. 1990;259(5 Pt 2):R1063–74.PubMed
192.
Zurück zum Zitat Miyawaki T, Pilowsky P, Sun QJ, Minson J, Suzuki S, Arnolda L, et al. Central inspiration increases barosensitivity of neurons in rat rostral ventrolateral medulla. Am J Physiol. 1995;268(4 Pt 2):R909–18.PubMed Miyawaki T, Pilowsky P, Sun QJ, Minson J, Suzuki S, Arnolda L, et al. Central inspiration increases barosensitivity of neurons in rat rostral ventrolateral medulla. Am J Physiol. 1995;268(4 Pt 2):R909–18.PubMed
193.
Zurück zum Zitat DiMicco JA, Samuels BC, Zaretskaia MV, Zaretsky DV. The dorsomedial hypothalamus and the response to stress: part renaissance, part revolution. Pharmacol Biochem Behav. 2002;71(3):469–80.PubMedCrossRef DiMicco JA, Samuels BC, Zaretskaia MV, Zaretsky DV. The dorsomedial hypothalamus and the response to stress: part renaissance, part revolution. Pharmacol Biochem Behav. 2002;71(3):469–80.PubMedCrossRef
195.•
Zurück zum Zitat Fontes MA, Xavier CH, Marins FR, Limborco-Filho M, Vaz GC, Muller-Ribeiro FC, et al. Emotional stress and sympathetic activity: contribution of dorsomedial hypothalamus to cardiac arrhythmias. Brain Res. 2014;1554:49–58. doi:10.1016/j.brainres.2014.01.043. An excellent paper reviewing the descending pathways from the dorsomedial hypothalamus, a key brain region involved in the cardiovascular response to emotional stress. It also discusses the crosstalk relationship between mechanisms controling sympathetic output to the cardiovascular system and possible implications in cardiovascular disease. Fontes MA, Xavier CH, Marins FR, Limborco-Filho M, Vaz GC, Muller-Ribeiro FC, et al. Emotional stress and sympathetic activity: contribution of dorsomedial hypothalamus to cardiac arrhythmias. Brain Res. 2014;1554:49–58. doi:10.​1016/​j.​brainres.​2014.​01.​043. An excellent paper reviewing the descending pathways from the dorsomedial hypothalamus, a key brain region involved in the cardiovascular response to emotional stress. It also discusses the crosstalk relationship between mechanisms controling sympathetic output to the cardiovascular system and possible implications in cardiovascular disease.
196.
Zurück zum Zitat Salman IM, Kandukuri DS, Harrison JL, Hildreth CM, Phillips JK. Direct conscious telemetry recordings demonstrate increased renal sympathetic nerve activity in rats with chronic kidney disease. Front Physiol. 2015;6. doi:10.3389/fphys.2015.00218. Salman IM, Kandukuri DS, Harrison JL, Hildreth CM, Phillips JK. Direct conscious telemetry recordings demonstrate increased renal sympathetic nerve activity in rats with chronic kidney disease. Front Physiol. 2015;6. doi:10.​3389/​fphys.​2015.​00218.
199.
Zurück zum Zitat Kouidi E, Karagiannis V, Grekas D, Iakovides A, Kaprinis G, Tourkantonis A, et al. Depression, heart rate variability, and exercise training in dialysis patients. Eur J Cardiovasc Prev Rehabil Off J Eur Soc Cardiol Work Groups Epidemiol Prev Cardiac Rehabil Exerc Physiol. 2010;17(2):160–7. doi:10.1097/HJR.0b013e32833188c4. Kouidi E, Karagiannis V, Grekas D, Iakovides A, Kaprinis G, Tourkantonis A, et al. Depression, heart rate variability, and exercise training in dialysis patients. Eur J Cardiovasc Prev Rehabil Off J Eur Soc Cardiol Work Groups Epidemiol Prev Cardiac Rehabil Exerc Physiol. 2010;17(2):160–7. doi:10.​1097/​HJR.​0b013e32833188c4​.
200.••
Zurück zum Zitat Salman IM. Cardiovascular autonomic dysfunction in chronic kidney disease: a comprehensive review. Curr Hypertens Rep. 2015;17(8):59. doi:10.1007/s11906-015-0571-z. An extensive review which provides a mechanistic insight into the pathophysiology of impaired tonic and reflex autonomic control of the circulation that is associated with hypertension driven by chronic renal dysfunction. Salman IM. Cardiovascular autonomic dysfunction in chronic kidney disease: a comprehensive review. Curr Hypertens Rep. 2015;17(8):59. doi:10.​1007/​s11906-015-0571-z. An extensive review which provides a mechanistic insight into the pathophysiology of impaired tonic and reflex autonomic control of the circulation that is associated with hypertension driven by chronic renal dysfunction.
202.
Zurück zum Zitat Soltis RP, Cook JC, Gregg AE, Stratton JM, Flickinger KA. EAA receptors in the dorsomedial hypothalamic area mediate the cardiovascular response to activation of the amygdala. Am J Physiol. 1998;275(2 Pt 2):R624–31.PubMed Soltis RP, Cook JC, Gregg AE, Stratton JM, Flickinger KA. EAA receptors in the dorsomedial hypothalamic area mediate the cardiovascular response to activation of the amygdala. Am J Physiol. 1998;275(2 Pt 2):R624–31.PubMed
203.
205.
Zurück zum Zitat Fontes MA, Tagawa T, Polson JW, Cavanagh SJ, Dampney RA. Descending pathways mediating cardiovascular response from dorsomedial hypothalamic nucleus. Am J Physiol Heart Circ Physiol. 2001;280(6):H2891–901.PubMed Fontes MA, Tagawa T, Polson JW, Cavanagh SJ, Dampney RA. Descending pathways mediating cardiovascular response from dorsomedial hypothalamic nucleus. Am J Physiol Heart Circ Physiol. 2001;280(6):H2891–901.PubMed
206.
Zurück zum Zitat Samuels BC, Zaretsky DV, DiMicco JA. Tachycardia evoked by disinhibition of the dorsomedial hypothalamus in rats is mediated through medullary raphe. J Physiol. 2002;538(Pt 3):941–6.PubMedPubMedCentralCrossRef Samuels BC, Zaretsky DV, DiMicco JA. Tachycardia evoked by disinhibition of the dorsomedial hypothalamus in rats is mediated through medullary raphe. J Physiol. 2002;538(Pt 3):941–6.PubMedPubMedCentralCrossRef
209.
Zurück zum Zitat Koegler-Muly SM, Owens MJ, Ervin GN, Kilts CD, Nemeroff CB. Potential corticotropin-releasing factor pathways in the rat brain as determined by bilateral electrolytic lesions of the central amygdaloid nucleus and the paraventricular nucleus of the hypothalamus. J Neuroendocrinol. 1993;5(1):95–8.PubMedCrossRef Koegler-Muly SM, Owens MJ, Ervin GN, Kilts CD, Nemeroff CB. Potential corticotropin-releasing factor pathways in the rat brain as determined by bilateral electrolytic lesions of the central amygdaloid nucleus and the paraventricular nucleus of the hypothalamus. J Neuroendocrinol. 1993;5(1):95–8.PubMedCrossRef
211.
Zurück zum Zitat Merchenthaler I, Hynes MA, Vigh S, Schally AV, Petrusz P. Corticotropin releasing factor (CRF): origin and course of afferent pathways to the median eminence (ME) of the rat hypothalamus. Neuroendocrinology. 1984;39(4):296–306.PubMedCrossRef Merchenthaler I, Hynes MA, Vigh S, Schally AV, Petrusz P. Corticotropin releasing factor (CRF): origin and course of afferent pathways to the median eminence (ME) of the rat hypothalamus. Neuroendocrinology. 1984;39(4):296–306.PubMedCrossRef
212.
Zurück zum Zitat Bailey TW, Dimicco JA. Chemical stimulation of the dorsomedial hypothalamus elevates plasma ACTH in conscious rats. Am J Physiol Regul Integr Comp Physiol. 2001;280(1):R8–15.PubMed Bailey TW, Dimicco JA. Chemical stimulation of the dorsomedial hypothalamus elevates plasma ACTH in conscious rats. Am J Physiol Regul Integr Comp Physiol. 2001;280(1):R8–15.PubMed
213.
Zurück zum Zitat Makara GB, Stark E, Kapocs G, Antoni FA. Long-term effects of hypothalamic paraventricular lesion on CRF content and stimulated ACTH secretion. Am J Physiol. 1986;250(3 Pt 1):E319–24.PubMed Makara GB, Stark E, Kapocs G, Antoni FA. Long-term effects of hypothalamic paraventricular lesion on CRF content and stimulated ACTH secretion. Am J Physiol. 1986;250(3 Pt 1):E319–24.PubMed
214.
Zurück zum Zitat Smith SM, Vale WW. The role of the hypothalamic-pituitary-adrenal axis in neuroendocrine responses to stress. Dialogues Clin Neurosci. 2006;8(4):383–95.PubMedPubMedCentral Smith SM, Vale WW. The role of the hypothalamic-pituitary-adrenal axis in neuroendocrine responses to stress. Dialogues Clin Neurosci. 2006;8(4):383–95.PubMedPubMedCentral
215.
Zurück zum Zitat Stotz-Potter EH, Willis LR, DiMicco JA. Muscimol acts in dorsomedial but not paraventricular hypothalamic nucleus to suppress cardiovascular effects of stress. J Neurosci Off J Soc Neurosci. 1996;16(3):1173–9. Stotz-Potter EH, Willis LR, DiMicco JA. Muscimol acts in dorsomedial but not paraventricular hypothalamic nucleus to suppress cardiovascular effects of stress. J Neurosci Off J Soc Neurosci. 1996;16(3):1173–9.
216.
Zurück zum Zitat Cao WH, Morrison SF. Disinhibition of rostral raphe pallidus neurons increases cardiac sympathetic nerve activity and heart rate. Brain Res. 2003;980(1):1–10.PubMedCrossRef Cao WH, Morrison SF. Disinhibition of rostral raphe pallidus neurons increases cardiac sympathetic nerve activity and heart rate. Brain Res. 2003;980(1):1–10.PubMedCrossRef
217.
Zurück zum Zitat Zaretsky DV, Zaretskaia MV, Samuels BC, Cluxton LK, DiMicco JA. Microinjection of muscimol into raphe pallidus suppresses tachycardia associated with air stress in conscious rats. J Physiol. 2003;546(Pt 1):243–50.PubMedPubMedCentralCrossRef Zaretsky DV, Zaretskaia MV, Samuels BC, Cluxton LK, DiMicco JA. Microinjection of muscimol into raphe pallidus suppresses tachycardia associated with air stress in conscious rats. J Physiol. 2003;546(Pt 1):243–50.PubMedPubMedCentralCrossRef
218.
Zurück zum Zitat Esler M, Jennings G, Lambert G. Measurement of overall and cardiac norepinephrine release into plasma during cognitive challenge. Psychoneuroendocrinology. 1989;14(6):477–81.PubMedCrossRef Esler M, Jennings G, Lambert G. Measurement of overall and cardiac norepinephrine release into plasma during cognitive challenge. Psychoneuroendocrinology. 1989;14(6):477–81.PubMedCrossRef
219.
Zurück zum Zitat Callister R, Suwarno NO, Seals DR. Sympathetic activity is influenced by task difficulty and stress perception during mental challenge in humans. J Physiol. 1992;454:373–87.PubMedPubMedCentralCrossRef Callister R, Suwarno NO, Seals DR. Sympathetic activity is influenced by task difficulty and stress perception during mental challenge in humans. J Physiol. 1992;454:373–87.PubMedPubMedCentralCrossRef
220.
Zurück zum Zitat Kunos G, Varga K. The tachycardia associated with the defense reaction involves activation of both GABAA and GABAB receptors in the nucleus tractus solitarii. Clin Exp Hypertens. 1995;17(1–2):91–100.PubMedCrossRef Kunos G, Varga K. The tachycardia associated with the defense reaction involves activation of both GABAA and GABAB receptors in the nucleus tractus solitarii. Clin Exp Hypertens. 1995;17(1–2):91–100.PubMedCrossRef
221.•
Zurück zum Zitat Furlong TM, McDowall LM, Horiuchi J, Polson JW, Dampney RA. The effect of air puff stress on c-Fos expression in rat hypothalamus and brainstem: central circuitry mediating sympathoexcitation and baroreflex resetting. Eur J Neurosci. 2014. doi:10.1111/ejn.12521. Classical electrophysiological recording experiments which demonstrated that increased sympathetic activity during psychological stress is not primarily contributed to by RVLM sympathetic premotor neurons, and that neurons within the PVN, perifornical area and ventrolateral periaqueductal gray matter may drive the resetting of the baroreceptor-sympathetic reflex associated with psychological stress. PubMed Furlong TM, McDowall LM, Horiuchi J, Polson JW, Dampney RA. The effect of air puff stress on c-Fos expression in rat hypothalamus and brainstem: central circuitry mediating sympathoexcitation and baroreflex resetting. Eur J Neurosci. 2014. doi:10.​1111/​ejn.​12521. Classical electrophysiological recording experiments which demonstrated that increased sympathetic activity during psychological stress is not primarily contributed to by RVLM sympathetic premotor neurons, and that neurons within the PVN, perifornical area and ventrolateral periaqueductal gray matter may drive the resetting of the baroreceptor-sympathetic reflex associated with psychological stress. PubMed
222.••
Zurück zum Zitat Carrive P. Orexin, orexin receptor antagonists and central cardiovascular control. Front Neurosci. 2013;7:257. doi:10.3389/fnins.2013.00257. A fascinating review discussing the role of orexin, a new and exciting neuropeptide originates from a group of neurons located in the dorsal hypothalamus, in not only the control of arousal and expression of motivated behavior but also in contributing to stress-driven hypertension. PubMedPubMedCentralCrossRef Carrive P. Orexin, orexin receptor antagonists and central cardiovascular control. Front Neurosci. 2013;7:257. doi:10.​3389/​fnins.​2013.​00257. A fascinating review discussing the role of orexin, a new and exciting neuropeptide originates from a group of neurons located in the dorsal hypothalamus, in not only the control of arousal and expression of motivated behavior but also in contributing to stress-driven hypertension. PubMedPubMedCentralCrossRef
Metadaten
Titel
Major Autonomic Neuroregulatory Pathways Underlying Short- and Long-Term Control of Cardiovascular Function
verfasst von
Ibrahim M. Salman
Publikationsdatum
01.03.2016
Verlag
Springer US
Erschienen in
Current Hypertension Reports / Ausgabe 3/2016
Print ISSN: 1522-6417
Elektronische ISSN: 1534-3111
DOI
https://doi.org/10.1007/s11906-016-0625-x

Weitere Artikel der Ausgabe 3/2016

Current Hypertension Reports 3/2016 Zur Ausgabe

Hypertension and Obesity (E Reisin, Section Editor)

Aldosterone Production and Signaling Dysregulation in Obesity

Novel Treatments for Hypertension (T Unger, Section Editor)

Personalized Therapy of Hypertension: the Past and the Future

Hypertension and the Brain (S Stocker, Section Editor)

Neural Control of Blood Pressure in Chronic Intermittent Hypoxia

Hypertension and the Brain (S Stocker, Section Editor)

Parasympathetic Vagal Control of Cardiac Function

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Erhebliches Risiko für Kehlkopfkrebs bei mäßiger Dysplasie

29.05.2024 Larynxkarzinom Nachrichten

Fast ein Viertel der Personen mit mäßig dysplastischen Stimmlippenläsionen entwickelt einen Kehlkopftumor. Solche Personen benötigen daher eine besonders enge ärztliche Überwachung.

Nach Herzinfarkt mit Typ-1-Diabetes schlechtere Karten als mit Typ 2?

29.05.2024 Herzinfarkt Nachrichten

Bei Menschen mit Typ-2-Diabetes sind die Chancen, einen Myokardinfarkt zu überleben, in den letzten 15 Jahren deutlich gestiegen – nicht jedoch bei Betroffenen mit Typ 1.

15% bedauern gewählte Blasenkrebs-Therapie

29.05.2024 Urothelkarzinom Nachrichten

Ob Patienten und Patientinnen mit neu diagnostiziertem Blasenkrebs ein Jahr später Bedauern über die Therapieentscheidung empfinden, wird einer Studie aus England zufolge von der Radikalität und dem Erfolg des Eingriffs beeinflusst.

Costims – das nächste heiße Ding in der Krebstherapie?

28.05.2024 Onkologische Immuntherapie Nachrichten

„Kalte“ Tumoren werden heiß – CD28-kostimulatorische Antikörper sollen dies ermöglichen. Am besten könnten diese in Kombination mit BiTEs und Checkpointhemmern wirken. Erste klinische Studien laufen bereits.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.