Skip to main content
Erschienen in: Current Osteoporosis Reports 3/2014

01.09.2014 | Bone Quality in Osteoporosis (MD Grynpas and JS Nyman, Section Editors)

Biological Regulation of Bone Quality

verfasst von: Tamara Alliston

Erschienen in: Current Osteoporosis Reports | Ausgabe 3/2014

Einloggen, um Zugang zu erhalten

Abstract

The ability of bone to resist fracture is determined by the combination of bone mass and bone quality. Like bone mass, bone quality is carefully regulated. Of the many aspects of bone quality, this review focuses on biological mechanisms that control the material quality of the bone extracellular matrix (ECM). Bone ECM quality depends upon ECM composition and organization. Proteins and signaling pathways that affect the mineral or organic constituents of bone ECM impact bone ECM material properties, such as elastic modulus and hardness. These properties are also sensitive to pathways that regulate bone remodeling by osteoblasts, osteoclasts, and osteocytes. Several extracellular proteins, signaling pathways, intracellular effectors, and transcription regulatory networks have been implicated in the control of bone ECM quality. A molecular understanding of these mechanisms will elucidate the biological control of bone quality and suggest new targets for the development of therapies to prevent bone fragility.
Literatur
2.
Zurück zum Zitat Currey JD. The design of mineralised hard tissues for their mechanical functions. J Exp Biol. 1999;202:3285–94.PubMed Currey JD. The design of mineralised hard tissues for their mechanical functions. J Exp Biol. 1999;202:3285–94.PubMed
3.
Zurück zum Zitat Chang JL, Brauer DS, Johnson J, Chen CG, Akil O, Balooch G, et al. Tissue-specific calibration of extracellular matrix material properties by transforming growth factor-beta and Runx2 in bone is required for hearing. EMBO Rep. 2010;11:765–71.PubMedCentralPubMedCrossRef Chang JL, Brauer DS, Johnson J, Chen CG, Akil O, Balooch G, et al. Tissue-specific calibration of extracellular matrix material properties by transforming growth factor-beta and Runx2 in bone is required for hearing. EMBO Rep. 2010;11:765–71.PubMedCentralPubMedCrossRef
4.
Zurück zum Zitat Kawashima Y, Fritton JC, Yakar S, Epstein S, Schaffler MB, Jepsen KJ, et al. Type 2 diabetic mice demonstrate slender long bones with increased fragility secondary to increased osteoclastogenesis. Bone. 2009;44:648–55.PubMedCentralPubMedCrossRef Kawashima Y, Fritton JC, Yakar S, Epstein S, Schaffler MB, Jepsen KJ, et al. Type 2 diabetic mice demonstrate slender long bones with increased fragility secondary to increased osteoclastogenesis. Bone. 2009;44:648–55.PubMedCentralPubMedCrossRef
5.
Zurück zum Zitat Tommasini SM, Nasser P, Jepsen KJ. Sexual dimorphism affects tibia size and shape but not tissue-level mechanical properties. Bone. 2007;40:498–505.PubMedCrossRef Tommasini SM, Nasser P, Jepsen KJ. Sexual dimorphism affects tibia size and shape but not tissue-level mechanical properties. Bone. 2007;40:498–505.PubMedCrossRef
6.
Zurück zum Zitat Bouxsein ML, Karasik D. Bone geometry and skeletal fragility. Curr Osteoporos Rep. 2006;4:49–56.PubMedCrossRef Bouxsein ML, Karasik D. Bone geometry and skeletal fragility. Curr Osteoporos Rep. 2006;4:49–56.PubMedCrossRef
7.
Zurück zum Zitat Currey JD. The mechanical consequences of variation in the mineral content of bone. J Biomech. 1969;2:1–11.PubMedCrossRef Currey JD. The mechanical consequences of variation in the mineral content of bone. J Biomech. 1969;2:1–11.PubMedCrossRef
8.
Zurück zum Zitat Golub EE. Biomineralization and matrix vesicles in biology and pathology. Semin Immunopath. 2011;33:409–17.CrossRef Golub EE. Biomineralization and matrix vesicles in biology and pathology. Semin Immunopath. 2011;33:409–17.CrossRef
9.
Zurück zum Zitat Murshed M, McKee MD. Molecular determinants of extracellular matrix mineralization in bone and blood vessels. Curr Opin Nephrol Hypertens. 2010;19:359–65.PubMedCrossRef Murshed M, McKee MD. Molecular determinants of extracellular matrix mineralization in bone and blood vessels. Curr Opin Nephrol Hypertens. 2010;19:359–65.PubMedCrossRef
10.
Zurück zum Zitat Fedde KN, Blair L, Silverstein J, Coburn SP, Ryan LM, Weinstein RS, et al. Alkaline phosphatase knock-out mice recapitulate the metabolic and skeletal defects of infantile hypophosphatasia. J Bone Miner Res. 1999;14:2015–26.PubMedCentralPubMedCrossRef Fedde KN, Blair L, Silverstein J, Coburn SP, Ryan LM, Weinstein RS, et al. Alkaline phosphatase knock-out mice recapitulate the metabolic and skeletal defects of infantile hypophosphatasia. J Bone Miner Res. 1999;14:2015–26.PubMedCentralPubMedCrossRef
11.
Zurück zum Zitat Hessle L, Johnson KA, Anderson HC, Narisawa S, Sali A, Goding JW, et al. Tissue-nonspecific alkaline phosphatase and plasma cell membrane glycoprotein-1 are central antagonistic regulators of bone mineralization. Proc Natl Acad Sci U S A. 2002;99:9445–9.PubMedCentralPubMedCrossRef Hessle L, Johnson KA, Anderson HC, Narisawa S, Sali A, Goding JW, et al. Tissue-nonspecific alkaline phosphatase and plasma cell membrane glycoprotein-1 are central antagonistic regulators of bone mineralization. Proc Natl Acad Sci U S A. 2002;99:9445–9.PubMedCentralPubMedCrossRef
12.
Zurück zum Zitat Ho AM, Johnson MD, Kingsley DM. Role of the mouse ank gene in control of tissue calcification and arthritis. Science. 2000;289:265–70.PubMedCrossRef Ho AM, Johnson MD, Kingsley DM. Role of the mouse ank gene in control of tissue calcification and arthritis. Science. 2000;289:265–70.PubMedCrossRef
13.•
Zurück zum Zitat Lieben L, Masuyama R, Torrekens S, Van Looveren R, Schrooten J, Baatsen P, et al. Normocalcemia is maintained in mice under conditions of calcium malabsorption by vitamin D-induced inhibition of bone mineralization. J Clin Invest. 2012;122:1803–15. This study demonstrates the regulation of ANK by vitamin D and its role in mineralization.PubMedCentralPubMedCrossRef Lieben L, Masuyama R, Torrekens S, Van Looveren R, Schrooten J, Baatsen P, et al. Normocalcemia is maintained in mice under conditions of calcium malabsorption by vitamin D-induced inhibition of bone mineralization. J Clin Invest. 2012;122:1803–15. This study demonstrates the regulation of ANK by vitamin D and its role in mineralization.PubMedCentralPubMedCrossRef
14.
Zurück zum Zitat Donnelly E, Chen DX, Boskey AL, Baker SP, van der Meulen MCH. Contribution of mineral to bone structural behavior and tissue mechanical properties. Calcif Tiss Intl. 2010;87:450–60.CrossRef Donnelly E, Chen DX, Boskey AL, Baker SP, van der Meulen MCH. Contribution of mineral to bone structural behavior and tissue mechanical properties. Calcif Tiss Intl. 2010;87:450–60.CrossRef
15.•
Zurück zum Zitat Busse B, Bale HA, Zimmermann EA, Panganiban B, Barth HD, Carriero A, et al. Vitamin D deficiency induces early signs of aging in human bone, increasing the risk of fracture. ci Transl Med. 2013;5:193ra88. This study demonstrates the effect of vitamin D deficiency on bone quality at multiple length scales. Busse B, Bale HA, Zimmermann EA, Panganiban B, Barth HD, Carriero A, et al. Vitamin D deficiency induces early signs of aging in human bone, increasing the risk of fracture. ci Transl Med. 2013;5:193ra88. This study demonstrates the effect of vitamin D deficiency on bone quality at multiple length scales.
16.•
Zurück zum Zitat Sroga GE, Vashishth D. Effects of bone matrix proteins on fracture and fragility in osteoporosis. Curr Osteoporos Rep. 2012;10:141–50. This is an excellent review on the role of bone matrix proteins and collagen crosslinking in bone quality.PubMedCentralPubMedCrossRef Sroga GE, Vashishth D. Effects of bone matrix proteins on fracture and fragility in osteoporosis. Curr Osteoporos Rep. 2012;10:141–50. This is an excellent review on the role of bone matrix proteins and collagen crosslinking in bone quality.PubMedCentralPubMedCrossRef
17.
Zurück zum Zitat Yoshitake H, Rittling SR, Denhardt DT, Noda M. Osteopontin-deficient mice are resistant to ovariectomy-induced bone resorption. Proc Natl Acad Sci U S A. 1999;96:8156–60.PubMedCentralPubMedCrossRef Yoshitake H, Rittling SR, Denhardt DT, Noda M. Osteopontin-deficient mice are resistant to ovariectomy-induced bone resorption. Proc Natl Acad Sci U S A. 1999;96:8156–60.PubMedCentralPubMedCrossRef
18.
Zurück zum Zitat Duvall CL, Taylor WR, Weiss D, Wojtowicz AM, Guldberg RE. Impaired angiogenesis, early callus formation, and late stage remodeling in fracture healing of osteopontin-deficient mice. J Bone Miner Res. 2007;22:286–97.PubMedCrossRef Duvall CL, Taylor WR, Weiss D, Wojtowicz AM, Guldberg RE. Impaired angiogenesis, early callus formation, and late stage remodeling in fracture healing of osteopontin-deficient mice. J Bone Miner Res. 2007;22:286–97.PubMedCrossRef
19.
Zurück zum Zitat Ducy P, Desbois C, Boyce B, Pinero G, Story B, Dunstan C, et al. Increased bone formation in osteocalcin-deficient mice. Nature. 1996;382:448–52.PubMedCrossRef Ducy P, Desbois C, Boyce B, Pinero G, Story B, Dunstan C, et al. Increased bone formation in osteocalcin-deficient mice. Nature. 1996;382:448–52.PubMedCrossRef
20.
Zurück zum Zitat Rittling SR, Matsumoto HN, McKee MD, Nanci A, An XR, Novick KE, et al. Mice lacking osteopontin show normal development and bone structure but display altered osteoclast formation in vitro. J Bone Miner Res. 1998;13:1101–11.PubMedCrossRef Rittling SR, Matsumoto HN, McKee MD, Nanci A, An XR, Novick KE, et al. Mice lacking osteopontin show normal development and bone structure but display altered osteoclast formation in vitro. J Bone Miner Res. 1998;13:1101–11.PubMedCrossRef
21.
Zurück zum Zitat Hunter GK, Hauschka PV, Poole AR, Rosenberg LC, Goldberg HA. Nucleation and inhibition of hydroxyapatite formation by mineralized tissue proteins. Biochem J. 1996;317(Pt 1):59–64.PubMedCentralPubMed Hunter GK, Hauschka PV, Poole AR, Rosenberg LC, Goldberg HA. Nucleation and inhibition of hydroxyapatite formation by mineralized tissue proteins. Biochem J. 1996;317(Pt 1):59–64.PubMedCentralPubMed
22.
Zurück zum Zitat Qiu SR, Wierzbicki A, Orme CA, Cody AM, Hoyer JR, Nancollas GH, et al. Molecular modulation of calcium oxalate crystallization by osteopontin and citrate. Proc Natl Acad Sci U S A. 2004;101:1811–5.PubMedCentralPubMedCrossRef Qiu SR, Wierzbicki A, Orme CA, Cody AM, Hoyer JR, Nancollas GH, et al. Molecular modulation of calcium oxalate crystallization by osteopontin and citrate. Proc Natl Acad Sci U S A. 2004;101:1811–5.PubMedCentralPubMedCrossRef
23.
Zurück zum Zitat Zappone B, Thurner PJ, Adams J, Fantner GE, Hansma PK. Effect of Ca2+ ions on the adhesion and mechanical properties of adsorbed layers of human osteopontin. Biophys J. 2008;95:2939–50.PubMedCentralPubMedCrossRef Zappone B, Thurner PJ, Adams J, Fantner GE, Hansma PK. Effect of Ca2+ ions on the adhesion and mechanical properties of adsorbed layers of human osteopontin. Biophys J. 2008;95:2939–50.PubMedCentralPubMedCrossRef
24.••
Zurück zum Zitat Poundarik AA, Diab T, Sroga GE, Ural A, Boskey AL, Gundberg CM, et al. Dilatational band formation in bone. Proc Natl Acad Sci U S A. 2012;109:19178–83. This study demonstrates the role of osteocalcin and osteopontin in dilatational bands and the importance of these bands in bone toughness.PubMedCentralPubMedCrossRef Poundarik AA, Diab T, Sroga GE, Ural A, Boskey AL, Gundberg CM, et al. Dilatational band formation in bone. Proc Natl Acad Sci U S A. 2012;109:19178–83. This study demonstrates the role of osteocalcin and osteopontin in dilatational bands and the importance of these bands in bone toughness.PubMedCentralPubMedCrossRef
25.
Zurück zum Zitat Thurner PJ, Chen CG, Ionova-Martin S, Sun L, Harman A, Porter A, et al. Osteopontin deficiency increases bone fragility but preserves bone mass. Bone. 2010;46:1564–73.PubMedCentralPubMedCrossRef Thurner PJ, Chen CG, Ionova-Martin S, Sun L, Harman A, Porter A, et al. Osteopontin deficiency increases bone fragility but preserves bone mass. Bone. 2010;46:1564–73.PubMedCentralPubMedCrossRef
26.
Zurück zum Zitat Wallace JM, Rajachar RM, Chen X-D, Shi S, Allen MR, Bloomfield SA, et al. The mechanical phenotype of biglycan-deficient mice is bone- and gender-specific. Bone. 2006;39:106–16.PubMedCrossRef Wallace JM, Rajachar RM, Chen X-D, Shi S, Allen MR, Bloomfield SA, et al. The mechanical phenotype of biglycan-deficient mice is bone- and gender-specific. Bone. 2006;39:106–16.PubMedCrossRef
27.
Zurück zum Zitat Feng JQ, Ward LM, Liu S, Lu Y, Xie Y, Yuan B, et al. Loss of DMP1 causes rickets and osteomalacia and identifies a role for osteocytes in mineral metabolism. Nat Genet. 2006;38:1310–5.PubMedCentralPubMedCrossRef Feng JQ, Ward LM, Liu S, Lu Y, Xie Y, Yuan B, et al. Loss of DMP1 causes rickets and osteomalacia and identifies a role for osteocytes in mineral metabolism. Nat Genet. 2006;38:1310–5.PubMedCentralPubMedCrossRef
28.•
Zurück zum Zitat Karunaratne A, Esapa CR, Hiller J, Boyde A, Head R, Bassett JH, et al. Significant deterioration in nanomechanical quality occurs through incomplete extrafibrillar mineralization in rachitic bone: evidence from in-situ synchrotron X-ray scattering and backscattered electron imaging. J Bone Miner Res. 2012;27:876–90. This study implicates Phex in the regulation of bone quality.PubMedCrossRef Karunaratne A, Esapa CR, Hiller J, Boyde A, Head R, Bassett JH, et al. Significant deterioration in nanomechanical quality occurs through incomplete extrafibrillar mineralization in rachitic bone: evidence from in-situ synchrotron X-ray scattering and backscattered electron imaging. J Bone Miner Res. 2012;27:876–90. This study implicates Phex in the regulation of bone quality.PubMedCrossRef
29.
Zurück zum Zitat Arteaga-Solis E, Sui-Arteaga L, Kim M, Schaffler MB, Jepsen KJ, Pleshko N, et al. Material and mechanical properties of bones deficient for fibrillin-1 or fibrillin-2 microfibrils. Matrix Biol. 2011;30:188–94.PubMedCentralPubMedCrossRef Arteaga-Solis E, Sui-Arteaga L, Kim M, Schaffler MB, Jepsen KJ, Pleshko N, et al. Material and mechanical properties of bones deficient for fibrillin-1 or fibrillin-2 microfibrils. Matrix Biol. 2011;30:188–94.PubMedCentralPubMedCrossRef
30.
Zurück zum Zitat Noda M, Yoon K, Prince CW, Butler WT, Rodan GA. Transcriptional regulation of osteopontin production in rat osteosarcoma cells by type beta transforming growth factor. J Biol Chem. 1988;263:13916–21.PubMed Noda M, Yoon K, Prince CW, Butler WT, Rodan GA. Transcriptional regulation of osteopontin production in rat osteosarcoma cells by type beta transforming growth factor. J Biol Chem. 1988;263:13916–21.PubMed
31.
Zurück zum Zitat Noda M, Rodan GA. Transcriptional regulation of osteopontin production in rat osteoblast-like cells by parathyroid hormone. J Cell Biol. 1989;108:713–8.PubMedCrossRef Noda M, Rodan GA. Transcriptional regulation of osteopontin production in rat osteoblast-like cells by parathyroid hormone. J Cell Biol. 1989;108:713–8.PubMedCrossRef
32.
Zurück zum Zitat Leboy PS, Beresford JN, Devlin C, Owen ME. Dexamethasone induction of osteoblast mRNAs in rat marrow stromal cell cultures. J Cell Physiol. 1991;146:370–8.PubMedCrossRef Leboy PS, Beresford JN, Devlin C, Owen ME. Dexamethasone induction of osteoblast mRNAs in rat marrow stromal cell cultures. J Cell Physiol. 1991;146:370–8.PubMedCrossRef
33.
Zurück zum Zitat Sodek J, Chen J, Nagata T, Kasugai S, Todescan R, Li IW, et al. Regulation of osteopontin expression in osteoblasts. Ann N Y Acad Sci. 1995;760:223–41.PubMedCrossRef Sodek J, Chen J, Nagata T, Kasugai S, Todescan R, Li IW, et al. Regulation of osteopontin expression in osteoblasts. Ann N Y Acad Sci. 1995;760:223–41.PubMedCrossRef
34.
Zurück zum Zitat Balooch G, Balooch M, Nalla RK, Schilling S, Filvaroff EH, Marshall GW, et al. TGF-beta regulates the mechanical properties and composition of bone matrix. Proc Natl Acad Sci U S A. 2005;102:18813–8.PubMedCentralPubMedCrossRef Balooch G, Balooch M, Nalla RK, Schilling S, Filvaroff EH, Marshall GW, et al. TGF-beta regulates the mechanical properties and composition of bone matrix. Proc Natl Acad Sci U S A. 2005;102:18813–8.PubMedCentralPubMedCrossRef
35.
Zurück zum Zitat Brennan TC, Rizzoli R, Ammann P. Selective modification of bone quality by PTH, pamidronate, or raloxifene. J Bone Miner Res. 2009;24:800–8.PubMedCrossRef Brennan TC, Rizzoli R, Ammann P. Selective modification of bone quality by PTH, pamidronate, or raloxifene. J Bone Miner Res. 2009;24:800–8.PubMedCrossRef
36.
Zurück zum Zitat Lane NE, Yao W, Kinney JH, Modin G, Balooch M, Wronski TJ. Both hPTH(1-34) and bFGF increase trabecular bone mass in osteopenic rats but they have different effects on trabecular bone architecture. J Bone Miner Res. 2003;18:2105–15.PubMedCrossRef Lane NE, Yao W, Kinney JH, Modin G, Balooch M, Wronski TJ. Both hPTH(1-34) and bFGF increase trabecular bone mass in osteopenic rats but they have different effects on trabecular bone architecture. J Bone Miner Res. 2003;18:2105–15.PubMedCrossRef
37.
Zurück zum Zitat Lane NE, Yao W, Balooch M, Nalla RK, Balooch G, Habelitz S, et al. Glucocorticoid-treated mice have localized changes in trabecular bone material properties and osteocyte lacunar size that are not observed in placebo-treated or estrogen-deficient mice. J Bone Miner Res. 2006;21:466–76.PubMedCentralPubMedCrossRef Lane NE, Yao W, Balooch M, Nalla RK, Balooch G, Habelitz S, et al. Glucocorticoid-treated mice have localized changes in trabecular bone material properties and osteocyte lacunar size that are not observed in placebo-treated or estrogen-deficient mice. J Bone Miner Res. 2006;21:466–76.PubMedCentralPubMedCrossRef
38.•
Zurück zum Zitat Carriero A, Doube M, Vogt M, Busse B, Zustin J, Levchuk A, et al. Altered lacunar and vascular porosity in osteogenesis imperfecta mouse bone as revealed by synchrotron tomography contributes to bone fragility. Bone. 2014;61:116–24. This study provides high-resolution imaging analysis of bone porosity in ostogenesis imprerfecta.PubMedCrossRef Carriero A, Doube M, Vogt M, Busse B, Zustin J, Levchuk A, et al. Altered lacunar and vascular porosity in osteogenesis imperfecta mouse bone as revealed by synchrotron tomography contributes to bone fragility. Bone. 2014;61:116–24. This study provides high-resolution imaging analysis of bone porosity in ostogenesis imprerfecta.PubMedCrossRef
39.•
Zurück zum Zitat Carriero A, Zimmermann EA, Paluszny A, Tang SY, Bale H, Busse B, et al. How tough is brittle bone? Investigating osteogenesis imperfecta in mouse bone. J Bone Miner Res. 2014. This study examines bone quality in osteogenesis imperfecta at multiple length scales. Carriero A, Zimmermann EA, Paluszny A, Tang SY, Bale H, Busse B, et al. How tough is brittle bone? Investigating osteogenesis imperfecta in mouse bone. J Bone Miner Res. 2014. This study examines bone quality in osteogenesis imperfecta at multiple length scales.
40.•
Zurück zum Zitat Sinder BP, Eddy MM, Ominsky MS, Caird MS, Marini JC, Kozloff KM. Sclerostin antibody improves skeletal parameters in a Brtl/+mouse model of osteogenesis imperfecta. J Bone Miner Res. 2013;28:73–80. This study shows the ability of Sclerostin inhibition to improve bone quality in a mouse model of osteogenesis imperfecta.PubMedCentralPubMedCrossRef Sinder BP, Eddy MM, Ominsky MS, Caird MS, Marini JC, Kozloff KM. Sclerostin antibody improves skeletal parameters in a Brtl/+mouse model of osteogenesis imperfecta. J Bone Miner Res. 2013;28:73–80. This study shows the ability of Sclerostin inhibition to improve bone quality in a mouse model of osteogenesis imperfecta.PubMedCentralPubMedCrossRef
41.
Zurück zum Zitat Uveges TE, Kozloff KM, Ty JM, Ledgard F, Raggio CL, Gronowicz G, et al. Alendronate treatment of the brtl osteogenesis imperfecta mouse improves femoral geometry and load response before fracture but decreases predicted material properties and has detrimental effects on osteoblasts and bone formation. J Bone Miner Res. 2009;24:849–59.PubMedCentralPubMedCrossRef Uveges TE, Kozloff KM, Ty JM, Ledgard F, Raggio CL, Gronowicz G, et al. Alendronate treatment of the brtl osteogenesis imperfecta mouse improves femoral geometry and load response before fracture but decreases predicted material properties and has detrimental effects on osteoblasts and bone formation. J Bone Miner Res. 2009;24:849–59.PubMedCentralPubMedCrossRef
42.
Zurück zum Zitat Marini JC. Osteogenesis imperfecta: comprehensive management. Adv Pediatr. 1988;35:391–426.PubMed Marini JC. Osteogenesis imperfecta: comprehensive management. Adv Pediatr. 1988;35:391–426.PubMed
43.
Zurück zum Zitat Kozloff KM, Carden A, Bergwitz C, Forlino A, Uveges TE, Morris MD, et al. Brittle IV mouse model for osteogenesis imperfecta IV demonstrates postpubertal adaptations to improve whole bone strength. J Bone Miner Res. 2004;19:614–22.PubMedCrossRef Kozloff KM, Carden A, Bergwitz C, Forlino A, Uveges TE, Morris MD, et al. Brittle IV mouse model for osteogenesis imperfecta IV demonstrates postpubertal adaptations to improve whole bone strength. J Bone Miner Res. 2004;19:614–22.PubMedCrossRef
44.
Zurück zum Zitat Saito M, Marumo K. Collagen cross-links as a determinant of bone quality: a possible explanation for bone fragility in aging, osteoporosis, and diabetes mellitus. Osteoporos Int. 2010;21:195–214.PubMedCrossRef Saito M, Marumo K. Collagen cross-links as a determinant of bone quality: a possible explanation for bone fragility in aging, osteoporosis, and diabetes mellitus. Osteoporos Int. 2010;21:195–214.PubMedCrossRef
45.
Zurück zum Zitat Burr DB. Bone material properties and mineral matrix contributions to fracture risk or age in women and men. J Musculoskel Neur Inter. 2002;2:201–4. Burr DB. Bone material properties and mineral matrix contributions to fracture risk or age in women and men. J Musculoskel Neur Inter. 2002;2:201–4.
46.
Zurück zum Zitat Tang SY, Allen MR, Phipps R, Burr DB, Vashishth D. Changes in non-enzymatic glycation and its association with altered mechanical properties following 1-year treatment with risedronate or alendronate. Osteoporos Int. 2009;20:887–94.PubMedCentralPubMedCrossRef Tang SY, Allen MR, Phipps R, Burr DB, Vashishth D. Changes in non-enzymatic glycation and its association with altered mechanical properties following 1-year treatment with risedronate or alendronate. Osteoporos Int. 2009;20:887–94.PubMedCentralPubMedCrossRef
47.
Zurück zum Zitat Nyman JS, Roy A, Tyler JH, Acuna RL, Gayle HJ, Wang X. Age-related factors affecting the postyield energy dissipation of human cortical bone. J Orthop Res. 2007;25:646–55.PubMedCentralPubMedCrossRef Nyman JS, Roy A, Tyler JH, Acuna RL, Gayle HJ, Wang X. Age-related factors affecting the postyield energy dissipation of human cortical bone. J Orthop Res. 2007;25:646–55.PubMedCentralPubMedCrossRef
48.
Zurück zum Zitat Burr DB. Why bones bend but don't break. J Musculoskel Neur Inter. 2011;11:270–85. Burr DB. Why bones bend but don't break. J Musculoskel Neur Inter. 2011;11:270–85.
49.
Zurück zum Zitat Diab T, Condon KW, Burr DB, Vashishth D. Age-related change in the damage morphology of human cortical bone and its role in bone fragility. Bone. 2006;38:427–31.PubMedCrossRef Diab T, Condon KW, Burr DB, Vashishth D. Age-related change in the damage morphology of human cortical bone and its role in bone fragility. Bone. 2006;38:427–31.PubMedCrossRef
50.
Zurück zum Zitat Nalla RK, Kruzic JJ, Kinney JH, Ritchie RO. Effect of aging on the toughness of human cortical bone: evaluation by R-curves. Bone. 2004;35:1240–6.PubMedCrossRef Nalla RK, Kruzic JJ, Kinney JH, Ritchie RO. Effect of aging on the toughness of human cortical bone: evaluation by R-curves. Bone. 2004;35:1240–6.PubMedCrossRef
51.
Zurück zum Zitat Nyman JS, Even JL, Jo C-H, Herbert EG, Murry MR, Cockrell GE, et al. Increasing duration of type 1 diabetes perturbs the strength-structure relationship and increases brittleness of bone. Bone. 2011;48:733–40.PubMedCentralPubMedCrossRef Nyman JS, Even JL, Jo C-H, Herbert EG, Murry MR, Cockrell GE, et al. Increasing duration of type 1 diabetes perturbs the strength-structure relationship and increases brittleness of bone. Bone. 2011;48:733–40.PubMedCentralPubMedCrossRef
52.
Zurück zum Zitat Gourion-Arsiquaud S, Burket JC, Havill LM, DiCarlo E, Doty SB, Mendelsohn R, et al. Spatial variation in osteonal bone properties relative to tissue and animal age. J Bone Miner Res. 2009;24:1271–81.PubMedCentralPubMedCrossRef Gourion-Arsiquaud S, Burket JC, Havill LM, DiCarlo E, Doty SB, Mendelsohn R, et al. Spatial variation in osteonal bone properties relative to tissue and animal age. J Bone Miner Res. 2009;24:1271–81.PubMedCentralPubMedCrossRef
53.
Zurück zum Zitat Burket J, Gourion-Arsiquaud S, Havill LM, Baker SP, Boskey AL, van der Meulen MCH. Microstructure and nanomechanical properties in osteons relate to tissue and animal age. J Biomech. 2011;44:277–84.PubMedCentralPubMedCrossRef Burket J, Gourion-Arsiquaud S, Havill LM, Baker SP, Boskey AL, van der Meulen MCH. Microstructure and nanomechanical properties in osteons relate to tissue and animal age. J Biomech. 2011;44:277–84.PubMedCentralPubMedCrossRef
54.•
Zurück zum Zitat Tjhia CK, Stover SM, Rao DS, Odvina CV, Fyhrie DP. Relating micromechanical properties and mineral densities in severely suppressed bone turnover patients, osteoporotic patients, and normal subjects. Bone. 2012;51:114–22. This study examines the impact of bisphosphonate treatment and the inhibition of osteoclast-mediated bone remodeling on bone quality.PubMedCrossRef Tjhia CK, Stover SM, Rao DS, Odvina CV, Fyhrie DP. Relating micromechanical properties and mineral densities in severely suppressed bone turnover patients, osteoporotic patients, and normal subjects. Bone. 2012;51:114–22. This study examines the impact of bisphosphonate treatment and the inhibition of osteoclast-mediated bone remodeling on bone quality.PubMedCrossRef
55.•
Zurück zum Zitat Seitz S, Koehne T, Ries C, De Novo Oliveira A, Barvencik F, Busse B, et al. Impaired bone mineralization accompanied by low vitamin D and secondary hyperparathyroidism in patients with femoral neck fracture. Osteoporosis Intl. 2013;24:641–9. This study examines the role of signaling pathways that regulate bone remodeling in the regulation of bone quality.CrossRef Seitz S, Koehne T, Ries C, De Novo Oliveira A, Barvencik F, Busse B, et al. Impaired bone mineralization accompanied by low vitamin D and secondary hyperparathyroidism in patients with femoral neck fracture. Osteoporosis Intl. 2013;24:641–9. This study examines the role of signaling pathways that regulate bone remodeling in the regulation of bone quality.CrossRef
56.
Zurück zum Zitat Gourion-Arsiquaud S, Allen MR, Burr DB, Vashishth D, Tang SY, Boskey AL. Bisphosphonate treatment modifies canine bone mineral and matrix properties and their heterogeneity. Bone. 2010;46:666–72.PubMedCentralPubMedCrossRef Gourion-Arsiquaud S, Allen MR, Burr DB, Vashishth D, Tang SY, Boskey AL. Bisphosphonate treatment modifies canine bone mineral and matrix properties and their heterogeneity. Bone. 2010;46:666–72.PubMedCentralPubMedCrossRef
57.•
Zurück zum Zitat Ettinger B, Burr DB, Ritchie RO. Proposed pathogenesis for atypical femoral fractures: lessons from materials research. Bone. 2013;55:495–500. This article discusses the mechanisms by which altered bone quality may contribute to atypical femoral fractures following bisphosphonate use.PubMedCrossRef Ettinger B, Burr DB, Ritchie RO. Proposed pathogenesis for atypical femoral fractures: lessons from materials research. Bone. 2013;55:495–500. This article discusses the mechanisms by which altered bone quality may contribute to atypical femoral fractures following bisphosphonate use.PubMedCrossRef
61.••
Zurück zum Zitat Tang SY, Herber RP, Ho S, Alliston T. Maintenance of Bone Fracture Resistance Requires Perilacunar Remodeling by Matrix Metalloproteinase-13. J Bone Min Res. 2012;27:1936–1950. This article demonstrates the requirement of perilacunar remodeling by osteocytes for the maintenance of bone quality. Tang SY, Herber RP, Ho S, Alliston T. Maintenance of Bone Fracture Resistance Requires Perilacunar Remodeling by Matrix Metalloproteinase-13. J Bone Min Res. 2012;27:1936–1950. This article demonstrates the requirement of perilacunar remodeling by osteocytes for the maintenance of bone quality.
62.••
Zurück zum Zitat Qing H, Ardeshirpour L, Pajevic PD, Dusevich V, Jahn K, Kato S, et al. Demonstration of osteocytic perilacunar/canalicular remodeling in mice during lactation. J Bone Miner Res. 2012;27:1018–29. This article demonstrates the requirement of perilacunar remodeling by osteocytes for the maintenance of mineral homeostasis.PubMedCentralPubMedCrossRef Qing H, Ardeshirpour L, Pajevic PD, Dusevich V, Jahn K, Kato S, et al. Demonstration of osteocytic perilacunar/canalicular remodeling in mice during lactation. J Bone Miner Res. 2012;27:1018–29. This article demonstrates the requirement of perilacunar remodeling by osteocytes for the maintenance of mineral homeostasis.PubMedCentralPubMedCrossRef
63.
Zurück zum Zitat Fuller K, Chambers TJ. Localisation of mRNA for collagenase in osteocytic, bone surface, and chondrocytic cells but not osteoclasts. J Cell Sci. 1995;108(Pt 6):2221–30.PubMed Fuller K, Chambers TJ. Localisation of mRNA for collagenase in osteocytic, bone surface, and chondrocytic cells but not osteoclasts. J Cell Sci. 1995;108(Pt 6):2221–30.PubMed
64.
Zurück zum Zitat Inoue K, Mikuni-Takagaki Y, Oikawa K, Itoh T, Inada M, Noguchi T, et al. A crucial role for matrix metalloproteinase 2 in osteocytic canalicular formation and bone metabolism. J Biol Chem. 2006;281:33814–24.PubMedCrossRef Inoue K, Mikuni-Takagaki Y, Oikawa K, Itoh T, Inada M, Noguchi T, et al. A crucial role for matrix metalloproteinase 2 in osteocytic canalicular formation and bone metabolism. J Biol Chem. 2006;281:33814–24.PubMedCrossRef
65.
Zurück zum Zitat Holmbeck K, Bianco P, Pidoux I, Inoue S, Billinghurst RC, Wu W, et al. The metalloproteinase MT1-MMP is required for normal development and maintenance of osteocyte processes in bone. J Cell Sci. 2005;118:147–56.PubMedCrossRef Holmbeck K, Bianco P, Pidoux I, Inoue S, Billinghurst RC, Wu W, et al. The metalloproteinase MT1-MMP is required for normal development and maintenance of osteocyte processes in bone. J Cell Sci. 2005;118:147–56.PubMedCrossRef
66.
Zurück zum Zitat Mosig RA, Dowling O, DiFeo A, Ramirez MCM, Parker IC, Abe E, et al. Loss of MMP-2 disrupts skeletal and craniofacial development and results in decreased bone mineralization, joint erosion and defects in osteoblast and osteoclast growth. Hum Mol Genet. 2007;16:1113–23.PubMedCentralPubMedCrossRef Mosig RA, Dowling O, DiFeo A, Ramirez MCM, Parker IC, Abe E, et al. Loss of MMP-2 disrupts skeletal and craniofacial development and results in decreased bone mineralization, joint erosion and defects in osteoblast and osteoclast growth. Hum Mol Genet. 2007;16:1113–23.PubMedCentralPubMedCrossRef
67.
Zurück zum Zitat Teti A, Zallone A. Do osteocytes contribute to bone mineral homeostasis? Osteocytic osteolysis revisited. Bone. 2009;44:11–6.PubMedCrossRef Teti A, Zallone A. Do osteocytes contribute to bone mineral homeostasis? Osteocytic osteolysis revisited. Bone. 2009;44:11–6.PubMedCrossRef
68.
Zurück zum Zitat Kerschnitzki M, Wagermaier W, Roschger P, Seto J, Shahar R, Duda GN, et al. The organization of the osteocyte network mirrors the extracellular matrix orientation in bone. J Struct Biol. 2011;173:303–11.PubMedCrossRef Kerschnitzki M, Wagermaier W, Roschger P, Seto J, Shahar R, Duda GN, et al. The organization of the osteocyte network mirrors the extracellular matrix orientation in bone. J Struct Biol. 2011;173:303–11.PubMedCrossRef
69.•
Zurück zum Zitat Kerschnitzki M, Kollmannsberger P, Burghammer M, Duda GN, Weinkamer R, Wagermaier W, et al. Architecture of the osteocyte network correlates with bone material quality. J Bone Miner Res. 2013;28:1837–45. This article elegantly shows the relationship between the osteocyte canalicular network and the organization of bone ECM.PubMedCrossRef Kerschnitzki M, Kollmannsberger P, Burghammer M, Duda GN, Weinkamer R, Wagermaier W, et al. Architecture of the osteocyte network correlates with bone material quality. J Bone Miner Res. 2013;28:1837–45. This article elegantly shows the relationship between the osteocyte canalicular network and the organization of bone ECM.PubMedCrossRef
70.
Zurück zum Zitat Nyman JS, Lynch CC, Perrien DS, Thiolloy S, O'Quinn EC, Patil CA, et al. Differential effects between the loss of MMP-2 and MMP-9 on structural and tissue-level properties of bone. J Bone Miner Res. 2011;26:1252–60.PubMedCentralPubMedCrossRef Nyman JS, Lynch CC, Perrien DS, Thiolloy S, O'Quinn EC, Patil CA, et al. Differential effects between the loss of MMP-2 and MMP-9 on structural and tissue-level properties of bone. J Bone Miner Res. 2011;26:1252–60.PubMedCentralPubMedCrossRef
71.
Zurück zum Zitat Li CY, Jepsen KJ, Majeska RJ, Zhang J, Ni R, Gelb BD, et al. Mice lacking cathepsin K maintain bone remodeling but develop bone fragility despite high bone mass. J Bone Miner Res. 2006;21:865–75.PubMedCrossRef Li CY, Jepsen KJ, Majeska RJ, Zhang J, Ni R, Gelb BD, et al. Mice lacking cathepsin K maintain bone remodeling but develop bone fragility despite high bone mass. J Bone Miner Res. 2006;21:865–75.PubMedCrossRef
72.•
Zurück zum Zitat Kühnisch J, Seto J, Lange C, Schrof S, Stumpp S, Kobus K, et al. Multiscale, converging defects of macro-porosity, microstructure and matrix mineralization impact long bone fragility in NF1. PLoS One. 2014;9:e86115. This article demonstrates the critical role of a signaling intermediate, NF1, in the control of bone quality.PubMedCentralPubMedCrossRef Kühnisch J, Seto J, Lange C, Schrof S, Stumpp S, Kobus K, et al. Multiscale, converging defects of macro-porosity, microstructure and matrix mineralization impact long bone fragility in NF1. PLoS One. 2014;9:e86115. This article demonstrates the critical role of a signaling intermediate, NF1, in the control of bone quality.PubMedCentralPubMedCrossRef
73.•
Zurück zum Zitat Weinstein RS. Glucocorticoid-induced osteoporosis and osteonecrosis. Endocrinol Metab Clin North Am. 2012;41:595–611. This article reviews the role of glucocorticoids in osteoporosis and osteonecrosis.PubMedCentralPubMedCrossRef Weinstein RS. Glucocorticoid-induced osteoporosis and osteonecrosis. Endocrinol Metab Clin North Am. 2012;41:595–611. This article reviews the role of glucocorticoids in osteoporosis and osteonecrosis.PubMedCentralPubMedCrossRef
74.•
Zurück zum Zitat Moutsatsou P, Kassi E, Papavassiliou AG. Glucocorticoid receptor signaling in bone cells. Trends Mol Med. 2012;18:348–59. This review dissects the role of glucocorticoids in osteoblasts, osteocytes, and osteoclasts.PubMedCrossRef Moutsatsou P, Kassi E, Papavassiliou AG. Glucocorticoid receptor signaling in bone cells. Trends Mol Med. 2012;18:348–59. This review dissects the role of glucocorticoids in osteoblasts, osteocytes, and osteoclasts.PubMedCrossRef
75.•
Zurück zum Zitat Tang SY, Alliston T. Regulation of postnatal bone homeostasis by TGFbeta. Bonekey Rep. 2013;2:255. This review describes the mechanisms by which TGF β maintains the biological and mechanical homeostasis of bone.PubMedCentralPubMedCrossRef Tang SY, Alliston T. Regulation of postnatal bone homeostasis by TGFbeta. Bonekey Rep. 2013;2:255. This review describes the mechanisms by which TGF β maintains the biological and mechanical homeostasis of bone.PubMedCentralPubMedCrossRef
76.
Zurück zum Zitat Alliston T, Piek E, Derynck R. In: Derynck R, Miyazono K, editors. The TGF-β Family. Woodbury: Cold Spring Harbor Press; 2008. p. 667–723. Alliston T, Piek E, Derynck R. In: Derynck R, Miyazono K, editors. The TGF-β Family. Woodbury: Cold Spring Harbor Press; 2008. p. 667–723.
77.
Zurück zum Zitat Dallas SL, Alliston T, Bonewald LF. In: Bilezikian JP, Raisz LG, Rodan GA, editors. Principles of Bone Biology. San Diego: Academic Press; 2008. p. 1145–66.CrossRef Dallas SL, Alliston T, Bonewald LF. In: Bilezikian JP, Raisz LG, Rodan GA, editors. Principles of Bone Biology. San Diego: Academic Press; 2008. p. 1145–66.CrossRef
78.
Zurück zum Zitat Zhang YW, Yasui N, Ito K, Huang G, Fujii M, Hanai J, et al. A RUNX2/PEBP2alpha A/CBFA1 mutation displaying impaired transactivation and SMAD interaction in cleidocranial dysplasia. Proc Natl Acad Sci U S A. 2000;97:10549–54.PubMedCentralPubMedCrossRef Zhang YW, Yasui N, Ito K, Huang G, Fujii M, Hanai J, et al. A RUNX2/PEBP2alpha A/CBFA1 mutation displaying impaired transactivation and SMAD interaction in cleidocranial dysplasia. Proc Natl Acad Sci U S A. 2000;97:10549–54.PubMedCentralPubMedCrossRef
79.
Zurück zum Zitat Alliston T, Choy L, Ducy P, Karsenty G, Derynck R. TGF-beta-induced repression of CBFA1 by Smad3 decreases cbfa1 and osteocalcin expression and inhibits osteoblast differentiation. EMBO J. 2001;20:2254–72.PubMedCentralPubMedCrossRef Alliston T, Choy L, Ducy P, Karsenty G, Derynck R. TGF-beta-induced repression of CBFA1 by Smad3 decreases cbfa1 and osteocalcin expression and inhibits osteoblast differentiation. EMBO J. 2001;20:2254–72.PubMedCentralPubMedCrossRef
80.
Zurück zum Zitat Mohammad KS, Chen CG, Balooch G, Stebbins E, McKenna CR, Davis H, et al. Pharmacologic inhibition of the TGF-beta type I receptor kinase has anabolic and anti-catabolic effects on bone. PLoS ONE. 2009;4:e5275.PubMedCentralPubMedCrossRef Mohammad KS, Chen CG, Balooch G, Stebbins E, McKenna CR, Davis H, et al. Pharmacologic inhibition of the TGF-beta type I receptor kinase has anabolic and anti-catabolic effects on bone. PLoS ONE. 2009;4:e5275.PubMedCentralPubMedCrossRef
81.
Zurück zum Zitat Edwards JR, Nyman JS, Lwin ST, Moore MM, Esparza J, O'Quinn EC, et al. Inhibition of TGF-β signaling by 1D11 antibody treatment increases bone mass and quality in vivo. J Bone Miner Res. 2010;25:2419–26.PubMedCrossRef Edwards JR, Nyman JS, Lwin ST, Moore MM, Esparza J, O'Quinn EC, et al. Inhibition of TGF-β signaling by 1D11 antibody treatment increases bone mass and quality in vivo. J Bone Miner Res. 2010;25:2419–26.PubMedCrossRef
82.
Zurück zum Zitat Ammann P, Brennan TC, Mekraldi S, Aubert ML, Rizzoli R. Administration of growth hormone in selectively protein-deprived rats decreases BMD and bone strength. Bone. 2010;46:1574–81.PubMedCrossRef Ammann P, Brennan TC, Mekraldi S, Aubert ML, Rizzoli R. Administration of growth hormone in selectively protein-deprived rats decreases BMD and bone strength. Bone. 2010;46:1574–81.PubMedCrossRef
83.
Zurück zum Zitat Tseng KF, Bonadio JF, Stewart TA, Baker AR, Goldstein SA. Local expression of human growth hormone in bone results in impaired mechanical integrity in the skeletal tissue of transgenic mice. J Orthop Res. 1996;14:598–604.PubMedCrossRef Tseng KF, Bonadio JF, Stewart TA, Baker AR, Goldstein SA. Local expression of human growth hormone in bone results in impaired mechanical integrity in the skeletal tissue of transgenic mice. J Orthop Res. 1996;14:598–604.PubMedCrossRef
84.
Zurück zum Zitat Williams GA, Callon KE, Watson M, Costa JL, Ding Y, Dickinson M, et al. Skeletal phenotype of the leptin receptor-deficient db/db mouse. J Bone Miner Res. 2011;26:1698–709.PubMedCrossRef Williams GA, Callon KE, Watson M, Costa JL, Ding Y, Dickinson M, et al. Skeletal phenotype of the leptin receptor-deficient db/db mouse. J Bone Miner Res. 2011;26:1698–709.PubMedCrossRef
85.
Zurück zum Zitat Schroeder TM, Kahler RA, Li X, Westendorf JJ. Histone deacetylase 3 interacts with runx2 to repress the osteocalcin promoter and regulate osteoblast differentiation. J Biol Chem. 2004;279:41998–2007.PubMedCrossRef Schroeder TM, Kahler RA, Li X, Westendorf JJ. Histone deacetylase 3 interacts with runx2 to repress the osteocalcin promoter and regulate osteoblast differentiation. J Biol Chem. 2004;279:41998–2007.PubMedCrossRef
86.•
Zurück zum Zitat McGee-Lawrence ME, Bradley EW, Dudakovic A, Carlson SW, Ryan ZC, Kumar R, et al. Histone deacetylase 3 is required for maintenance of bone mass during aging. Bone. 2013;52:296–307. This article describes the role of a histone deacetylase in the control of bone ECM quality.PubMedCentralPubMedCrossRef McGee-Lawrence ME, Bradley EW, Dudakovic A, Carlson SW, Ryan ZC, Kumar R, et al. Histone deacetylase 3 is required for maintenance of bone mass during aging. Bone. 2013;52:296–307. This article describes the role of a histone deacetylase in the control of bone ECM quality.PubMedCentralPubMedCrossRef
87.
Zurück zum Zitat Yang X, Matsuda K, Bialek P, Jacquot S, Masuoka HC, Schinke T, et al. ATF4 is a substrate of RSK2 and an essential regulator of osteoblast biology: implication for Coffin-Lowry Syndrome. Cell. 2004;117:387–98.PubMedCrossRef Yang X, Matsuda K, Bialek P, Jacquot S, Masuoka HC, Schinke T, et al. ATF4 is a substrate of RSK2 and an essential regulator of osteoblast biology: implication for Coffin-Lowry Syndrome. Cell. 2004;117:387–98.PubMedCrossRef
88.•
Zurück zum Zitat Makowski AJ, Uppuganti S, Wadeer SA. The loss of activating transcription factor 4 (ATF4) reduces bone toughness and fracture toughness. Bone. 2014;62:1–9. This article describes the role of a transcription factor, ATF4, in control of bone quality.PubMedCrossRef Makowski AJ, Uppuganti S, Wadeer SA. The loss of activating transcription factor 4 (ATF4) reduces bone toughness and fracture toughness. Bone. 2014;62:1–9. This article describes the role of a transcription factor, ATF4, in control of bone quality.PubMedCrossRef
89.
Zurück zum Zitat Selvamurugan N, Kwok S, Alliston T, Reiss M, Partridge NC. Transforming growth factor-beta 1 regulation of collagenase-3 expression in osteoblastic cells by cross-talk between the SMAD and MAPK signaling pathways and their components, SMAD2 and Runx2. J Biol Chem. 2004;279:19327–34.PubMedCrossRef Selvamurugan N, Kwok S, Alliston T, Reiss M, Partridge NC. Transforming growth factor-beta 1 regulation of collagenase-3 expression in osteoblastic cells by cross-talk between the SMAD and MAPK signaling pathways and their components, SMAD2 and Runx2. J Biol Chem. 2004;279:19327–34.PubMedCrossRef
90.
Zurück zum Zitat Jepsen KJ, Courtland H-W, Nadeau JH. Genetically determined phenotype covariation networks control bone strength. J Bone Miner Res. 2010;25:1581–93.PubMedCentralPubMedCrossRef Jepsen KJ, Courtland H-W, Nadeau JH. Genetically determined phenotype covariation networks control bone strength. J Bone Miner Res. 2010;25:1581–93.PubMedCentralPubMedCrossRef
91.
Zurück zum Zitat Havill LM, Allen MR, Bredbenner TL, Burr DB, Nicolella DP, Turner CH, et al. Heritability of lumbar trabecular bone mechanical properties in baboons. Bone. 2010;46:835–40.PubMedCentralPubMedCrossRef Havill LM, Allen MR, Bredbenner TL, Burr DB, Nicolella DP, Turner CH, et al. Heritability of lumbar trabecular bone mechanical properties in baboons. Bone. 2010;46:835–40.PubMedCentralPubMedCrossRef
93.•
Zurück zum Zitat Mullen CA, Haugh MG, Schaffler MB, Majeska RJ, McNamara LM. Osteocyte differentiation is regulated by extracellular matrix stiffness and intercellular separation. J Mech Behav Biomed Mater. 2013;28:183–94. This article demonstrates the importance of cellular tension in osteocyte differentiation.PubMedCrossRef Mullen CA, Haugh MG, Schaffler MB, Majeska RJ, McNamara LM. Osteocyte differentiation is regulated by extracellular matrix stiffness and intercellular separation. J Mech Behav Biomed Mater. 2013;28:183–94. This article demonstrates the importance of cellular tension in osteocyte differentiation.PubMedCrossRef
94.
Zurück zum Zitat Engler AJ, Sen S, Sweeney HL, Discher DE. Matrix elasticity directs stem cell lineage specification. Cell. 2006;126:677–89.PubMedCrossRef Engler AJ, Sen S, Sweeney HL, Discher DE. Matrix elasticity directs stem cell lineage specification. Cell. 2006;126:677–89.PubMedCrossRef
95.•
Zurück zum Zitat Choi JS, Harley BA. The combined influence of substrate elasticity and ligand density on the viability and biophysical properties of hematopoietic stem and progenitor cells. Biomaterials. 2012;33:4460–8. This article demonstrates the importance of cellular tension in HSC differentiation.PubMedCrossRef Choi JS, Harley BA. The combined influence of substrate elasticity and ligand density on the viability and biophysical properties of hematopoietic stem and progenitor cells. Biomaterials. 2012;33:4460–8. This article demonstrates the importance of cellular tension in HSC differentiation.PubMedCrossRef
96.
Zurück zum Zitat Kavukcuoglu NB, Denhardt DT, Guzelsu N, Mann AB. Osteopontin deficiency and aging on nanomechanics of mouse bone. J Biomed Mater Res A. 2007;83:136–44.PubMedCrossRef Kavukcuoglu NB, Denhardt DT, Guzelsu N, Mann AB. Osteopontin deficiency and aging on nanomechanics of mouse bone. J Biomed Mater Res A. 2007;83:136–44.PubMedCrossRef
97.
Zurück zum Zitat Boskey AL, Spevak L, Paschalis E, Doty SB, McKee MD. Osteopontin deficiency increases mineral content and mineral crystallinity in mouse bone. Calcif Tissue Int. 2002;71:145–54.PubMedCrossRef Boskey AL, Spevak L, Paschalis E, Doty SB, McKee MD. Osteopontin deficiency increases mineral content and mineral crystallinity in mouse bone. Calcif Tissue Int. 2002;71:145–54.PubMedCrossRef
98.•
Zurück zum Zitat Kacena MA, Gundberg CM, Kacena WJ, Landis WJ, Boskey AL, Bouxsein ML, et al. The effects of GATA-1 and NF-E2 deficiency on bone biomechanical, biochemical, and mineral properties. J Cell Physiol. 2013;228:1594–600. This article describes the role of megakaryocyte transcription factors in bone quality.PubMedCrossRef Kacena MA, Gundberg CM, Kacena WJ, Landis WJ, Boskey AL, Bouxsein ML, et al. The effects of GATA-1 and NF-E2 deficiency on bone biomechanical, biochemical, and mineral properties. J Cell Physiol. 2013;228:1594–600. This article describes the role of megakaryocyte transcription factors in bone quality.PubMedCrossRef
Metadaten
Titel
Biological Regulation of Bone Quality
verfasst von
Tamara Alliston
Publikationsdatum
01.09.2014
Verlag
Springer US
Erschienen in
Current Osteoporosis Reports / Ausgabe 3/2014
Print ISSN: 1544-1873
Elektronische ISSN: 1544-2241
DOI
https://doi.org/10.1007/s11914-014-0213-4

Weitere Artikel der Ausgabe 3/2014

Current Osteoporosis Reports 3/2014 Zur Ausgabe

Skeletal Genetics (ML Johnson and S Ralston, Section Editors)

Hypophosphatemic Rickets: Revealing Novel Control Points for Phosphate Homeostasis

Bone Quality in Osteoporosis (MD Grynpas and JS Nyman, Section Editors)

The Role of Nanoscale Toughening Mechanisms in Osteoporosis

Bone Quality in Osteoporosis (MD Grynpas and JS Nyman, Section Editors)

Novel Assessment Tools for Osteoporosis Diagnosis and Treatment

Skeletal Genetics (ML Johnson and S Ralston, Section Editors)

Sclerosing Bone Dysplasias: Leads Toward Novel Osteoporosis Treatments

Bone Quality in Osteoporosis (MD Grynpas and JS Nyman, Section Editors)

Changes in the Degree of Mineralization with Osteoporosis and its Treatment

Arthropedia

Grundlagenwissen der Arthroskopie und Gelenkchirurgie. Erweitert durch Fallbeispiele, Videos und Abbildungen. 
» Jetzt entdecken

Mehr Frauen im OP – weniger postoperative Komplikationen

21.05.2024 Allgemeine Chirurgie Nachrichten

Ein Frauenanteil von mindestens einem Drittel im ärztlichen Op.-Team war in einer großen retrospektiven Studie aus Kanada mit einer signifikanten Reduktion der postoperativen Morbidität assoziiert.

„Übersichtlicher Wegweiser“: Lauterbachs umstrittener Klinik-Atlas ist online

17.05.2024 Klinik aktuell Nachrichten

Sie sei „ethisch geboten“, meint Gesundheitsminister Karl Lauterbach: mehr Transparenz über die Qualität von Klinikbehandlungen. Um sie abzubilden, lässt er gegen den Widerstand vieler Länder einen virtuellen Klinik-Atlas freischalten.

Klinikreform soll zehntausende Menschenleben retten

15.05.2024 Klinik aktuell Nachrichten

Gesundheitsminister Lauterbach hat die vom Bundeskabinett beschlossene Klinikreform verteidigt. Kritik an den Plänen kommt vom Marburger Bund. Und in den Ländern wird über den Gang zum Vermittlungsausschuss spekuliert.

TEP mit Roboterhilfe führt nicht zu größerer Zufriedenheit

15.05.2024 Knie-TEP Nachrichten

Der Einsatz von Operationsrobotern für den Einbau von Totalendoprothesen des Kniegelenks hat die Präzision der Eingriffe erhöht. Für die postoperative Zufriedenheit der Patienten scheint das aber unerheblich zu sein, wie eine Studie zeigt.

Update Orthopädie und Unfallchirurgie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.