Skip to main content
Erschienen in: Cardiovascular Toxicology 4/2012

01.12.2012

Differentiation-Dependent Doxorubicin Toxicity on H9c2 Cardiomyoblasts

verfasst von: Ana F. Branco, Susana F. Sampaio, Ana C. Moreira, Jon Holy, Kendall B. Wallace, Ines Baldeiras, Paulo J. Oliveira, Vilma A. Sardão

Erschienen in: Cardiovascular Toxicology | Ausgabe 4/2012

Einloggen, um Zugang zu erhalten

Abstract

A characteristic component of the anti-neoplastic doxorubicin (DOX)-induced cardiac toxicity is the delayed and persistent toxicity, with cancer childhood survivors developing cardiac failure later in life. The mechanisms behind this persistent toxicity are unknown, although one of the consequences of early childhood treatment with DOX is a specific removal of cardiac progenitor cells. DOX treatment may be more toxic to undifferentiated muscle cells, contributing to impaired cardiac development and toxicity persistence. H9c2 myoblasts, a rat embryonic cell line, which has the ability to differentiate into a skeletal or cardiac muscle phenotype, can be instrumental in understanding DOX cytotoxicity in different differentiation stages. H9c2 cell differentiation results in decreased cell proliferation and increased expression of a differentiated muscle marker. Differentiated H9c2 cells accumulated more DOX and were more susceptible to DOX-induced cytotoxicity. Differentiated cells had increased levels of mitochondrial superoxide dismutase and Bcl-xL, an anti-apoptotic protein. Of critical importance for the mechanisms of DOX toxicity, p53 appeared to be equally activated regardless of the differentiation state. We suggest that although more differentiated H9c2 muscle cells appear to have more basal mechanisms that would predict higher protection, DOX toxicity is higher in the differentiated population. The results are instrumental in the understanding of stress responses of this specific cell line in different differentiation stages to the cardiotoxicity caused by anthracyclines.
Literatur
1.
Zurück zum Zitat Fulbright, J. M., Huh, W., Anderson, P., & Chandra, J. (2010). Can anthracycline therapy for pediatric malignancies be less cardiotoxic? Current Oncology Reports, 12, 411–419.PubMedCrossRef Fulbright, J. M., Huh, W., Anderson, P., & Chandra, J. (2010). Can anthracycline therapy for pediatric malignancies be less cardiotoxic? Current Oncology Reports, 12, 411–419.PubMedCrossRef
2.
Zurück zum Zitat Lipshultz, S. E. (2006). Exposure to anthracyclines during childhood causes cardiac injury. Seminars in Oncology, 33, S8–14.PubMedCrossRef Lipshultz, S. E. (2006). Exposure to anthracyclines during childhood causes cardiac injury. Seminars in Oncology, 33, S8–14.PubMedCrossRef
3.
Zurück zum Zitat van der Pal, H. J., van Dalen, E. C., Hauptmann, M., Kok, W. E., Caron, H. N., van den Bos, C., et al. (2010). Cardiac function in 5-year survivors of childhood cancer: A long-term follow-up study. Archives of Internal Medicine, 170, 1247–1255.PubMedCrossRef van der Pal, H. J., van Dalen, E. C., Hauptmann, M., Kok, W. E., Caron, H. N., van den Bos, C., et al. (2010). Cardiac function in 5-year survivors of childhood cancer: A long-term follow-up study. Archives of Internal Medicine, 170, 1247–1255.PubMedCrossRef
4.
Zurück zum Zitat Broder, H., Gottlieb, R. A., & Lepor, N. E. (2008). Chemotherapy and cardiotoxicity. Reviews in Cardiovascular Medicine, 9, 75–83.PubMed Broder, H., Gottlieb, R. A., & Lepor, N. E. (2008). Chemotherapy and cardiotoxicity. Reviews in Cardiovascular Medicine, 9, 75–83.PubMed
5.
Zurück zum Zitat Lefrak, E. A., Pitha, J., Rosenheim, S., & Gottlieb, J. A. (1973). A clinicopathologic analysis of adriamycin cardiotoxicity. Cancer, 32, 302–314.PubMedCrossRef Lefrak, E. A., Pitha, J., Rosenheim, S., & Gottlieb, J. A. (1973). A clinicopathologic analysis of adriamycin cardiotoxicity. Cancer, 32, 302–314.PubMedCrossRef
6.
Zurück zum Zitat Steinherz, L., & Steinherz, P. (1991). Delayed cardiac toxicity from anthracycline therapy. Pediatrician, 18, 49–52.PubMed Steinherz, L., & Steinherz, P. (1991). Delayed cardiac toxicity from anthracycline therapy. Pediatrician, 18, 49–52.PubMed
7.
Zurück zum Zitat Huang, C., Zhang, X., Ramil, J. M., Rikka, S., Kim, L., Lee, Y., et al. (2010). Juvenile exposure to anthracyclines impairs cardiac progenitor cell function and vascularization resulting in greater susceptibility to stress-induced myocardial injury in adult mice. Circulation, 121, 675–683.PubMedCrossRef Huang, C., Zhang, X., Ramil, J. M., Rikka, S., Kim, L., Lee, Y., et al. (2010). Juvenile exposure to anthracyclines impairs cardiac progenitor cell function and vascularization resulting in greater susceptibility to stress-induced myocardial injury in adult mice. Circulation, 121, 675–683.PubMedCrossRef
8.
Zurück zum Zitat De Angelis, A., Piegari, E., Cappetta, D., Marino, L., Filippelli, A., Berrino, L., et al. (2009). Anthracycline cardiomyopathy is mediated by depletion of the cardiac stem cell pool and is rescued by restoration of progenitor cell function. Circulation, 121, 276–292.PubMedCrossRef De Angelis, A., Piegari, E., Cappetta, D., Marino, L., Filippelli, A., Berrino, L., et al. (2009). Anthracycline cardiomyopathy is mediated by depletion of the cardiac stem cell pool and is rescued by restoration of progenitor cell function. Circulation, 121, 276–292.PubMedCrossRef
9.
Zurück zum Zitat Konorev, E. A., Vanamala, S., & Kalyanaraman, B. (2008). Differences in doxorubicin-induced apoptotic signaling in adult and immature cardiomyocytes. Free Radical Biology and Medicine, 45, 1723–1728.PubMedCrossRef Konorev, E. A., Vanamala, S., & Kalyanaraman, B. (2008). Differences in doxorubicin-induced apoptotic signaling in adult and immature cardiomyocytes. Free Radical Biology and Medicine, 45, 1723–1728.PubMedCrossRef
10.
Zurück zum Zitat Azim, H. A., Jr, Peccatori, F. A., Scarfone, G., Acaia, B., Rossi, P., Cascio, R., et al. (2008). Anthracyclines for gestational breast cancer: Course and outcome of pregnancy. Annals of Oncology, 19, 1511–1512.PubMedCrossRef Azim, H. A., Jr, Peccatori, F. A., Scarfone, G., Acaia, B., Rossi, P., Cascio, R., et al. (2008). Anthracyclines for gestational breast cancer: Course and outcome of pregnancy. Annals of Oncology, 19, 1511–1512.PubMedCrossRef
11.
Zurück zum Zitat Lam, M. S. (2006). Treatment of Burkitt’s lymphoma during pregnancy. Annals of Pharmacotherapy, 40, 2048–2052.PubMedCrossRef Lam, M. S. (2006). Treatment of Burkitt’s lymphoma during pregnancy. Annals of Pharmacotherapy, 40, 2048–2052.PubMedCrossRef
12.
Zurück zum Zitat Kerr, J. R. (2005). Neonatal effects of breast cancer chemotherapy administered during pregnancy. Pharmacotherapy, 25, 438–441.PubMedCrossRef Kerr, J. R. (2005). Neonatal effects of breast cancer chemotherapy administered during pregnancy. Pharmacotherapy, 25, 438–441.PubMedCrossRef
13.
Zurück zum Zitat Van Calsteren, K., Verbesselt, R., Beijnen, J., Devlieger, R., De Catte, L., Chai, D. C., et al. (2010). Transplacental transfer of anthracyclines, vinblastine, and 4-hydroxy-cyclophosphamide in a baboon model. Gynecologic Oncology, 119, 594–600.PubMedCrossRef Van Calsteren, K., Verbesselt, R., Beijnen, J., Devlieger, R., De Catte, L., Chai, D. C., et al. (2010). Transplacental transfer of anthracyclines, vinblastine, and 4-hydroxy-cyclophosphamide in a baboon model. Gynecologic Oncology, 119, 594–600.PubMedCrossRef
14.
Zurück zum Zitat Kimes, B. W., & Brandt, B. L. (1976). Properties of a clonal muscle cell line from rat heart. Experimental Cell Research, 98, 367–381.PubMedCrossRef Kimes, B. W., & Brandt, B. L. (1976). Properties of a clonal muscle cell line from rat heart. Experimental Cell Research, 98, 367–381.PubMedCrossRef
15.
Zurück zum Zitat Hescheler, J., Meyer, R., Plant, S., Krautwurst, D., Rosenthal, W., & Schultz, G. (1991). Morphological, biochemical, and electrophysiological characterization of a clonal cell (H9c2) line from rat heart. Circulation Research, 69, 1476–1486.PubMedCrossRef Hescheler, J., Meyer, R., Plant, S., Krautwurst, D., Rosenthal, W., & Schultz, G. (1991). Morphological, biochemical, and electrophysiological characterization of a clonal cell (H9c2) line from rat heart. Circulation Research, 69, 1476–1486.PubMedCrossRef
16.
Zurück zum Zitat Menard, C., Pupier, S., Mornet, D., Kitzmann, M., Nargeot, J., & Lory, P. (1999). Modulation of L-type calcium channel expression during retinoic acid-induced differentiation of H9C2 cardiac cells. Journal of Biological Chemistry, 274, 29063–29070.PubMedCrossRef Menard, C., Pupier, S., Mornet, D., Kitzmann, M., Nargeot, J., & Lory, P. (1999). Modulation of L-type calcium channel expression during retinoic acid-induced differentiation of H9C2 cardiac cells. Journal of Biological Chemistry, 274, 29063–29070.PubMedCrossRef
17.
Zurück zum Zitat Zhu, H. L., Wei, X., Qu, S. L., Zhang, C., Zuo, X. X., Feng, Y. S., et al. (2011). Ischemic postconditioning protects cardiomyocytes against ischemia/reperfusion injury by inducing MIP2. Experimental & Molecular Medicine, 43, 437–445.CrossRef Zhu, H. L., Wei, X., Qu, S. L., Zhang, C., Zuo, X. X., Feng, Y. S., et al. (2011). Ischemic postconditioning protects cardiomyocytes against ischemia/reperfusion injury by inducing MIP2. Experimental & Molecular Medicine, 43, 437–445.CrossRef
18.
Zurück zum Zitat Yu, X. Y., Chen, H. M., Liang, J. L., Lin, Q. X., Tan, H. H., Fu, Y. H., et al. (2011). Hyperglycemic myocardial damage is mediated by proinflammatory cytokine: Macrophage migration inhibitory factor. PLoS One, 6, e16239.PubMedCrossRef Yu, X. Y., Chen, H. M., Liang, J. L., Lin, Q. X., Tan, H. H., Fu, Y. H., et al. (2011). Hyperglycemic myocardial damage is mediated by proinflammatory cytokine: Macrophage migration inhibitory factor. PLoS One, 6, e16239.PubMedCrossRef
19.
Zurück zum Zitat Gurusamy, N., Lekli, I., Mukherjee, S., Ray, D., Ahsan, M. K., Gherghiceanu, M., et al. (2009). Cardioprotection by resveratrol: A novel mechanism via autophagy involving the mTORC2 pathway. Cardiovascular Research, 86, 103–112.PubMedCrossRef Gurusamy, N., Lekli, I., Mukherjee, S., Ray, D., Ahsan, M. K., Gherghiceanu, M., et al. (2009). Cardioprotection by resveratrol: A novel mechanism via autophagy involving the mTORC2 pathway. Cardiovascular Research, 86, 103–112.PubMedCrossRef
20.
Zurück zum Zitat Silva, J. P., Sardao, V. A., Coutinho, O. P., & Oliveira, P. J. (2010). Nitrogen compounds prevent h9c2 myoblast oxidative stress-induced mitochondrial dysfunction and cell death. Cardiovascular Toxicology, 10, 51–65.PubMedCrossRef Silva, J. P., Sardao, V. A., Coutinho, O. P., & Oliveira, P. J. (2010). Nitrogen compounds prevent h9c2 myoblast oxidative stress-induced mitochondrial dysfunction and cell death. Cardiovascular Toxicology, 10, 51–65.PubMedCrossRef
21.
Zurück zum Zitat Sardao, V. A., Oliveira, P. J., Holy, J., Oliveira, C. R., & Wallace, K. B. (2007). Vital imaging of H9c2 myoblasts exposed to tert-butylhydroperoxide–characterization of morphological features of cell death. BMC Cell Biol, 8, 11.PubMedCrossRef Sardao, V. A., Oliveira, P. J., Holy, J., Oliveira, C. R., & Wallace, K. B. (2007). Vital imaging of H9c2 myoblasts exposed to tert-butylhydroperoxide–characterization of morphological features of cell death. BMC Cell Biol, 8, 11.PubMedCrossRef
22.
Zurück zum Zitat Sipkens, J. A., Krijnen, P. A., Hahn, N. E., Wassink, M., Meischl, C., Smith, D. E., et al. (2011). Homocysteine-induced cardiomyocyte apoptosis and plasma membrane flip-flop are independent of S-adenosylhomocysteine: A crucial role for nuclear p47(phox). Molecular and Cellular Biochemistry, 358, 229–239.PubMedCrossRef Sipkens, J. A., Krijnen, P. A., Hahn, N. E., Wassink, M., Meischl, C., Smith, D. E., et al. (2011). Homocysteine-induced cardiomyocyte apoptosis and plasma membrane flip-flop are independent of S-adenosylhomocysteine: A crucial role for nuclear p47(phox). Molecular and Cellular Biochemistry, 358, 229–239.PubMedCrossRef
23.
Zurück zum Zitat Lund, K. C., Peterson, L. L., & Wallace, K. B. (2007). Absence of a universal mechanism of mitochondrial toxicity by nucleoside analogs. Antimicrobial Agents and Chemotherapy, 51, 2531–2539.PubMedCrossRef Lund, K. C., Peterson, L. L., & Wallace, K. B. (2007). Absence of a universal mechanism of mitochondrial toxicity by nucleoside analogs. Antimicrobial Agents and Chemotherapy, 51, 2531–2539.PubMedCrossRef
24.
Zurück zum Zitat Comelli, M., Metelli, G., & Mavelli, I. (2007). Downmodulation of mitochondrial F0F1 ATP synthase by diazoxide in cardiac myoblasts: A dual effect of the drug. American Journal of Physiology. Heart and Circulatory Physiology, 292, H820–829.PubMedCrossRef Comelli, M., Metelli, G., & Mavelli, I. (2007). Downmodulation of mitochondrial F0F1 ATP synthase by diazoxide in cardiac myoblasts: A dual effect of the drug. American Journal of Physiology. Heart and Circulatory Physiology, 292, H820–829.PubMedCrossRef
25.
Zurück zum Zitat Huelsenbeck, J., Henninger, C., Schad, A., Lackner, K. J., Kaina, B., & Fritz, G. (2011). Inhibition of Rac1 signaling by lovastatin protects against anthracycline-induced cardiac toxicity. Cell Death & Disease, 2, e190.CrossRef Huelsenbeck, J., Henninger, C., Schad, A., Lackner, K. J., Kaina, B., & Fritz, G. (2011). Inhibition of Rac1 signaling by lovastatin protects against anthracycline-induced cardiac toxicity. Cell Death & Disease, 2, e190.CrossRef
26.
Zurück zum Zitat L’Ecuyer, T. J., Aggarwal, S., Zhang, J. P., & Van der Heide, R. S. (2011). Effect of hypothermia on doxorubicin-induced cardiac myoblast signaling and cell death. Cardiovascular Pathology, 21, 96–104.PubMedCrossRef L’Ecuyer, T. J., Aggarwal, S., Zhang, J. P., & Van der Heide, R. S. (2011). Effect of hypothermia on doxorubicin-induced cardiac myoblast signaling and cell death. Cardiovascular Pathology, 21, 96–104.PubMedCrossRef
27.
Zurück zum Zitat Sardao, V. A., Oliveira, P. J., Holy, J., Oliveira, C. R., & Wallace, K. B. (2009). Morphological alterations induced by doxorubicin on H9c2 myoblasts: nuclear, mitochondrial, and cytoskeletal targets. Cell Biology and Toxicology, 25, 227–243.PubMedCrossRef Sardao, V. A., Oliveira, P. J., Holy, J., Oliveira, C. R., & Wallace, K. B. (2009). Morphological alterations induced by doxorubicin on H9c2 myoblasts: nuclear, mitochondrial, and cytoskeletal targets. Cell Biology and Toxicology, 25, 227–243.PubMedCrossRef
28.
Zurück zum Zitat Sardao, V. A., Oliveira, P. J., Holy, J., Oliveira, C. R., & Wallace, K. B. (2009). Doxorubicin-induced mitochondrial dysfunction is secondary to nuclear p53 activation in H9c2 cardiomyoblasts. Cancer Chemotherapy and Pharmacology, 64, 811–827.PubMedCrossRef Sardao, V. A., Oliveira, P. J., Holy, J., Oliveira, C. R., & Wallace, K. B. (2009). Doxorubicin-induced mitochondrial dysfunction is secondary to nuclear p53 activation in H9c2 cardiomyoblasts. Cancer Chemotherapy and Pharmacology, 64, 811–827.PubMedCrossRef
29.
Zurück zum Zitat Pereira, S. L., Ramalho-Santos, J., Branco, A. F., Sardao, V. A., Oliveira, P. J., & Carvalho, R. A. (2011). Metabolic remodeling during H9c2 myoblast differentiation: Relevance for in vitro toxicity studies. Cardiovascular Toxicology, 11, 180–190.PubMedCrossRef Pereira, S. L., Ramalho-Santos, J., Branco, A. F., Sardao, V. A., Oliveira, P. J., & Carvalho, R. A. (2011). Metabolic remodeling during H9c2 myoblast differentiation: Relevance for in vitro toxicity studies. Cardiovascular Toxicology, 11, 180–190.PubMedCrossRef
30.
Zurück zum Zitat Branco, A. F., Pereira, S. L., Moreira, A. C., Holy, J., Sardao, V. A., & Oliveira, P. J. (2011). Isoproterenol cytotoxicity is dependent on the differentiation state of the cardiomyoblast H9c2 cell line. Cardiovascular Toxicology, 11, 191–203.PubMedCrossRef Branco, A. F., Pereira, S. L., Moreira, A. C., Holy, J., Sardao, V. A., & Oliveira, P. J. (2011). Isoproterenol cytotoxicity is dependent on the differentiation state of the cardiomyoblast H9c2 cell line. Cardiovascular Toxicology, 11, 191–203.PubMedCrossRef
31.
Zurück zum Zitat Holy, J., Kolomitsyna, O., Krasutsky, D., Oliveira, P. J., Perkins, E., & Krasutsky, P. A. (2010). Dimethylaminopyridine derivatives of lupane triterpenoids are potent disruptors of mitochondrial structure and function. Bioorganic & Medicinal Chemistry, 18, 6080–6088.CrossRef Holy, J., Kolomitsyna, O., Krasutsky, D., Oliveira, P. J., Perkins, E., & Krasutsky, P. A. (2010). Dimethylaminopyridine derivatives of lupane triterpenoids are potent disruptors of mitochondrial structure and function. Bioorganic & Medicinal Chemistry, 18, 6080–6088.CrossRef
32.
Zurück zum Zitat Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248–254.PubMedCrossRef Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248–254.PubMedCrossRef
33.
Zurück zum Zitat Pastore, A., Federici, G., Bertini, E., & Piemonte, F. (2003). Analysis of glutathione: implication in redox and detoxification. Clinical Chimical Acta, 333, 19–39.CrossRef Pastore, A., Federici, G., Bertini, E., & Piemonte, F. (2003). Analysis of glutathione: implication in redox and detoxification. Clinical Chimical Acta, 333, 19–39.CrossRef
34.
Zurück zum Zitat Umemoto, T., Furutani, Y., Murakami, M., Matsui, T., & Funaba, M. (2011). Endogenous Bmp4 in myoblasts is required for myotube formation in C2C12 cells. Biochimica et Biophysica Acta, 1810, 1127–1135.PubMedCrossRef Umemoto, T., Furutani, Y., Murakami, M., Matsui, T., & Funaba, M. (2011). Endogenous Bmp4 in myoblasts is required for myotube formation in C2C12 cells. Biochimica et Biophysica Acta, 1810, 1127–1135.PubMedCrossRef
35.
Zurück zum Zitat Doroshow, J. H., & Davies, K. J. (1986). Redox cycling of anthracyclines by cardiac mitochondria. II. Formation of superoxide anion, hydrogen peroxide, and hydroxyl radical. Journal of Biological Chemistry, 261, 3068–3074.PubMed Doroshow, J. H., & Davies, K. J. (1986). Redox cycling of anthracyclines by cardiac mitochondria. II. Formation of superoxide anion, hydrogen peroxide, and hydroxyl radical. Journal of Biological Chemistry, 261, 3068–3074.PubMed
36.
Zurück zum Zitat Chinopoulos, C., & Adam-Vizi, V. (2011). Modulation of the mitochondrial permeability transition by cyclophilin D: Moving closer to F(0)-F(1) ATP synthase? Mitochondrion, 12, 41–45.PubMedCrossRef Chinopoulos, C., & Adam-Vizi, V. (2011). Modulation of the mitochondrial permeability transition by cyclophilin D: Moving closer to F(0)-F(1) ATP synthase? Mitochondrion, 12, 41–45.PubMedCrossRef
37.
Zurück zum Zitat Hom, J. R., Quintanilla, R. A., Hoffman, D. L., de Mesy Bentley, K. L., Molkentin, J. D., Sheu, S. S., et al. (2011). The permeability transition pore controls cardiac mitochondrial maturation and myocyte differentiation. Developmental Cell, 21, 469–478.PubMedCrossRef Hom, J. R., Quintanilla, R. A., Hoffman, D. L., de Mesy Bentley, K. L., Molkentin, J. D., Sheu, S. S., et al. (2011). The permeability transition pore controls cardiac mitochondrial maturation and myocyte differentiation. Developmental Cell, 21, 469–478.PubMedCrossRef
38.
Zurück zum Zitat Soriano, M. E., & Scorrano, L. (2011). Traveling Bax and forth from mitochondria to control apoptosis. Cell, 145, 15–17.PubMedCrossRef Soriano, M. E., & Scorrano, L. (2011). Traveling Bax and forth from mitochondria to control apoptosis. Cell, 145, 15–17.PubMedCrossRef
39.
Zurück zum Zitat Chen, Y. B., Aon, M. A., Hsu, Y. T., Soane, L., Teng, X., McCaffery, J. M., et al. (2011). Bcl-xL regulates mitochondrial energetics by stabilizing the inner membrane potential. Journal of Cell Biology, 195, 263–276.PubMedCrossRef Chen, Y. B., Aon, M. A., Hsu, Y. T., Soane, L., Teng, X., McCaffery, J. M., et al. (2011). Bcl-xL regulates mitochondrial energetics by stabilizing the inner membrane potential. Journal of Cell Biology, 195, 263–276.PubMedCrossRef
40.
Zurück zum Zitat Velez, J. M., Miriyala, S., Nithipongvanitch, R., Noel, T., Plabplueng, C. D., Oberley, T., et al. (2011). p53 Regulates oxidative stress-mediated retrograde signaling: a novel mechanism for chemotherapy-induced cardiac injury. PLoS One, 6, e18005.PubMedCrossRef Velez, J. M., Miriyala, S., Nithipongvanitch, R., Noel, T., Plabplueng, C. D., Oberley, T., et al. (2011). p53 Regulates oxidative stress-mediated retrograde signaling: a novel mechanism for chemotherapy-induced cardiac injury. PLoS One, 6, e18005.PubMedCrossRef
41.
Zurück zum Zitat Feridooni, T., Hotchkiss, A., Remley-Carr, S., Saga, Y., & Pasumarthi, K. B. (2011). Cardiomyocyte specific ablation of p53 is not sufficient to block doxorubicin induced cardiac fibrosis and associated cytoskeletal changes. PLoS One, 6, e22801.PubMedCrossRef Feridooni, T., Hotchkiss, A., Remley-Carr, S., Saga, Y., & Pasumarthi, K. B. (2011). Cardiomyocyte specific ablation of p53 is not sufficient to block doxorubicin induced cardiac fibrosis and associated cytoskeletal changes. PLoS One, 6, e22801.PubMedCrossRef
42.
Zurück zum Zitat Oliveira, P. J., & Wallace, K. B. (2006). Depletion of adenine nucleotide translocator protein in heart mitochondria from doxorubicin-treated rats–relevance for mitochondrial dysfunction. Toxicology, 220, 160–168.PubMedCrossRef Oliveira, P. J., & Wallace, K. B. (2006). Depletion of adenine nucleotide translocator protein in heart mitochondria from doxorubicin-treated rats–relevance for mitochondrial dysfunction. Toxicology, 220, 160–168.PubMedCrossRef
43.
Zurück zum Zitat Zhou, S., Starkov, A., Froberg, M. K., Leino, R. L., & Wallace, K. B. (2001). Cumulative and irreversible cardiac mitochondrial dysfunction induced by doxorubicin. Cancer Research, 61, 771–777.PubMed Zhou, S., Starkov, A., Froberg, M. K., Leino, R. L., & Wallace, K. B. (2001). Cumulative and irreversible cardiac mitochondrial dysfunction induced by doxorubicin. Cancer Research, 61, 771–777.PubMed
44.
Zurück zum Zitat Davis, L. E., & Brown, C. E. (1988). Peripartum heart failure in a patient treated previously with doxorubicin. Obstetrics & Gynecology, 71, 506–508. Davis, L. E., & Brown, C. E. (1988). Peripartum heart failure in a patient treated previously with doxorubicin. Obstetrics & Gynecology, 71, 506–508.
45.
Zurück zum Zitat Katz, A., Goldenberg, I., Maoz, C., Thaler, M., Grossman, E., & Rosenthal, T. (1997). Peripartum cardiomyopathy occurring in a patient previously treated with doxorubicin. American Journal of the Medical Sciences, 314, 399–400.PubMedCrossRef Katz, A., Goldenberg, I., Maoz, C., Thaler, M., Grossman, E., & Rosenthal, T. (1997). Peripartum cardiomyopathy occurring in a patient previously treated with doxorubicin. American Journal of the Medical Sciences, 314, 399–400.PubMedCrossRef
46.
Zurück zum Zitat Oliveira, P. J., Bjork, J. A., Santos, M. S., Leino, R. L., Froberg, M. K., Moreno, A. J., et al. (2004). Carvedilol-mediated antioxidant protection against doxorubicin-induced cardiac mitochondrial toxicity. Toxicology and Applied Pharmacology, 200, 159–168.PubMedCrossRef Oliveira, P. J., Bjork, J. A., Santos, M. S., Leino, R. L., Froberg, M. K., Moreno, A. J., et al. (2004). Carvedilol-mediated antioxidant protection against doxorubicin-induced cardiac mitochondrial toxicity. Toxicology and Applied Pharmacology, 200, 159–168.PubMedCrossRef
47.
Zurück zum Zitat Oliveira, P. J., Santos, M. S., & Wallace, K. B. (2006). Doxorubicin-induced thiol-dependent alteration of cardiac mitochondrial permeability transition and respiration. Biochemistry (Moscow), 71, 194–199.CrossRef Oliveira, P. J., Santos, M. S., & Wallace, K. B. (2006). Doxorubicin-induced thiol-dependent alteration of cardiac mitochondrial permeability transition and respiration. Biochemistry (Moscow), 71, 194–199.CrossRef
48.
Zurück zum Zitat Pereira, G. C., Silva, A. M., Diogo, C. V., Carvalho, F. S., Monteiro, P., & Oliveiraalo, P. J. (2011). Drug-induced cardiac mitochondrial toxicity and protection: From doxorubicin to carvedilol. Current Pharmaceutical Design, 17, 2113–2129.PubMedCrossRef Pereira, G. C., Silva, A. M., Diogo, C. V., Carvalho, F. S., Monteiro, P., & Oliveiraalo, P. J. (2011). Drug-induced cardiac mitochondrial toxicity and protection: From doxorubicin to carvedilol. Current Pharmaceutical Design, 17, 2113–2129.PubMedCrossRef
49.
Zurück zum Zitat Berthiaume, J. M., & Wallace, K. B. (2007). Persistent alterations to the gene expression profile of the heart subsequent to chronic Doxorubicin treatment. Cardiovascular Toxicology, 7, 178–191.PubMedCrossRef Berthiaume, J. M., & Wallace, K. B. (2007). Persistent alterations to the gene expression profile of the heart subsequent to chronic Doxorubicin treatment. Cardiovascular Toxicology, 7, 178–191.PubMedCrossRef
50.
Zurück zum Zitat Schopf, G., Rumpold, H., & Muller, M. M. (1986). Alterations of purine salvage pathways during differentiation of rat heart myoblasts towards myocytes. Biochimica et Biophysica Acta, 884, 319–325.PubMedCrossRef Schopf, G., Rumpold, H., & Muller, M. M. (1986). Alterations of purine salvage pathways during differentiation of rat heart myoblasts towards myocytes. Biochimica et Biophysica Acta, 884, 319–325.PubMedCrossRef
51.
Zurück zum Zitat Hammes, A., Oberdorf, S., Strehler, E. E., Stauffer, T., Carafoli, E., Vetter, H., et al. (1994). Differentiation-specific isoform mRNA expression of the calmodulin-dependent plasma membrane Ca(2+)-ATPase. FASEB Journal, 8, 428–435.PubMed Hammes, A., Oberdorf, S., Strehler, E. E., Stauffer, T., Carafoli, E., Vetter, H., et al. (1994). Differentiation-specific isoform mRNA expression of the calmodulin-dependent plasma membrane Ca(2+)-ATPase. FASEB Journal, 8, 428–435.PubMed
52.
Zurück zum Zitat Hunter, A. L., Zhang, J., Chen, S. C., Si, X., Wong, B., Ekhterae, D., et al. (2007). Apoptosis repressor with caspase recruitment domain (ARC) inhibits myogenic differentiation. FEBS Letter, 581, 879–884.CrossRef Hunter, A. L., Zhang, J., Chen, S. C., Si, X., Wong, B., Ekhterae, D., et al. (2007). Apoptosis repressor with caspase recruitment domain (ARC) inhibits myogenic differentiation. FEBS Letter, 581, 879–884.CrossRef
53.
Zurück zum Zitat Bregant, E., Renzone, G., Lonigro, R., Passon, N., Di Loreto, C., Pandolfi, M., et al. (2009). Down-regulation of SM22/transgelin gene expression during H9c2 cells differentiation. Molecular and Cellular Biochemistry, 327, 145–152.PubMedCrossRef Bregant, E., Renzone, G., Lonigro, R., Passon, N., Di Loreto, C., Pandolfi, M., et al. (2009). Down-regulation of SM22/transgelin gene expression during H9c2 cells differentiation. Molecular and Cellular Biochemistry, 327, 145–152.PubMedCrossRef
54.
Zurück zum Zitat Muller, C., Chatelut, E., Gualano, V., De Forni, M., Huguet, F., Attal, M., et al. (1993). Cellular pharmacokinetics of doxorubicin in patients with chronic lymphocytic leukemia: Comparison of bolus administration and continuous infusion. Cancer Chemotherapy and Pharmacology, 32, 379–384.PubMedCrossRef Muller, C., Chatelut, E., Gualano, V., De Forni, M., Huguet, F., Attal, M., et al. (1993). Cellular pharmacokinetics of doxorubicin in patients with chronic lymphocytic leukemia: Comparison of bolus administration and continuous infusion. Cancer Chemotherapy and Pharmacology, 32, 379–384.PubMedCrossRef
55.
Zurück zum Zitat Greene, R. F., Collins, J. M., Jenkins, J. F., Speyer, J. L., & Myers, C. E. (1983). Plasma pharmacokinetics of adriamycin and adriamycinol: Implications for the design of in vitro experiments and treatment protocols. Cancer Research, 43, 3417–3421.PubMed Greene, R. F., Collins, J. M., Jenkins, J. F., Speyer, J. L., & Myers, C. E. (1983). Plasma pharmacokinetics of adriamycin and adriamycinol: Implications for the design of in vitro experiments and treatment protocols. Cancer Research, 43, 3417–3421.PubMed
56.
Zurück zum Zitat Cutts, S. M., Nudelman, A., Rephaeli, A., & Phillips, D. R. (2005). The power and potential of doxorubicin-DNA adducts. IUBMB Life, 57, 73–81.PubMedCrossRef Cutts, S. M., Nudelman, A., Rephaeli, A., & Phillips, D. R. (2005). The power and potential of doxorubicin-DNA adducts. IUBMB Life, 57, 73–81.PubMedCrossRef
57.
Zurück zum Zitat Sharaf el dein, O., Mayola, E., Chopineau, J., & Brenner, C. (2011). The adenine nucleotide translocase 2, a mitochondrial target for anticancer biotherapy. Current Drug Targets, 12, 894–901.PubMedCrossRef Sharaf el dein, O., Mayola, E., Chopineau, J., & Brenner, C. (2011). The adenine nucleotide translocase 2, a mitochondrial target for anticancer biotherapy. Current Drug Targets, 12, 894–901.PubMedCrossRef
58.
Zurück zum Zitat Govoni, M., Bonavita, F., Shantz, L. M., Guarnieri, C., & Giordano, E. (2010). Overexpression of ornithine decarboxylase increases myogenic potential of H9c2 rat myoblasts. Amino Acids, 38, 541–547.PubMedCrossRef Govoni, M., Bonavita, F., Shantz, L. M., Guarnieri, C., & Giordano, E. (2010). Overexpression of ornithine decarboxylase increases myogenic potential of H9c2 rat myoblasts. Amino Acids, 38, 541–547.PubMedCrossRef
Metadaten
Titel
Differentiation-Dependent Doxorubicin Toxicity on H9c2 Cardiomyoblasts
verfasst von
Ana F. Branco
Susana F. Sampaio
Ana C. Moreira
Jon Holy
Kendall B. Wallace
Ines Baldeiras
Paulo J. Oliveira
Vilma A. Sardão
Publikationsdatum
01.12.2012
Verlag
Humana Press Inc
Erschienen in
Cardiovascular Toxicology / Ausgabe 4/2012
Print ISSN: 1530-7905
Elektronische ISSN: 1559-0259
DOI
https://doi.org/10.1007/s12012-012-9177-8

Weitere Artikel der Ausgabe 4/2012

Cardiovascular Toxicology 4/2012 Zur Ausgabe