Skip to main content
Erschienen in: Cardiovascular Toxicology 4/2018

03.01.2018

Necrostatin-1 Protects Against Paraquat-Induced Cardiac Contractile Dysfunction via RIP1-RIP3-MLKL-Dependent Necroptosis Pathway

verfasst von: Liping Zhang, Qiming Feng, Teng Wang

Erschienen in: Cardiovascular Toxicology | Ausgabe 4/2018

Einloggen, um Zugang zu erhalten

Abstract

Paraquat is a highly toxic prooxidant that triggers oxidative stress and multi-organ failure including that of the heart. To date, effective treatment of paraquat toxicity is still not established. Necroptosis, a newly discovered form of programmed cell death, was recently shown to be strongly associated with cardiovascular disease. Receptor interaction proteins 1 (RIP1), receptor interaction proteins 3 (RIP3), and mixed lineage kinase domain like (MLKL) are key proteins in the necroptosis pathway. Necrostatin-1 (Nec-1) is a specific inhibitor of necroptosis which acts by blocking the interaction between RIP1 and RIP3. In the present study, we studied the effect of Nec-1 on paraquat-induced cardiac contractile dysfunction and reactive oxygen species (ROS) production in the heart tissues using a mouse model. Our results revealed impaired contractile function, deranged intracellular Ca2+ handling and echocardiographic abnormalities in mice challenged with paraquat. We further found enhanced expressions of RIP1, RIP3, and MLKL along with overproduction of ROS in mice heart tissues. Nec-1 pre-treatment prevented cardiac contractile dysfunction in paraquat-challenged mice. Furthermore, Nec-1 reduced RIP1–RIP3 interaction, down-regulated the RIP1–RIP3–MLKL signal pathway, and dramatically inhibited the production of ROS. Collectively, these findings suggest that Nec-1 alleviated paraquat-induced myocardial contractile dysfunction through inhibition of necroptosis, an effect which was likely mediated via the RIP1–RIP3–MLKL signaling cascade. Further, ROS appeared to play an important role in this process. Thus, this process may represent a novel therapeutic strategy for the treatment of paraquat-induced cardiac contractile dysfunction.
Literatur
1.
Zurück zum Zitat Chan, Y. C., Chang, S. C., Hsuan, S. L., Chien, M. S., Lee, W. C., Kang, J. J., et al. (2007). Cardiovascular effects of herbicides and formulated adjuvants on isolated rat aorta and heart. Toxicology in Vitro, 21, 595–603.CrossRefPubMed Chan, Y. C., Chang, S. C., Hsuan, S. L., Chien, M. S., Lee, W. C., Kang, J. J., et al. (2007). Cardiovascular effects of herbicides and formulated adjuvants on isolated rat aorta and heart. Toxicology in Vitro, 21, 595–603.CrossRefPubMed
2.
Zurück zum Zitat Ge, W., Zhang, Y., Han, X., & Ren, J. (2010). Cardiac-specific overexpression of catalase attenuates paraquat-induced myocardial geometric and contractile alteration: Role of ER stress. Free Radical Biology and Medicine, 49, 2068–2077.CrossRefPubMedPubMedCentral Ge, W., Zhang, Y., Han, X., & Ren, J. (2010). Cardiac-specific overexpression of catalase attenuates paraquat-induced myocardial geometric and contractile alteration: Role of ER stress. Free Radical Biology and Medicine, 49, 2068–2077.CrossRefPubMedPubMedCentral
3.
Zurück zum Zitat Koo, J. R., Kim, J. C., Yoon, J. W., Kim, G. H., Jeon, R. W., Kim, H. J., et al. (2002). Failure of continuous venovenous hemofiltration to prevent death in paraquat poisoning. American Journal of Kidney Diseases, 39, 55–59.CrossRefPubMed Koo, J. R., Kim, J. C., Yoon, J. W., Kim, G. H., Jeon, R. W., Kim, H. J., et al. (2002). Failure of continuous venovenous hemofiltration to prevent death in paraquat poisoning. American Journal of Kidney Diseases, 39, 55–59.CrossRefPubMed
4.
Zurück zum Zitat Li, Q., Yang, X., Sreejayan, N., & Ren, J. (2007). Insulin-like growth factor I deficiency prolongs survival and antagonizes paraquat-induced cardiomyocyte dysfunction: Role of oxidative stress. Rejuvenation Research, 10, 501–512.CrossRefPubMed Li, Q., Yang, X., Sreejayan, N., & Ren, J. (2007). Insulin-like growth factor I deficiency prolongs survival and antagonizes paraquat-induced cardiomyocyte dysfunction: Role of oxidative stress. Rejuvenation Research, 10, 501–512.CrossRefPubMed
5.
Zurück zum Zitat Wang, Q., Yang, L., Hua, Y., Nair, S., Xu, X., & Ren, J. (2014). AMP-activated protein kinase deficiency rescues paraquat-induced cardiac contractile dysfunction through an autophagy-dependent mechanism. Toxicological Sciences, 142, 6–20.CrossRefPubMedPubMedCentral Wang, Q., Yang, L., Hua, Y., Nair, S., Xu, X., & Ren, J. (2014). AMP-activated protein kinase deficiency rescues paraquat-induced cardiac contractile dysfunction through an autophagy-dependent mechanism. Toxicological Sciences, 142, 6–20.CrossRefPubMedPubMedCentral
6.
Zurück zum Zitat Wang, J., Lu, S., Zheng, Q., Hu, N., Yu, W., Li, N., et al. (2016). Cardiac-specific knockout of ETA receptor mitigates paraquat-induced cardiac contractile dysfunction. Cardiovascular Toxicology, 16, 235–243.CrossRefPubMed Wang, J., Lu, S., Zheng, Q., Hu, N., Yu, W., Li, N., et al. (2016). Cardiac-specific knockout of ETA receptor mitigates paraquat-induced cardiac contractile dysfunction. Cardiovascular Toxicology, 16, 235–243.CrossRefPubMed
7.
Zurück zum Zitat Wang, S., Zhu, X., Xiong, L., & Ren, J. (2017). Ablation of Akt2 prevents paraquat-induced myocardial mitochondrial injury and contractile dysfunction: Role of Nrf2. Toxicology Letters, 269, 1–14.CrossRefPubMed Wang, S., Zhu, X., Xiong, L., & Ren, J. (2017). Ablation of Akt2 prevents paraquat-induced myocardial mitochondrial injury and contractile dysfunction: Role of Nrf2. Toxicology Letters, 269, 1–14.CrossRefPubMed
8.
Zurück zum Zitat Lei, Y., Li, X., Yuan, F., Liu, L., Zhang, J., Yang, Y., et al. (2017). Toll-like receptor 4 ablation rescues against paraquat-triggered myocardial dysfunction: Role of ER stress and apoptosis. Environmental Toxicology, 32, 656–668.CrossRefPubMed Lei, Y., Li, X., Yuan, F., Liu, L., Zhang, J., Yang, Y., et al. (2017). Toll-like receptor 4 ablation rescues against paraquat-triggered myocardial dysfunction: Role of ER stress and apoptosis. Environmental Toxicology, 32, 656–668.CrossRefPubMed
9.
Zurück zum Zitat Degterev, A., Huang, Z., Boyce, M., Li, Y., Jagtap, P., Mizushima, N., et al. (2005). Chemical inhibitor of nonapoptotic cell death with therapeutic potential for ischemic brain injury. Nature Chemical Biology, 1, 112–119.CrossRefPubMed Degterev, A., Huang, Z., Boyce, M., Li, Y., Jagtap, P., Mizushima, N., et al. (2005). Chemical inhibitor of nonapoptotic cell death with therapeutic potential for ischemic brain injury. Nature Chemical Biology, 1, 112–119.CrossRefPubMed
10.
Zurück zum Zitat Davis, C. W., Hawkins, B. J., Ramasamy, S., Irrinki, K. M., Cameron, B. A., Islam, K., et al. (2010). Nitration of the mitochondrial complex I subunit NDUFB8 elicits R 442 IP1- and RIP3-mediated necrosis. Free Radical Biology and Medicine, 48, 306–317.CrossRefPubMed Davis, C. W., Hawkins, B. J., Ramasamy, S., Irrinki, K. M., Cameron, B. A., Islam, K., et al. (2010). Nitration of the mitochondrial complex I subunit NDUFB8 elicits R 442 IP1- and RIP3-mediated necrosis. Free Radical Biology and Medicine, 48, 306–317.CrossRefPubMed
11.
Zurück zum Zitat Kim, S., Dayani, L., Rosenberg, P. A., & Li, J. (2010). RIP1 kinase mediates arachidonicacid-induced oxidative death of oligodendrocyte precursors. International journal of Physiology, Pathophysiology and Pharmacology, 2, 137–147.PubMedPubMedCentral Kim, S., Dayani, L., Rosenberg, P. A., & Li, J. (2010). RIP1 kinase mediates arachidonicacid-induced oxidative death of oligodendrocyte precursors. International journal of Physiology, Pathophysiology and Pharmacology, 2, 137–147.PubMedPubMedCentral
12.
Zurück zum Zitat Zhao, J., Jitkaew, S., Cai, Z., Choksi, S., Li, Q., Luo, J., et al. (2012). Mixed lineage kinase domain-like is a key receptor interacting protein 3 downstream component of TNF-induced necrosis. Proceedings of the National Academy of Sciences of the United States of America, 109, 5322–5327.CrossRefPubMedPubMedCentral Zhao, J., Jitkaew, S., Cai, Z., Choksi, S., Li, Q., Luo, J., et al. (2012). Mixed lineage kinase domain-like is a key receptor interacting protein 3 downstream component of TNF-induced necrosis. Proceedings of the National Academy of Sciences of the United States of America, 109, 5322–5327.CrossRefPubMedPubMedCentral
13.
Zurück zum Zitat Zhang, D. W., Shao, J., Lin, J., Zhang, N., Lu, B. J., Lin, S. C., et al. (2009). RIP3, an energy metabolism regulator that switches TNF-induced cell death from apoptosis to necrosis. Science, 325, 332–336.CrossRefPubMed Zhang, D. W., Shao, J., Lin, J., Zhang, N., Lu, B. J., Lin, S. C., et al. (2009). RIP3, an energy metabolism regulator that switches TNF-induced cell death from apoptosis to necrosis. Science, 325, 332–336.CrossRefPubMed
14.
Zurück zum Zitat Newton, K. (2015). RIPK1 and RIPK3: Critical regulators of inflammation and cell death. Trends in Cell Biology, 25, 347–353.CrossRefPubMed Newton, K. (2015). RIPK1 and RIPK3: Critical regulators of inflammation and cell death. Trends in Cell Biology, 25, 347–353.CrossRefPubMed
15.
Zurück zum Zitat Sun, L., Wang, H., Wang, Z., He, S., Chen, S., Liao, D., et al. (2012). Mixed lineage kinase domain-like protein mediates necrosis signaling downstream of RIP3 kinase. Cell, 148, 213–227.CrossRefPubMed Sun, L., Wang, H., Wang, Z., He, S., Chen, S., Liao, D., et al. (2012). Mixed lineage kinase domain-like protein mediates necrosis signaling downstream of RIP3 kinase. Cell, 148, 213–227.CrossRefPubMed
16.
Zurück zum Zitat Weinlich, R., Oberst, A., Beere, H. M., & Green, D. R. (2017). Necroptosis in development, inflammation and disease. Nature Reviews Molecular Cell Biology, 18, 127–136.CrossRefPubMed Weinlich, R., Oberst, A., Beere, H. M., & Green, D. R. (2017). Necroptosis in development, inflammation and disease. Nature Reviews Molecular Cell Biology, 18, 127–136.CrossRefPubMed
17.
Zurück zum Zitat Kung, G., Konstantinidis, K., & Kitsis, R. N. (2011). Programmed necrosis, not apoptosis, in the heart. Circulation Research, 108, 1017–1036.CrossRefPubMed Kung, G., Konstantinidis, K., & Kitsis, R. N. (2011). Programmed necrosis, not apoptosis, in the heart. Circulation Research, 108, 1017–1036.CrossRefPubMed
18.
Zurück zum Zitat Konstantinidis, K., Whelan, R. S., & Kitsis, R. N. (2012). Mechanisms of cell death in heart disease. Arteriosclerosis, Thrombosis, and Vascular Biology, 32, 1552–1562.CrossRefPubMed Konstantinidis, K., Whelan, R. S., & Kitsis, R. N. (2012). Mechanisms of cell death in heart disease. Arteriosclerosis, Thrombosis, and Vascular Biology, 32, 1552–1562.CrossRefPubMed
19.
Zurück zum Zitat Zhang, T., Zhang, Y., Cui, M., Jin, L., Wang, Y., Lv, F., et al. (2016). CaMKII is a RIP3 substrate mediating ischemia- and oxidative stress-induced myocardial necroptosis. Nature Medicine, 22, 175–182.CrossRefPubMed Zhang, T., Zhang, Y., Cui, M., Jin, L., Wang, Y., Lv, F., et al. (2016). CaMKII is a RIP3 substrate mediating ischemia- and oxidative stress-induced myocardial necroptosis. Nature Medicine, 22, 175–182.CrossRefPubMed
20.
Zurück zum Zitat Luedde, M., Lutz, M., Carter, N., Sosna, J., Jacoby, C., Vucur, M., et al. (2014). RIP3, a kinase promoting necroptotic cell death, mediates adverse remodelling after myocardial infarction. Cardiovascular Research, 103, 206–216.CrossRefPubMed Luedde, M., Lutz, M., Carter, N., Sosna, J., Jacoby, C., Vucur, M., et al. (2014). RIP3, a kinase promoting necroptotic cell death, mediates adverse remodelling after myocardial infarction. Cardiovascular Research, 103, 206–216.CrossRefPubMed
21.
Zurück zum Zitat Oerlemans, M. I., Liu, J., Arslan, F., den Ouden, K., van Middelaar, B. J., Doevendans, P. A., et al. (2012). Inhibition of RIP1-dependent necrosis prevents adverse cardiac remodeling after myocardial ischemia-reperfusion in vivo. Basic Research in Cardiology, 476(107), 270.CrossRef Oerlemans, M. I., Liu, J., Arslan, F., den Ouden, K., van Middelaar, B. J., Doevendans, P. A., et al. (2012). Inhibition of RIP1-dependent necrosis prevents adverse cardiac remodeling after myocardial ischemia-reperfusion in vivo. Basic Research in Cardiology, 476(107), 270.CrossRef
22.
Zurück zum Zitat Smith, C. C., Davidson, S. M., Lim, S. Y., Simpkin, J. C., Hothersall, J. S., & Yellon, D. M. (2007). Necrostatin: A potentially novel cardioprotective agent? Cardiovascular Drugs and Therapy, 479(21), 227–233.CrossRef Smith, C. C., Davidson, S. M., Lim, S. Y., Simpkin, J. C., Hothersall, J. S., & Yellon, D. M. (2007). Necrostatin: A potentially novel cardioprotective agent? Cardiovascular Drugs and Therapy, 479(21), 227–233.CrossRef
23.
Zurück zum Zitat Cho, Y. S. (2014). Perspectives on the therapeutic modulation of an alternative cell death, programmed necrosis. International Journal of Molecular Medicine, 33, 1401–1406.CrossRefPubMed Cho, Y. S. (2014). Perspectives on the therapeutic modulation of an alternative cell death, programmed necrosis. International Journal of Molecular Medicine, 33, 1401–1406.CrossRefPubMed
24.
Zurück zum Zitat Koudstaal, S., Oerlemans, M. I., Van der Spoel, T. I., Janssen, A. W., Hoefer, I. E., Doevendans, P. A., et al. (2015). Necrostatin-1 alleviates reperfusion injury following acute myocardial infarction in pigs. European Journal of Clinical Investigation, 45, 150–159.CrossRefPubMed Koudstaal, S., Oerlemans, M. I., Van der Spoel, T. I., Janssen, A. W., Hoefer, I. E., Doevendans, P. A., et al. (2015). Necrostatin-1 alleviates reperfusion injury following acute myocardial infarction in pigs. European Journal of Clinical Investigation, 45, 150–159.CrossRefPubMed
25.
Zurück zum Zitat Zhang, A., Mao, X., Li, L., Tong, Y., Huang, Y., Lan, Y., et al. (2014). Inhibits Hmgb1-IL-23/IL-17 pathway and attenuates cardiac ischemia reperfusion injury. Transplant International, 27, 1077–1085.CrossRefPubMed Zhang, A., Mao, X., Li, L., Tong, Y., Huang, Y., Lan, Y., et al. (2014). Inhibits Hmgb1-IL-23/IL-17 pathway and attenuates cardiac ischemia reperfusion injury. Transplant International, 27, 1077–1085.CrossRefPubMed
26.
Zurück zum Zitat Bhardwaj, Nitin, & Saxena, Rajiv K. (2014). Elimination of young erythrocytes from blood circulation and altered erythropoietic patterns during paraquat induced anemic phase in mice. PLoS ONE, 9, e99364.CrossRefPubMedPubMedCentral Bhardwaj, Nitin, & Saxena, Rajiv K. (2014). Elimination of young erythrocytes from blood circulation and altered erythropoietic patterns during paraquat induced anemic phase in mice. PLoS ONE, 9, e99364.CrossRefPubMedPubMedCentral
27.
Zurück zum Zitat Saad, N. S., Repas, S. J., Floyd, K., Janssen, P. M. L., & Elnakish, M. T. (2017). Recovery following thyroxine treatment withdrawal, but not propylthiouracil, averts in vivo and ex vivo thyroxine-provoked cardiac complications in adult FVB/N mice. BioMed Research International, 2017(2017), 6071031.PubMedPubMedCentral Saad, N. S., Repas, S. J., Floyd, K., Janssen, P. M. L., & Elnakish, M. T. (2017). Recovery following thyroxine treatment withdrawal, but not propylthiouracil, averts in vivo and ex vivo thyroxine-provoked cardiac complications in adult FVB/N mice. BioMed Research International, 2017(2017), 6071031.PubMedPubMedCentral
28.
Zurück zum Zitat Ren, J., Privratsky, J. R., Yang, X., Dong, F., & Carlson, E. C. (2008). Metallothionein alleviates glutathione depletion induced oxidative cardiomyopathy in murine hearts. Critical Care Medicine, 36, 2106–2116.CrossRefPubMed Ren, J., Privratsky, J. R., Yang, X., Dong, F., & Carlson, E. C. (2008). Metallothionein alleviates glutathione depletion induced oxidative cardiomyopathy in murine hearts. Critical Care Medicine, 36, 2106–2116.CrossRefPubMed
29.
Zurück zum Zitat Liang, L., Shou, X. L., Zhao, H. K., Ren, G. Q., Wang, J. B., Wang, X. H., et al. (2015). Antioxidant catalase rescues against high fat diet-induced cardiac dysfunction via an IKKbeta-AMPK dependent regulation of autophagy. Biochimica et Biophysica Acta, 1852, 343–352.CrossRefPubMed Liang, L., Shou, X. L., Zhao, H. K., Ren, G. Q., Wang, J. B., Wang, X. H., et al. (2015). Antioxidant catalase rescues against high fat diet-induced cardiac dysfunction via an IKKbeta-AMPK dependent regulation of autophagy. Biochimica et Biophysica Acta, 1852, 343–352.CrossRefPubMed
30.
Zurück zum Zitat Hui, B., Yao, X., Zhou, Q., Wu, Z., Sheng, P., & Zhang, L. (2014). Pristimerin, a natural anti-tumor triterpenoid, inhibits LPS-induced TNF-α and IL-8 production through down-regulation of ROS-related classical NF-κB pathway in THP-1 cells. International Immunopharmacology, 21, 501–508.CrossRefPubMed Hui, B., Yao, X., Zhou, Q., Wu, Z., Sheng, P., & Zhang, L. (2014). Pristimerin, a natural anti-tumor triterpenoid, inhibits LPS-induced TNF-α and IL-8 production through down-regulation of ROS-related classical NF-κB pathway in THP-1 cells. International Immunopharmacology, 21, 501–508.CrossRefPubMed
31.
Zurück zum Zitat Kim, J. M., Heo, H. S., Ha, Y. M., Ye, B. H., Lee, E. K., Choi, Y. J., et al. (2015). Mechanism of Ang II involvement in activation of NF-κB through phosphorylation of p65 during aging. AGE, 2012(34), 11–25. Kim, J. M., Heo, H. S., Ha, Y. M., Ye, B. H., Lee, E. K., Choi, Y. J., et al. (2015). Mechanism of Ang II involvement in activation of NF-κB through phosphorylation of p65 during aging. AGE, 2012(34), 11–25.
32.
Zurück zum Zitat Yin, B., Xu, Y., Wei, R. L., He, F., Luo, B. Y., & Wang, J. Y. (2015). Inhibition of receptor-interacting protein 3 upregulation and nuclear translocation involved in Necrostatin-1 protection against hippocampal neuronal programmed necrosis induced by ischemia/reperfusion injury. Brain Research, 1609, 63–71.CrossRefPubMed Yin, B., Xu, Y., Wei, R. L., He, F., Luo, B. Y., & Wang, J. Y. (2015). Inhibition of receptor-interacting protein 3 upregulation and nuclear translocation involved in Necrostatin-1 protection against hippocampal neuronal programmed necrosis induced by ischemia/reperfusion injury. Brain Research, 1609, 63–71.CrossRefPubMed
33.
Zurück zum Zitat Lim, S. Y., Davidson, S. M., Mocanu, M. M., Yellon, D. M., & Smith, C. C. (2007). The cardioprotective effect of necrostatin requires the cyclophilin-D component of the mitochondrial permeability transition pore. Cardiovascular Drugs and Therapy, 21, 467–469.CrossRefPubMedPubMedCentral Lim, S. Y., Davidson, S. M., Mocanu, M. M., Yellon, D. M., & Smith, C. C. (2007). The cardioprotective effect of necrostatin requires the cyclophilin-D component of the mitochondrial permeability transition pore. Cardiovascular Drugs and Therapy, 21, 467–469.CrossRefPubMedPubMedCentral
34.
Zurück zum Zitat Cho, Y. S., Challa, S., Moquin, D., Genga, R., Ray, T. D., Guildford, M., et al. (2009). Phosphorylation-driven assembly of the RIP1-RIP3 complex regulates programmed necrosis and virus-induced inflammation. Cell, 137, 1112–1123.CrossRefPubMedPubMedCentral Cho, Y. S., Challa, S., Moquin, D., Genga, R., Ray, T. D., Guildford, M., et al. (2009). Phosphorylation-driven assembly of the RIP1-RIP3 complex regulates programmed necrosis and virus-induced inflammation. Cell, 137, 1112–1123.CrossRefPubMedPubMedCentral
35.
Zurück zum Zitat He, S., Wang, L., Miao, L., Wang, T., Du, F., Zhao, L., et al. (2009). Receptor interacting protein kinase-3 determines cellular necrotic response to TNF-alpha. Cell, 137, 1100–1111.CrossRefPubMed He, S., Wang, L., Miao, L., Wang, T., Du, F., Zhao, L., et al. (2009). Receptor interacting protein kinase-3 determines cellular necrotic response to TNF-alpha. Cell, 137, 1100–1111.CrossRefPubMed
36.
Zurück zum Zitat Li, J., McQuade, T., Siemer, A. B., Napetschnig, J., Moriwaki, K., Hsiao, Y. S., et al. (2012). The RIP1/RIP3 necrosome forms a functional amyloid signaling complex required for programmed necrosis. Cell, 150, 339–350.CrossRefPubMedPubMedCentral Li, J., McQuade, T., Siemer, A. B., Napetschnig, J., Moriwaki, K., Hsiao, Y. S., et al. (2012). The RIP1/RIP3 necrosome forms a functional amyloid signaling complex required for programmed necrosis. Cell, 150, 339–350.CrossRefPubMedPubMedCentral
37.
Zurück zum Zitat Whelan, R. S., Kaplinskiy, V., & Kitsis, R. N. (2010). Cell death in the pathogenesis of heart disease: mechanisms and significance. Annual Review of Physiology, 72, 19–44.CrossRefPubMed Whelan, R. S., Kaplinskiy, V., & Kitsis, R. N. (2010). Cell death in the pathogenesis of heart disease: mechanisms and significance. Annual Review of Physiology, 72, 19–44.CrossRefPubMed
38.
Zurück zum Zitat Schenk, B., & Fulda, S. (2015). Reactive oxygen species regulate Smac mimetic/TNFalpha-induced necroptotic signaling and cell death. Oncogene, 34, 5796–5806.CrossRefPubMed Schenk, B., & Fulda, S. (2015). Reactive oxygen species regulate Smac mimetic/TNFalpha-induced necroptotic signaling and cell death. Oncogene, 34, 5796–5806.CrossRefPubMed
39.
Zurück zum Zitat Zhang, Y., Su, S. S., Zhao, S., Yang, Z., Zhong, C. Q., Chen, X., et al. (2017). RIP1 autophosphorylation is promoted by mitochondrial ROS and is essential for RIP3 recruitment into necrosome. Nature Communications, 8, 14329.CrossRefPubMedPubMedCentral Zhang, Y., Su, S. S., Zhao, S., Yang, Z., Zhong, C. Q., Chen, X., et al. (2017). RIP1 autophosphorylation is promoted by mitochondrial ROS and is essential for RIP3 recruitment into necrosome. Nature Communications, 8, 14329.CrossRefPubMedPubMedCentral
40.
Zurück zum Zitat Kalyanaraman, B., Darley-Usmar, V., Davies, K. J., Dennery, P. A., Forman, H. J., Grisham, M. B., et al. (2012). Measuring reactive oxygen and nitrogen species with fluorescent probes: challenges and limitations. Free Radical Biology and Medicine, 52(1), 1–6.CrossRefPubMed Kalyanaraman, B., Darley-Usmar, V., Davies, K. J., Dennery, P. A., Forman, H. J., Grisham, M. B., et al. (2012). Measuring reactive oxygen and nitrogen species with fluorescent probes: challenges and limitations. Free Radical Biology and Medicine, 52(1), 1–6.CrossRefPubMed
Metadaten
Titel
Necrostatin-1 Protects Against Paraquat-Induced Cardiac Contractile Dysfunction via RIP1-RIP3-MLKL-Dependent Necroptosis Pathway
verfasst von
Liping Zhang
Qiming Feng
Teng Wang
Publikationsdatum
03.01.2018
Verlag
Springer US
Erschienen in
Cardiovascular Toxicology / Ausgabe 4/2018
Print ISSN: 1530-7905
Elektronische ISSN: 1559-0259
DOI
https://doi.org/10.1007/s12012-017-9441-z

Weitere Artikel der Ausgabe 4/2018

Cardiovascular Toxicology 4/2018 Zur Ausgabe