Skip to main content
Erschienen in: Cardiovascular Toxicology 6/2021

09.04.2021 | COVID-19 Zur Zeit gratis

Scientific Hypothesis for Treatment of COVID‐19′s Lung Lesions by Adjusting ACE/ACE2 Imbalance

verfasst von: F. Ferrara, A. Vitiello

Erschienen in: Cardiovascular Toxicology | Ausgabe 6/2021

Einloggen, um Zugang zu erhalten

Abstract

In March 2019 began the global pandemic COVID-19 caused by the new Coronavirus SARS-CoV-2. The first cases of SARS-CoV-2 infection occurred in November-19 in Wuhan, China. The preventive measures taken did not prevent the rapid spread of the virus to all countries around the world. To date, there are about 2.54 million deaths, effective vaccines are in clinical trials. SARS-CoV-2 uses the ACE-2 protein as an intracellular gateway. ACE-2 is a key component of the Renin Angiotensin (RAS) system, a key regulator of cardiovascular function. Considering the key role of ACE-2 in COVID-19 infection, both as an entry receptor and as a protective role, especially for the respiratory tract, and considering the variations of ACE-2 and ACE during the stages of viral infection, it is clear the important role that the pharmacological regulation of RAS and ACE-2 can assume. This biological knowledge suggests different pharmacological approaches to treat COVID-19 by modulating RAS, ACE-2 and the ACE/ACE2 balance that we describe in this article.
Literatur
6.
Zurück zum Zitat Ferrara, F., Granata, G., Pelliccia, C., La Porta, R., & Vitiello, A. (2020). The added value of pirfenidone to fight inflammation and fibrotic state induced by SARS-CoV-2: Anti-inflammatory and anti-fibrotic therapy could solve the lung complications of the infection? European Journal of Clinical Pharmacology, 76(11), 1615–1618. https://doi.org/10.1007/s00228-020-02947-4.CrossRefPubMed Ferrara, F., Granata, G., Pelliccia, C., La Porta, R., & Vitiello, A. (2020). The added value of pirfenidone to fight inflammation and fibrotic state induced by SARS-CoV-2: Anti-inflammatory and anti-fibrotic therapy could solve the lung complications of the infection? European Journal of Clinical Pharmacology, 76(11), 1615–1618. https://​doi.​org/​10.​1007/​s00228-020-02947-4.CrossRefPubMed
11.
Zurück zum Zitat Walls, A. C., Park, Y. J., Tortorici, M. A., Wall, A., McGuire, A. T., & Veesler, D. (2020). Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein. Cell, 181, 894–904.CrossRef Walls, A. C., Park, Y. J., Tortorici, M. A., Wall, A., McGuire, A. T., & Veesler, D. (2020). Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein. Cell, 181, 894–904.CrossRef
24.
29.
Zurück zum Zitat Puelles, V. G., Lütgehetmann, M., Lindenmeyer, M. T., Sperhake, J. P., Wong, M. N., Allweiss, L., et al. (2020). Multiorgan and renal tropism of SARS-CoV-2. New England Journal of Medicine., 383, 590–592.CrossRef Puelles, V. G., Lütgehetmann, M., Lindenmeyer, M. T., Sperhake, J. P., Wong, M. N., Allweiss, L., et al. (2020). Multiorgan and renal tropism of SARS-CoV-2. New England Journal of Medicine., 383, 590–592.CrossRef
30.
Zurück zum Zitat Douglas, G. C., O’Bryan, M. K., Hedger, M. P., Lee, D. K. L., Yarski, M. A., Smith, A. I., & Lew, R. A. (2004). The novel angiotensin-converting enzyme (ACE) homolog, ACE2, is selectively expressed by adult Leydig cells of the testis. Endocrinology, 145, 4703–4711.CrossRef Douglas, G. C., O’Bryan, M. K., Hedger, M. P., Lee, D. K. L., Yarski, M. A., Smith, A. I., & Lew, R. A. (2004). The novel angiotensin-converting enzyme (ACE) homolog, ACE2, is selectively expressed by adult Leydig cells of the testis. Endocrinology, 145, 4703–4711.CrossRef
31.
Zurück zum Zitat Li, Y., Xu, Q., Ma, L., Wu, D., Gao, J., Chen, G., & Li, H. (2020). Systematic profiling of ACE2 expression in diverse physiological and pathological conditions for COVID-19/SARS-CoV-2. Journal of Cellular and Molecular Medicine., 24, 9478–9948.CrossRef Li, Y., Xu, Q., Ma, L., Wu, D., Gao, J., Chen, G., & Li, H. (2020). Systematic profiling of ACE2 expression in diverse physiological and pathological conditions for COVID-19/SARS-CoV-2. Journal of Cellular and Molecular Medicine., 24, 9478–9948.CrossRef
32.
Zurück zum Zitat Pinto, B. G. G., Oliveira, A. E. R., Singh, Y., Jimenez, L., Goncalves, A. N. A., Ogava, R. L. T., et al. (2020). ACE2 expression is increased in the lungs of patients with comorbidities associated with severe COVID-19. The Journal of Infectious Diseases, 222, 556–563.CrossRef Pinto, B. G. G., Oliveira, A. E. R., Singh, Y., Jimenez, L., Goncalves, A. N. A., Ogava, R. L. T., et al. (2020). ACE2 expression is increased in the lungs of patients with comorbidities associated with severe COVID-19. The Journal of Infectious Diseases, 222, 556–563.CrossRef
34.
Zurück zum Zitat Vitiello, A., La Porta, R., & Ferrara, F. (2021). Scientific hypothesis and rational pharmacological for the use of sacubitril/valsartan in cardiac damage caused by COVID-19. Medical Hypotheses, 147, 110486.CrossRef Vitiello, A., La Porta, R., & Ferrara, F. (2021). Scientific hypothesis and rational pharmacological for the use of sacubitril/valsartan in cardiac damage caused by COVID-19. Medical Hypotheses, 147, 110486.CrossRef
41.
Zurück zum Zitat Caldeira, D., Alarcão, J., Vaz-Carneiro, A., & Costa, J. (2012). Risk of pneumonia associated with use of angiotensin converting enzyme inhibitors and angiotensin receptor blockers: systematic review and meta-analysis. BMJ, 11(345), e4260. https://doi.org/10.1136/bmj.e4260.CrossRef Caldeira, D., Alarcão, J., Vaz-Carneiro, A., & Costa, J. (2012). Risk of pneumonia associated with use of angiotensin converting enzyme inhibitors and angiotensin receptor blockers: systematic review and meta-analysis. BMJ, 11(345), e4260. https://​doi.​org/​10.​1136/​bmj.​e4260.CrossRef
42.
47.
Zurück zum Zitat Meng, Y., Yu, C. H., Li, W., Li, T., Luo, W., Huang, S., Wu, P. S., Cai, S. X., & Li, X. (2014). Angiotensin-converting enzyme 2/angiotensin-(1–7)/Mas axis protects against lung fibrosis by inhibiting the MAPK/NF-κB pathway. American Journal of Respiratory Cell and Molecular Biology, 50(4), 723–736. https://doi.org/10.1165/rcmb.2012-0451OC.CrossRefPubMed Meng, Y., Yu, C. H., Li, W., Li, T., Luo, W., Huang, S., Wu, P. S., Cai, S. X., & Li, X. (2014). Angiotensin-converting enzyme 2/angiotensin-(1–7)/Mas axis protects against lung fibrosis by inhibiting the MAPK/NF-κB pathway. American Journal of Respiratory Cell and Molecular Biology, 50(4), 723–736. https://​doi.​org/​10.​1165/​rcmb.​2012-0451OC.CrossRefPubMed
49.
Zurück zum Zitat Khan, A., Benthin, C., Zeno, B., Albertson, T. E., Boyd, J., Christie, J. D., Hall, R., Poirier, G., Ronco, J. J., Tidswell, M., Hardes, K., Powley, W. M., Wright, T. J., Siederer, S. K., Fairman, D. A., Lipson, D. A., Bayliffe, A. I., & Lazaar, A. L. (2017). A pilot clinical trial of recombinant human angiotensin-converting enzyme 2 in acute respiratory distress syndrome. Critical Care, 21(1), 234. https://doi.org/10.1186/s13054-017-1823-x.CrossRefPubMedPubMedCentral Khan, A., Benthin, C., Zeno, B., Albertson, T. E., Boyd, J., Christie, J. D., Hall, R., Poirier, G., Ronco, J. J., Tidswell, M., Hardes, K., Powley, W. M., Wright, T. J., Siederer, S. K., Fairman, D. A., Lipson, D. A., Bayliffe, A. I., & Lazaar, A. L. (2017). A pilot clinical trial of recombinant human angiotensin-converting enzyme 2 in acute respiratory distress syndrome. Critical Care, 21(1), 234. https://​doi.​org/​10.​1186/​s13054-017-1823-x.CrossRefPubMedPubMedCentral
52.
Zurück zum Zitat Zhang, H., Penninger, J. M., Li, Y., Zhong, N., & Slutsky, A. S. (2020). Angiotensin-converting enzyme 2 (ACE2) as a SARS-CoV-2 receptor molecular mechanisms and potential therapeutic target. Intensive Care Medicine, 46, 586–590.CrossRef Zhang, H., Penninger, J. M., Li, Y., Zhong, N., & Slutsky, A. S. (2020). Angiotensin-converting enzyme 2 (ACE2) as a SARS-CoV-2 receptor molecular mechanisms and potential therapeutic target. Intensive Care Medicine, 46, 586–590.CrossRef
53.
Zurück zum Zitat Monteil, V., Kwon, H., Prado, P., et al. (2020). Inhibition of SARS-CoV-2 infections in engineered human tissues using clinical-grade soluble human ACE2. Cell, 181, 905–913.CrossRef Monteil, V., Kwon, H., Prado, P., et al. (2020). Inhibition of SARS-CoV-2 infections in engineered human tissues using clinical-grade soluble human ACE2. Cell, 181, 905–913.CrossRef
54.
Zurück zum Zitat Kuba, K., Imai, Y., Rao, S., et al. (2005). A crucial role of angiotensin converting enzyme 2 (ACE2) in SARS coronavirus-induced lung injury. Nature Medicine, 11, 875–879.CrossRef Kuba, K., Imai, Y., Rao, S., et al. (2005). A crucial role of angiotensin converting enzyme 2 (ACE2) in SARS coronavirus-induced lung injury. Nature Medicine, 11, 875–879.CrossRef
55.
Zurück zum Zitat Haschke, M., Schuster, M., Poglitsch, M., et al. (2013). Pharmacokinetics and pharmacodynamics of recombinant human angiotensin-converting enzyme 2 in healthy human subjects. Clinical Pharmacokinetics, 52, 783–792.CrossRef Haschke, M., Schuster, M., Poglitsch, M., et al. (2013). Pharmacokinetics and pharmacodynamics of recombinant human angiotensin-converting enzyme 2 in healthy human subjects. Clinical Pharmacokinetics, 52, 783–792.CrossRef
56.
Zurück zum Zitat Khan, A., Benthin, C., & Zeno, B. (2017). A pilot clinical trial of recombinant human angiotensin-converting enzyme 2 in acute respiratory distress syndrome. Critical Care, 21, 234.CrossRef Khan, A., Benthin, C., & Zeno, B. (2017). A pilot clinical trial of recombinant human angiotensin-converting enzyme 2 in acute respiratory distress syndrome. Critical Care, 21, 234.CrossRef
Metadaten
Titel
Scientific Hypothesis for Treatment of COVID‐19′s Lung Lesions by Adjusting ACE/ACE2 Imbalance
verfasst von
F. Ferrara
A. Vitiello
Publikationsdatum
09.04.2021
Verlag
Springer US
Schlagwort
COVID-19
Erschienen in
Cardiovascular Toxicology / Ausgabe 6/2021
Print ISSN: 1530-7905
Elektronische ISSN: 1559-0259
DOI
https://doi.org/10.1007/s12012-021-09649-y

Weitere Artikel der Ausgabe 6/2021

Cardiovascular Toxicology 6/2021 Zur Ausgabe