Skip to main content
Erschienen in: Discover Oncology 4/2013

01.08.2013 | Original Paper

CREB-Regulated Transcription Co-Activator Family Stimulates Promoter II-Driven Aromatase Expression in Preadipocytes

verfasst von: Nirukshi U. Samarajeewa, Maria M. Docanto, Evan R. Simpson, Kristy A. Brown

Erschienen in: Discover Oncology | Ausgabe 4/2013

Einloggen, um Zugang zu erhalten

Abstract

The dramatically increased prevalence of breast cancer after menopause is of great concern and is correlated with elevated local levels of estrogens. This is mainly due to an increase in aromatase expression driven by its proximal promoter II (PII). We have previously demonstrated that the CREB co-activator CRTC2 binds directly to PII and stimulates its activity via mechanisms involving LKB1-AMPK in response to prostaglandin E2 (PGE2). There are three members of the CRTC family (CRTC1-3) and this study aimed to characterize the role of other CRTCs in the activation of aromatase PII. The expression and subcellular localization of CRTCs were examined in preadipocytes using qPCR and immunofluorescence. Under basal conditions, CRTC1 expression was the lowest, whereas CRTC3 transcripts were present at higher levels. Basally, CRTC2 and CRTC3 were mainly cytoplasmic and PGE2 caused their nuclear translocation. Reporter assays and chromatin immunoprecipitation (ChIP) were performed to assess the effect of CRTCs on PII activity and binding. Basal PII activity was significantly increased with all CRTCs. Forskolin (FSK)/phorbol 12-myristate 13-acetate (PMA), to mimic PGE2, resulted in a further significant increase in PII activity with all CRTCs, with CRTC2 and CRTC3 having greater effects. This was consistent with ChIP data showing an increased binding of CRTCs to PII with FSK/PMA. Moreover, gene silencing of CRTC2 and CRTC3 significantly reduced the FSK/PMA-mediated stimulation of aromatase activity. Interestingly, CRTCs acted cooperatively with CREB1 to increase PII activity, and both CREs were found to be essential for the maximal induction of PII activity by CRTCs. Phosphorylation of CRTC2 at its AMPK target site, Ser 171, dictated its subcellular localization, and the activation of aromatase PII in preadipocytes. In conclusion, this study demonstrates that aromatase regulation in primary human breast preadipocytes involves more than one CRTC.
Literatur
1.
Zurück zum Zitat Simpson ER, Brown KA (2011) Obesity, aromatase and breast cancer. Expert Rev Endocrinol Metab 6(3):383–395CrossRef Simpson ER, Brown KA (2011) Obesity, aromatase and breast cancer. Expert Rev Endocrinol Metab 6(3):383–395CrossRef
2.
Zurück zum Zitat Sofi M et al (2003) Role of CRE-binding protein (CREB) in aromatase expression in breast adipose. Breast Canc Res Treat 79(3):399–407CrossRef Sofi M et al (2003) Role of CRE-binding protein (CREB) in aromatase expression in breast adipose. Breast Canc Res Treat 79(3):399–407CrossRef
3.
Zurück zum Zitat Gonzalez GA, Montminy MR (1989) Cyclic AMP stimulates somatostatin gene transcription by phosphorylation of CREB at serine 133. Cell 59(4):675–680PubMedCrossRef Gonzalez GA, Montminy MR (1989) Cyclic AMP stimulates somatostatin gene transcription by phosphorylation of CREB at serine 133. Cell 59(4):675–680PubMedCrossRef
4.
Zurück zum Zitat Roberts DL, Dive C, Renehan AG (2010) Biological mechanisms linking obesity and cancer risk: new perspectives. Annu Rev Med 61:301–316PubMedCrossRef Roberts DL, Dive C, Renehan AG (2010) Biological mechanisms linking obesity and cancer risk: new perspectives. Annu Rev Med 61:301–316PubMedCrossRef
5.
Zurück zum Zitat Harvie M, Hooper L, Howell AH (2003) Central obesity and breast cancer risk: a systematic review. Obes Rev 4(3):157–173PubMedCrossRef Harvie M, Hooper L, Howell AH (2003) Central obesity and breast cancer risk: a systematic review. Obes Rev 4(3):157–173PubMedCrossRef
6.
Zurück zum Zitat Stoll BA (2002) Upper abdominal obesity, insulin resistance and breast cancer risk. Int J Obes Relat Metab Disord 26(6):747–753PubMedCrossRef Stoll BA (2002) Upper abdominal obesity, insulin resistance and breast cancer risk. Int J Obes Relat Metab Disord 26(6):747–753PubMedCrossRef
7.
Zurück zum Zitat Subbaramaiah K et al (2012) Increased levels of COX-2 and prostaglandin E2 contribute to elevated aromatase expression in inflamed breast tissue of obese women. Cancer Discov 2(4):356–365PubMedCrossRef Subbaramaiah K et al (2012) Increased levels of COX-2 and prostaglandin E2 contribute to elevated aromatase expression in inflamed breast tissue of obese women. Cancer Discov 2(4):356–365PubMedCrossRef
8.
Zurück zum Zitat Zhang X et al (2005) Genome-wide analysis of cAMP-response element binding protein occupancy, phosphorylation, and target gene activation in human tissues. Proc Natl Acad Sci U S A 102(12):4459–4464PubMedCrossRef Zhang X et al (2005) Genome-wide analysis of cAMP-response element binding protein occupancy, phosphorylation, and target gene activation in human tissues. Proc Natl Acad Sci U S A 102(12):4459–4464PubMedCrossRef
9.
Zurück zum Zitat Iourgenko V et al (2003) Identification of a family of cAMP response element-binding protein coactivators by genome-scale functional analysis in mammalian cells. Proc Natl Acad Sci U S A 100(21):12147–12152PubMedCrossRef Iourgenko V et al (2003) Identification of a family of cAMP response element-binding protein coactivators by genome-scale functional analysis in mammalian cells. Proc Natl Acad Sci U S A 100(21):12147–12152PubMedCrossRef
10.
Zurück zum Zitat Conkright MD et al (2003) TORCs: transducers of regulated CREB activity. Molecular Cell 12(2):413–423PubMedCrossRef Conkright MD et al (2003) TORCs: transducers of regulated CREB activity. Molecular Cell 12(2):413–423PubMedCrossRef
11.
Zurück zum Zitat Bittinger MA et al (2004) Activation of cAMP response element-mediated gene expression by regulated nuclear transport of TORC proteins. Curr Biol 14(23):2156–2161PubMedCrossRef Bittinger MA et al (2004) Activation of cAMP response element-mediated gene expression by regulated nuclear transport of TORC proteins. Curr Biol 14(23):2156–2161PubMedCrossRef
12.
Zurück zum Zitat Screaton RA et al (2004) The CREB coactivator TORC2 functions as a calcium- and cAMP-sensitive coincidence detector. Cell 119(1):61–74PubMedCrossRef Screaton RA et al (2004) The CREB coactivator TORC2 functions as a calcium- and cAMP-sensitive coincidence detector. Cell 119(1):61–74PubMedCrossRef
13.
Zurück zum Zitat Altarejos JY, Montminy M (2011) CREB and the CRTC co-activators: sensors for hormonal and metabolic signals. Nat Rev Mol Cell Biol 12(3):141–151PubMedCrossRef Altarejos JY, Montminy M (2011) CREB and the CRTC co-activators: sensors for hormonal and metabolic signals. Nat Rev Mol Cell Biol 12(3):141–151PubMedCrossRef
14.
Zurück zum Zitat Katoh Y et al (2006) Silencing the constitutive active transcription factor CREB by the LKB1-SIK signaling cascade. FEBS J 273(12):2730–2748PubMedCrossRef Katoh Y et al (2006) Silencing the constitutive active transcription factor CREB by the LKB1-SIK signaling cascade. FEBS J 273(12):2730–2748PubMedCrossRef
15.
Zurück zum Zitat Koo S-H et al (2005) The CREB coactivator TORC2 is a key regulator of fasting glucose metabolism. Nature 437(7062):1109–1111PubMedCrossRef Koo S-H et al (2005) The CREB coactivator TORC2 is a key regulator of fasting glucose metabolism. Nature 437(7062):1109–1111PubMedCrossRef
16.
Zurück zum Zitat Mair W et al (2011) Lifespan extension induced by AMPK and calcineurin is mediated by CRTC-1 and CREB. Nature 470(7334):404–408PubMedCrossRef Mair W et al (2011) Lifespan extension induced by AMPK and calcineurin is mediated by CRTC-1 and CREB. Nature 470(7334):404–408PubMedCrossRef
17.
Zurück zum Zitat Brown KA et al (2009) Subcellular localization of cyclic AMP-responsive element binding protein-regulated transcription coactivator 2 provides a link between obesity and breast cancer in postmenopausal women. Cancer Res 69(13):5392–5399PubMedCrossRef Brown KA et al (2009) Subcellular localization of cyclic AMP-responsive element binding protein-regulated transcription coactivator 2 provides a link between obesity and breast cancer in postmenopausal women. Cancer Res 69(13):5392–5399PubMedCrossRef
18.
Zurück zum Zitat Michael MD et al (1995) Ad4BP/SF-1 regulates cyclic AMP-induced transcription from the proximal promoter (PII) of the human aromatase P450 (CYP19) gene in the ovary. J Biol Chem 270(22):13561–13566PubMedCrossRef Michael MD et al (1995) Ad4BP/SF-1 regulates cyclic AMP-induced transcription from the proximal promoter (PII) of the human aromatase P450 (CYP19) gene in the ovary. J Biol Chem 270(22):13561–13566PubMedCrossRef
19.
Zurück zum Zitat Ackerman GE et al (1981) Aromatization of androstenedione by human adipose tissue stromal cells in monolayer culture. J Clin Endocrinol Metab 53(2):412–417PubMedCrossRef Ackerman GE et al (1981) Aromatization of androstenedione by human adipose tissue stromal cells in monolayer culture. J Clin Endocrinol Metab 53(2):412–417PubMedCrossRef
20.
Zurück zum Zitat Brown KA et al (2010) Metformin inhibits aromatase expression in human breast adipose stromal cells via stimulation of AMP-activated protein kinase. Breast Cancer Res Treat 123(2):591–596PubMedCrossRef Brown KA et al (2010) Metformin inhibits aromatase expression in human breast adipose stromal cells via stimulation of AMP-activated protein kinase. Breast Cancer Res Treat 123(2):591–596PubMedCrossRef
21.
22.
Zurück zum Zitat Wang Y et al (2010) Targeted disruption of the CREB coactivator Crtc2 increases insulin sensitivity. Proc Natl Acad Sci U S A 107(7):3087–3092PubMedCrossRef Wang Y et al (2010) Targeted disruption of the CREB coactivator Crtc2 increases insulin sensitivity. Proc Natl Acad Sci U S A 107(7):3087–3092PubMedCrossRef
23.
Zurück zum Zitat Xiao X et al (2010) Targeting CREB for cancer therapy: friend or foe. Curr Cancer Drug Targets 10(4):384–391PubMedCrossRef Xiao X et al (2010) Targeting CREB for cancer therapy: friend or foe. Curr Cancer Drug Targets 10(4):384–391PubMedCrossRef
24.
Zurück zum Zitat Chhabra A et al (2007) Expression of transcription factor CREB1 in human breast cancer and its correlation with prognosis. Oncol Rep 18(4):953–958PubMed Chhabra A et al (2007) Expression of transcription factor CREB1 in human breast cancer and its correlation with prognosis. Oncol Rep 18(4):953–958PubMed
Metadaten
Titel
CREB-Regulated Transcription Co-Activator Family Stimulates Promoter II-Driven Aromatase Expression in Preadipocytes
verfasst von
Nirukshi U. Samarajeewa
Maria M. Docanto
Evan R. Simpson
Kristy A. Brown
Publikationsdatum
01.08.2013
Verlag
Springer-Verlag
Erschienen in
Discover Oncology / Ausgabe 4/2013
Print ISSN: 1868-8497
Elektronische ISSN: 2730-6011
DOI
https://doi.org/10.1007/s12672-013-0142-1

Weitere Artikel der Ausgabe 4/2013

Discover Oncology 4/2013 Zur Ausgabe

Erhebliches Risiko für Kehlkopfkrebs bei mäßiger Dysplasie

29.05.2024 Larynxkarzinom Nachrichten

Fast ein Viertel der Personen mit mäßig dysplastischen Stimmlippenläsionen entwickelt einen Kehlkopftumor. Solche Personen benötigen daher eine besonders enge ärztliche Überwachung.

15% bedauern gewählte Blasenkrebs-Therapie

29.05.2024 Urothelkarzinom Nachrichten

Ob Patienten und Patientinnen mit neu diagnostiziertem Blasenkrebs ein Jahr später Bedauern über die Therapieentscheidung empfinden, wird einer Studie aus England zufolge von der Radikalität und dem Erfolg des Eingriffs beeinflusst.

Erhöhtes Risiko fürs Herz unter Checkpointhemmer-Therapie

28.05.2024 Nebenwirkungen der Krebstherapie Nachrichten

Kardiotoxische Nebenwirkungen einer Therapie mit Immuncheckpointhemmern mögen selten sein – wenn sie aber auftreten, wird es für Patienten oft lebensgefährlich. Voruntersuchung und Monitoring sind daher obligat.

Costims – das nächste heiße Ding in der Krebstherapie?

28.05.2024 Onkologische Immuntherapie Nachrichten

„Kalte“ Tumoren werden heiß – CD28-kostimulatorische Antikörper sollen dies ermöglichen. Am besten könnten diese in Kombination mit BiTEs und Checkpointhemmern wirken. Erste klinische Studien laufen bereits.

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.