Skip to main content
Erschienen in: Neurotherapeutics 4/2015

01.10.2015 | Review

Cannabinoids and Epilepsy

verfasst von: Evan C. Rosenberg, Richard W. Tsien, Benjamin J. Whalley, Orrin Devinsky

Erschienen in: Neurotherapeutics | Ausgabe 4/2015

Einloggen, um Zugang zu erhalten

Abstract

Cannabis has been used for centuries to treat seizures. Recent anecdotal reports, accumulating animal model data, and mechanistic insights have raised interest in cannabis-based antiepileptic therapies. In this study, we review current understanding of the endocannabinoid system, characterize the pro- and anticonvulsive effects of cannabinoids [e.g., Δ9-tetrahydrocannabinol and cannabidiol (CBD)], and highlight scientific evidence from pre-clinical and clinical trials of cannabinoids in epilepsy. These studies suggest that CBD avoids the psychoactive effects of the endocannabinoid system to provide a well-tolerated, promising therapeutic for the treatment of seizures, while whole-plant cannabis can both contribute to and reduce seizures. Finally, we discuss results from a new multicenter, open-label study using CBD in a population with treatment-resistant epilepsy. In all, we seek to evaluate our current understanding of cannabinoids in epilepsy and guide future basic science and clinical studies.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Fisher RS, et al. Epileptic seizures and epilepsy: definitions proposed by the International League Against Epilepsy (ILAE) and the International Bureau for Epilepsy (IBE). Epilepsia 2005;46:470-472.PubMedCrossRef Fisher RS, et al. Epileptic seizures and epilepsy: definitions proposed by the International League Against Epilepsy (ILAE) and the International Bureau for Epilepsy (IBE). Epilepsia 2005;46:470-472.PubMedCrossRef
2.
Zurück zum Zitat Kwan P, Brodie MJ. Early identification of refractory epilepsy. N Engl J Med 2000;342:314-319.PubMedCrossRef Kwan P, Brodie MJ. Early identification of refractory epilepsy. N Engl J Med 2000;342:314-319.PubMedCrossRef
3.
Zurück zum Zitat Kwan P, Brodie MJ. Refractory epilepsy: a progressive, intractable but preventable condition? Seizure 2002;11:77-84.PubMedCrossRef Kwan P, Brodie MJ. Refractory epilepsy: a progressive, intractable but preventable condition? Seizure 2002;11:77-84.PubMedCrossRef
4.
5.
Zurück zum Zitat Nilsson L, et al. Risk factors for sudden unexpected death in epilepsy: a case–control study. Lancet 1999;353:888-893.PubMedCrossRef Nilsson L, et al. Risk factors for sudden unexpected death in epilepsy: a case–control study. Lancet 1999;353:888-893.PubMedCrossRef
6.
Zurück zum Zitat Walczak TS, et al. Incidence and risk factors in sudden unexpected death in epilepsy: a prospective cohort study. Neurology 2001;56:519-525.PubMedCrossRef Walczak TS, et al. Incidence and risk factors in sudden unexpected death in epilepsy: a prospective cohort study. Neurology 2001;56:519-525.PubMedCrossRef
8.
Zurück zum Zitat Jacoby A, Baker GA. Quality-of-life trajectories in epilepsy: a review of the literature. Epilepsy Behav 2008;12:557-571.PubMedCrossRef Jacoby A, Baker GA. Quality-of-life trajectories in epilepsy: a review of the literature. Epilepsy Behav 2008;12:557-571.PubMedCrossRef
9.
Zurück zum Zitat Rogawski MA. The intrinsic severity hypothesis of pharmacoresistance to antiepileptic drugs. Epilepsia 2013;54(Suppl. 2):33-40.PubMedCrossRef Rogawski MA. The intrinsic severity hypothesis of pharmacoresistance to antiepileptic drugs. Epilepsia 2013;54(Suppl. 2):33-40.PubMedCrossRef
10.
Zurück zum Zitat Perucca E. Is there a role for therapeutic drug monitoring of new anticonvulsants? Clin Pharmacokinet 2000;38:191-204.PubMedCrossRef Perucca E. Is there a role for therapeutic drug monitoring of new anticonvulsants? Clin Pharmacokinet 2000;38:191-204.PubMedCrossRef
11.
Zurück zum Zitat Devinsky O, et al. Cannabidiol: pharmacology and potential therapeutic role in epilepsy and other neuropsychiatric disorders. Epilepsia 2014;55:791-802.PubMedCrossRefPubMedCentral Devinsky O, et al. Cannabidiol: pharmacology and potential therapeutic role in epilepsy and other neuropsychiatric disorders. Epilepsia 2014;55:791-802.PubMedCrossRefPubMedCentral
12.
Zurück zum Zitat Koppel BS, et al. Systematic review: efficacy and safety of medical marijuana in selected neurologic disorders: report of the Guideline Development Subcommittee of the American Academy of Neurology. Neurology 2014;82:1556-63.PubMedCentralPubMedCrossRef Koppel BS, et al. Systematic review: efficacy and safety of medical marijuana in selected neurologic disorders: report of the Guideline Development Subcommittee of the American Academy of Neurology. Neurology 2014;82:1556-63.PubMedCentralPubMedCrossRef
13.
Zurück zum Zitat Gloss D, Vickrey B. Cannabinoids for epilepsy. Cochrane Database Syst Rev 2014; 3:CD009270.PubMed Gloss D, Vickrey B. Cannabinoids for epilepsy. Cochrane Database Syst Rev 2014; 3:CD009270.PubMed
14.
Zurück zum Zitat Abel EL. Marihuana: the first twelve thousand years. Plenum Press, New York, 1980.CrossRef Abel EL. Marihuana: the first twelve thousand years. Plenum Press, New York, 1980.CrossRef
16.
Zurück zum Zitat Lozano I. The therapeutic use of Cannabis sativa L. in Arabic medicine. J Cannabis Ther 2001;1:63-70.CrossRef Lozano I. The therapeutic use of Cannabis sativa L. in Arabic medicine. J Cannabis Ther 2001;1:63-70.CrossRef
17.
Zurück zum Zitat Szaflarski JP, Bebin EM. Cannabis, cannabidiol, and epilepsy—from receptors to clinical response. Epilepsy Behav 2014;41:277-282.PubMedCrossRef Szaflarski JP, Bebin EM. Cannabis, cannabidiol, and epilepsy—from receptors to clinical response. Epilepsy Behav 2014;41:277-282.PubMedCrossRef
18.
Zurück zum Zitat O'Shaughnessy WB. On the preparations of the Indian hemp, or Gunjah. Prov Med J Retrosp Med Sci 1843;5:363-369.PubMedCentral O'Shaughnessy WB. On the preparations of the Indian hemp, or Gunjah. Prov Med J Retrosp Med Sci 1843;5:363-369.PubMedCentral
19.
Zurück zum Zitat Reynolds JR. Epilepsy: its symptoms, treatment, and relation to other chronic convulsive diseases. J. Churchill (Ed.) London, 1861. Reynolds JR. Epilepsy: its symptoms, treatment, and relation to other chronic convulsive diseases. J. Churchill (Ed.) London, 1861.
20.
Zurück zum Zitat Gowers W. Epilepsy and other chronic convulsive disorders. Churchill (Ed.) London, 1881. Gowers W. Epilepsy and other chronic convulsive disorders. Churchill (Ed.) London, 1881.
21.
Zurück zum Zitat Gaoni Y, Mechoulam R. Isolation, structure, and partial synthesis of an active constituent of hashish. J Am Chem Soc 1964;86:1646-1647.CrossRef Gaoni Y, Mechoulam R. Isolation, structure, and partial synthesis of an active constituent of hashish. J Am Chem Soc 1964;86:1646-1647.CrossRef
22.
Zurück zum Zitat Gaoni Y, Mechoulam R. The isolation and structure of delta-1-tetrahydrocannabinol and other neutral cannabinoids from hashish. J Am Chem Soc 1971;9:217-224.CrossRef Gaoni Y, Mechoulam R. The isolation and structure of delta-1-tetrahydrocannabinol and other neutral cannabinoids from hashish. J Am Chem Soc 1971;9:217-224.CrossRef
23.
Zurück zum Zitat Adams R, Pease DC, Clark JH. Isolation of cannabinol, cannabidiol, and quebrachitrol from red oil of Minnesota wild hemp. J Am Chem Soc 1940;62: 2194-2196.CrossRef Adams R, Pease DC, Clark JH. Isolation of cannabinol, cannabidiol, and quebrachitrol from red oil of Minnesota wild hemp. J Am Chem Soc 1940;62: 2194-2196.CrossRef
24.
Zurück zum Zitat Michoulam R, Shvo Y., Hashish, I. The structure of cannabidiol. Tetrahedron 1963; 19:2073-2078.PubMedCrossRef Michoulam R, Shvo Y., Hashish, I. The structure of cannabidiol. Tetrahedron 1963; 19:2073-2078.PubMedCrossRef
25.
Zurück zum Zitat Matsuda LA, et al. Structure of a cannabinoid receptor and functional expression of the cloned cDNA. Nature 1990;346:561-564.PubMedCrossRef Matsuda LA, et al. Structure of a cannabinoid receptor and functional expression of the cloned cDNA. Nature 1990;346:561-564.PubMedCrossRef
26.
Zurück zum Zitat Munro S, Thomas KL, Abu-Shaar M. Molecular characterization of a peripheral receptor for cannabinoids. Nature 1993;365:61-65.PubMedCrossRef Munro S, Thomas KL, Abu-Shaar M. Molecular characterization of a peripheral receptor for cannabinoids. Nature 1993;365:61-65.PubMedCrossRef
27.
28.
Zurück zum Zitat Pitler TA, Alger BE. Postsynaptic spike firing reduces synaptic GABAA responses in hippocampal pyramidal cells. J Neurosci 1992;12:4122-4132.PubMed Pitler TA, Alger BE. Postsynaptic spike firing reduces synaptic GABAA responses in hippocampal pyramidal cells. J Neurosci 1992;12:4122-4132.PubMed
29.
Zurück zum Zitat Kreitzer AC, Regehr WG. Retrograde inhibition of presynaptic calcium influx by endogenous cannabinoids at excitatory synapses onto Purkinje cells. Neuron 2001;29:717-727.PubMedCrossRef Kreitzer AC, Regehr WG. Retrograde inhibition of presynaptic calcium influx by endogenous cannabinoids at excitatory synapses onto Purkinje cells. Neuron 2001;29:717-727.PubMedCrossRef
30.
Zurück zum Zitat Kreitzer AC, Regehr WG. Cerebellar depolarization-induced suppression of inhibition is mediated by endogenous cannabinoids. J Neurosci 2001;21:RC174.PubMed Kreitzer AC, Regehr WG. Cerebellar depolarization-induced suppression of inhibition is mediated by endogenous cannabinoids. J Neurosci 2001;21:RC174.PubMed
31.
Zurück zum Zitat Wilson RI, Kunos G, Nicoll RA. Presynaptic specificity of endocannabinoid signaling in the hippocampus. Neuron 2001;31:453-462.PubMedCrossRef Wilson RI, Kunos G, Nicoll RA. Presynaptic specificity of endocannabinoid signaling in the hippocampus. Neuron 2001;31:453-462.PubMedCrossRef
32.
Zurück zum Zitat Devane WA, et al. Isolation and structure of a brain constituent that binds to the cannabinoid receptor. Science 1992;258:1946-1949.PubMedCrossRef Devane WA, et al. Isolation and structure of a brain constituent that binds to the cannabinoid receptor. Science 1992;258:1946-1949.PubMedCrossRef
33.
Zurück zum Zitat Mechoulam R, et al. Identification of an endogenous 2-monoglyceride, present in canine gut, that binds to cannabinoid receptors. Biochem Pharmacol 1995;50:83-90.PubMedCrossRef Mechoulam R, et al. Identification of an endogenous 2-monoglyceride, present in canine gut, that binds to cannabinoid receptors. Biochem Pharmacol 1995;50:83-90.PubMedCrossRef
34.
Zurück zum Zitat Sugiura T, et al. 2-Arachidonoylglycerol: a possible endogenous cannabinoid receptor ligand in brain. Biochem Biophys Res Commun 1995;215:89-97.PubMedCrossRef Sugiura T, et al. 2-Arachidonoylglycerol: a possible endogenous cannabinoid receptor ligand in brain. Biochem Biophys Res Commun 1995;215:89-97.PubMedCrossRef
35.
Zurück zum Zitat Alger BE. Retrograde signaling in the regulation of synaptic transmission: focus on endocannabinoids. Prog Neurobiol 2002;68:247-286.PubMedCrossRef Alger BE. Retrograde signaling in the regulation of synaptic transmission: focus on endocannabinoids. Prog Neurobiol 2002;68:247-286.PubMedCrossRef
36.
Zurück zum Zitat Brown SP, Brenowitz SD, Regehr WG. Brief presynaptic bursts evoke synapse-specific retrograde inhibition mediated by endogenous cannabinoids. Nat Neurosci 2003;6:1048-1057.PubMedCrossRef Brown SP, Brenowitz SD, Regehr WG. Brief presynaptic bursts evoke synapse-specific retrograde inhibition mediated by endogenous cannabinoids. Nat Neurosci 2003;6:1048-1057.PubMedCrossRef
37.
Zurück zum Zitat Maejima T, Ohno-Shosaku T, Kano M. Endogenous cannabinoid as a retrograde messenger from depolarized postsynaptic neurons to presynaptic terminals. Neurosci Res 2001;40:205-210.PubMedCrossRef Maejima T, Ohno-Shosaku T, Kano M. Endogenous cannabinoid as a retrograde messenger from depolarized postsynaptic neurons to presynaptic terminals. Neurosci Res 2001;40:205-210.PubMedCrossRef
38.
Zurück zum Zitat Melis M, et al. Prefrontal cortex stimulation induces 2-arachidonoyl-glycerol-mediated suppression of excitation in dopamine neurons. J Neurosci 2004;24:10707-10715.PubMedCrossRef Melis M, et al. Prefrontal cortex stimulation induces 2-arachidonoyl-glycerol-mediated suppression of excitation in dopamine neurons. J Neurosci 2004;24:10707-10715.PubMedCrossRef
39.
Zurück zum Zitat Katona I, Freund TF. Endocannabinoid signaling as a synaptic circuit breaker in neurological disease. Nat Med 2008;14:923-930.PubMedCrossRef Katona I, Freund TF. Endocannabinoid signaling as a synaptic circuit breaker in neurological disease. Nat Med 2008;14:923-930.PubMedCrossRef
40.
Zurück zum Zitat Di Marzo V, et al. Formation and inactivation of endogenous cannabinoid anandamide in central neurons. Nature 1994;372:686-691.PubMedCrossRef Di Marzo V, et al. Formation and inactivation of endogenous cannabinoid anandamide in central neurons. Nature 1994;372:686-691.PubMedCrossRef
41.
Zurück zum Zitat Di Marzo V, Deutsch DG. Biochemistry of the endogenous ligands of cannabinoid receptors. Neurobiol Dis 1998;5:386-404.PubMedCrossRef Di Marzo V, Deutsch DG. Biochemistry of the endogenous ligands of cannabinoid receptors. Neurobiol Dis 1998;5:386-404.PubMedCrossRef
42.
Zurück zum Zitat Di Marzo V, et al. Endocannabinoids: endogenous cannabinoid receptor ligands with neuromodulatory action. Trends Neurosci 1998;21:521-528.PubMedCrossRef Di Marzo V, et al. Endocannabinoids: endogenous cannabinoid receptor ligands with neuromodulatory action. Trends Neurosci 1998;21:521-528.PubMedCrossRef
43.
Zurück zum Zitat Sugiura T, et al. Biosynthesis and degradation of anandamide and 2-arachidonoylglycerol and their possible physiological significance. Prostaglandins Leukot Essent Fatty Acids 2002;66:173-192.PubMedCrossRef Sugiura T, et al. Biosynthesis and degradation of anandamide and 2-arachidonoylglycerol and their possible physiological significance. Prostaglandins Leukot Essent Fatty Acids 2002;66:173-192.PubMedCrossRef
44.
Zurück zum Zitat Stella N, Schweitzer P, Piomelli D. A second endogenous cannabinoid that modulates long-term potentiation. Nature 1997;388:773-778.PubMedCrossRef Stella N, Schweitzer P, Piomelli D. A second endogenous cannabinoid that modulates long-term potentiation. Nature 1997;388:773-778.PubMedCrossRef
45.
Zurück zum Zitat Pertwee RG. Cannabinoid receptor ligands: clinical and neuropharmacological considerations, relevant to future drug discovery and development. Expert Opin Investig Drugs 2000;9:1553-1571.PubMedCrossRef Pertwee RG. Cannabinoid receptor ligands: clinical and neuropharmacological considerations, relevant to future drug discovery and development. Expert Opin Investig Drugs 2000;9:1553-1571.PubMedCrossRef
46.
Zurück zum Zitat Pi-Sunyer F, et al. Effect of rimonabant, a cannabinoid-1 receptor blocker, on weight and cardiometabolic risk factors in overweight or obese patients - RIO-North America: A randomized controlled trial. JAMA 2006;295:761-775.PubMedCrossRef Pi-Sunyer F, et al. Effect of rimonabant, a cannabinoid-1 receptor blocker, on weight and cardiometabolic risk factors in overweight or obese patients - RIO-North America: A randomized controlled trial. JAMA 2006;295:761-775.PubMedCrossRef
47.
Zurück zum Zitat Cahill K, Ussher M. Cannabinoid type 1 receptor antagonists (rimonabant) for smoking cessation. Cochrane Database Syst Rev 2007:CD005353. Cahill K, Ussher M. Cannabinoid type 1 receptor antagonists (rimonabant) for smoking cessation. Cochrane Database Syst Rev 2007:CD005353.
48.
Zurück zum Zitat Glass M,. Felder CC. Concurrent stimulation of cannabinoid CB1 and dopamine D2 receptors augments cAMP accumulation in striatal neurons: evidence for a Gs linkage to the CB1 receptor. J Neurosci 1997;17:5327-5333.PubMed Glass M,. Felder CC. Concurrent stimulation of cannabinoid CB1 and dopamine D2 receptors augments cAMP accumulation in striatal neurons: evidence for a Gs linkage to the CB1 receptor. J Neurosci 1997;17:5327-5333.PubMed
49.
50.
Zurück zum Zitat Caulfield MP, Brown DA. Cannabinoid receptor agonists inhibit Ca current in NG108-15 neuroblastoma cells via a pertussis toxin-sensitive mechanism. Br J Pharmacol 1992;106:231-232.PubMedCentralPubMedCrossRef Caulfield MP, Brown DA. Cannabinoid receptor agonists inhibit Ca current in NG108-15 neuroblastoma cells via a pertussis toxin-sensitive mechanism. Br J Pharmacol 1992;106:231-232.PubMedCentralPubMedCrossRef
51.
Zurück zum Zitat Twitchell W, Brown S, Mackie K. Cannabinoids inhibit N- and P/Q-type calcium channels in cultured rat hippocampal neurons. J Neurophysiol 1997;78:43-50.PubMed Twitchell W, Brown S, Mackie K. Cannabinoids inhibit N- and P/Q-type calcium channels in cultured rat hippocampal neurons. J Neurophysiol 1997;78:43-50.PubMed
52.
Zurück zum Zitat Szabo GG, et al. Presynaptic calcium channel inhibition underlies CB(1) cannabinoid receptor-mediated suppression of GABA release. J Neurosci 2014;34:7958-7963.PubMedCrossRef Szabo GG, et al. Presynaptic calcium channel inhibition underlies CB(1) cannabinoid receptor-mediated suppression of GABA release. J Neurosci 2014;34:7958-7963.PubMedCrossRef
53.
Zurück zum Zitat Deadwyler SA, et al. Cannabinoids modulate potassium current in cultured hippocampal neurons. Receptors Channels 1993;1:121-134.PubMed Deadwyler SA, et al. Cannabinoids modulate potassium current in cultured hippocampal neurons. Receptors Channels 1993;1:121-134.PubMed
54.
Zurück zum Zitat Deadwyler SA, et al. Cannabinoids modulate voltage sensitive potassium A-current in hippocampal neurons via a cAMP-dependent process. J Pharmacol Exp Ther 1995;273:734-743.PubMed Deadwyler SA, et al. Cannabinoids modulate voltage sensitive potassium A-current in hippocampal neurons via a cAMP-dependent process. J Pharmacol Exp Ther 1995;273:734-743.PubMed
55.
Zurück zum Zitat Hampson RE, et al. Role of cyclic AMP dependent protein kinase in cannabinoid receptor modulation of potassium "A-current" in cultured rat hippocampal neurons. Life Sci 1995;56:2081-2088.PubMedCrossRef Hampson RE, et al. Role of cyclic AMP dependent protein kinase in cannabinoid receptor modulation of potassium "A-current" in cultured rat hippocampal neurons. Life Sci 1995;56:2081-2088.PubMedCrossRef
56.
Zurück zum Zitat Mu J, et al. Protein kinase-dependent phosphorylation and cannabinoid receptor modulation of potassium A current (IA) in cultured rat hippocampal neurons. Pflugers Arch 2000;439:541-546.PubMed Mu J, et al. Protein kinase-dependent phosphorylation and cannabinoid receptor modulation of potassium A current (IA) in cultured rat hippocampal neurons. Pflugers Arch 2000;439:541-546.PubMed
57.
Zurück zum Zitat Henry DJ, Chavkin C. Activation of inwardly rectifying potassium channels (GIRK1) by co-expressed rat brain cannabinoid receptors in Xenopus oocytes. Neurosci Lett 1995;186:91-94.PubMedCrossRef Henry DJ, Chavkin C. Activation of inwardly rectifying potassium channels (GIRK1) by co-expressed rat brain cannabinoid receptors in Xenopus oocytes. Neurosci Lett 1995;186:91-94.PubMedCrossRef
58.
Zurück zum Zitat Mackie K, et al. Cannabinoids activate an inwardly rectifying potassium conductance and inhibit Q-type calcium currents in AtT20 cells transfected with rat brain cannabinoid receptor. J Neurosci 1995;15:6552-6561.PubMed Mackie K, et al. Cannabinoids activate an inwardly rectifying potassium conductance and inhibit Q-type calcium currents in AtT20 cells transfected with rat brain cannabinoid receptor. J Neurosci 1995;15:6552-6561.PubMed
59.
Zurück zum Zitat McAllister SD, et al. Cannabinoid receptors can activate and inhibit G protein-coupled inwardly rectifying potassium channels in a xenopus oocyte expression system. J Pharmacol Exp Ther 1999;291:618-626.PubMed McAllister SD, et al. Cannabinoid receptors can activate and inhibit G protein-coupled inwardly rectifying potassium channels in a xenopus oocyte expression system. J Pharmacol Exp Ther 1999;291:618-626.PubMed
60.
Zurück zum Zitat Photowala H, et al. G protein betagamma-subunits activated by serotonin mediate presynaptic inhibition by regulating vesicle fusion properties. Proc Natl Acad Sci U S A 2006;103:4281-4286.PubMedCentralPubMedCrossRef Photowala H, et al. G protein betagamma-subunits activated by serotonin mediate presynaptic inhibition by regulating vesicle fusion properties. Proc Natl Acad Sci U S A 2006;103:4281-4286.PubMedCentralPubMedCrossRef
61.
Zurück zum Zitat Schlicker E, Kathmann M. Modulation of transmitter release via presynaptic cannabinoid receptors. Trends Pharmacol Sci 2001;22:565-572.PubMedCrossRef Schlicker E, Kathmann M. Modulation of transmitter release via presynaptic cannabinoid receptors. Trends Pharmacol Sci 2001;22:565-572.PubMedCrossRef
62.
Zurück zum Zitat Chevaleyre V, Takahashi KA, Castillo PE. Endocannabinoid-mediated synaptic plasticity in the CNS. Annu Rev Neurosci 2006;29:37-76.PubMedCrossRef Chevaleyre V, Takahashi KA, Castillo PE. Endocannabinoid-mediated synaptic plasticity in the CNS. Annu Rev Neurosci 2006;29:37-76.PubMedCrossRef
63.
Zurück zum Zitat Piomelli D. The molecular logic of endocannabinoid signalling. Nat Rev Neurosci 2003;4:873-884.PubMedCrossRef Piomelli D. The molecular logic of endocannabinoid signalling. Nat Rev Neurosci 2003;4:873-884.PubMedCrossRef
64.
Zurück zum Zitat Katona I, et al. Presynaptically located CB1 cannabinoid receptors regulate GABA release from axon terminals of specific hippocampal interneurons. J Neurosci 1999; 19:4544-4558.PubMed Katona I, et al. Presynaptically located CB1 cannabinoid receptors regulate GABA release from axon terminals of specific hippocampal interneurons. J Neurosci 1999; 19:4544-4558.PubMed
65.
Zurück zum Zitat Marsicano G, Lutz B. Expression of the cannabinoid receptor CB1 in distinct neuronal subpopulations in the adult mouse forebrain. Eur J Neurosci 1999;11: 4213-4225.PubMedCrossRef Marsicano G, Lutz B. Expression of the cannabinoid receptor CB1 in distinct neuronal subpopulations in the adult mouse forebrain. Eur J Neurosci 1999;11: 4213-4225.PubMedCrossRef
66.
Zurück zum Zitat Dudok B, et al. Cell-specific STORM super-resolution imaging reveals nanoscale organization of cannabinoid signaling. Nat Neurosci 2015;18:75-86.PubMedCentralPubMedCrossRef Dudok B, et al. Cell-specific STORM super-resolution imaging reveals nanoscale organization of cannabinoid signaling. Nat Neurosci 2015;18:75-86.PubMedCentralPubMedCrossRef
67.
Zurück zum Zitat Kawamura Y, et al. The CB1 cannabinoid receptor is the major cannabinoid receptor at excitatory presynaptic sites in the hippocampus and cerebellum. J Neurosci 2006;26:2991-3001.PubMedCrossRef Kawamura Y, et al. The CB1 cannabinoid receptor is the major cannabinoid receptor at excitatory presynaptic sites in the hippocampus and cerebellum. J Neurosci 2006;26:2991-3001.PubMedCrossRef
69.
70.
Zurück zum Zitat Wittmann G, et al. Distribution of type 1 cannabinoid receptor (CB1)-immunoreactive axons in the mouse hypothalamus. J Comp Neurol 2007;503:270-279.PubMedCrossRef Wittmann G, et al. Distribution of type 1 cannabinoid receptor (CB1)-immunoreactive axons in the mouse hypothalamus. J Comp Neurol 2007;503:270-279.PubMedCrossRef
71.
Zurück zum Zitat Robbe D, et al. Localization and mechanisms of action of cannabinoid receptors at the glutamatergic synapses of the mouse nucleus accumbens. J Neurosci 2001;21:109-116.PubMed Robbe D, et al. Localization and mechanisms of action of cannabinoid receptors at the glutamatergic synapses of the mouse nucleus accumbens. J Neurosci 2001;21:109-116.PubMed
72.
Zurück zum Zitat Elsohly MA, Slade D. Chemical constituents of marijuana: the complex mixture of natural cannabinoids. Life Sci 2005;78:539-548.PubMedCrossRef Elsohly MA, Slade D. Chemical constituents of marijuana: the complex mixture of natural cannabinoids. Life Sci 2005;78:539-548.PubMedCrossRef
73.
Zurück zum Zitat Joy JE. Marijuana and medicine: assessing the science base. National Academics Press, Washington, DC 1999. Joy JE. Marijuana and medicine: assessing the science base. National Academics Press, Washington, DC 1999.
74.
Zurück zum Zitat Huestis MA, et al. Blockade of effects of smoked marijuana by the CB1-selective cannabinoid receptor antagonist SR141716. Arch Gen Psychiatry 2001;58:322-328.PubMedCrossRef Huestis MA, et al. Blockade of effects of smoked marijuana by the CB1-selective cannabinoid receptor antagonist SR141716. Arch Gen Psychiatry 2001;58:322-328.PubMedCrossRef
75.
Zurück zum Zitat Lichtman AH, Martin BR. Delta 9-tetrahydrocannabinol impairs spatial memory through a cannabinoid receptor mechanism. Psychopharmacology (Berl) 1996;126: 125-131.CrossRef Lichtman AH, Martin BR. Delta 9-tetrahydrocannabinol impairs spatial memory through a cannabinoid receptor mechanism. Psychopharmacology (Berl) 1996;126: 125-131.CrossRef
76.
Zurück zum Zitat Mallet PE, Beninger RJ. The cannabinoid CB1 receptor antagonist SR141716A attenuates the memory impairment produced by delta9-tetrahydrocannabinol or anandamide. Psychopharmacology (Berl) 1998;140:11-19.CrossRef Mallet PE, Beninger RJ. The cannabinoid CB1 receptor antagonist SR141716A attenuates the memory impairment produced by delta9-tetrahydrocannabinol or anandamide. Psychopharmacology (Berl) 1998;140:11-19.CrossRef
77.
Zurück zum Zitat Varvel SA, et al. Differential effects of delta 9-THC on spatial reference and working memory in mice. Psychopharmacology (Berl) 2001;157:142-150.CrossRef Varvel SA, et al. Differential effects of delta 9-THC on spatial reference and working memory in mice. Psychopharmacology (Berl) 2001;157:142-150.CrossRef
78.
Zurück zum Zitat Da S, Takahashi RN. SR 141716A prevents delta 9-tetrahydrocannabinol-induced spatial learning deficit in a Morris-type water maze in mice. Prog Neuropsychopharmacol Biol Psychiatry 2002;26:321-325.PubMedCrossRef Da S, Takahashi RN. SR 141716A prevents delta 9-tetrahydrocannabinol-induced spatial learning deficit in a Morris-type water maze in mice. Prog Neuropsychopharmacol Biol Psychiatry 2002;26:321-325.PubMedCrossRef
79.
Zurück zum Zitat Pagotto U, et al. The emerging role of the endocannabinoid system in endocrine regulation and energy balance. Endocr Rev 2006;27:73-100.PubMedCrossRef Pagotto U, et al. The emerging role of the endocannabinoid system in endocrine regulation and energy balance. Endocr Rev 2006;27:73-100.PubMedCrossRef
80.
Zurück zum Zitat Abood ME, et al. Activation of the CB1 cannabinoid receptor protects cultured mouse spinal neurons against excitotoxicity. Neurosci Lett 2001;309:197-201.PubMedCrossRef Abood ME, et al. Activation of the CB1 cannabinoid receptor protects cultured mouse spinal neurons against excitotoxicity. Neurosci Lett 2001;309:197-201.PubMedCrossRef
81.
Zurück zum Zitat van der Stelt M, et al. Neuroprotection by Delta9-tetrahydrocannabinol, the main active compound in marijuana, against ouabain-induced in vivo excitotoxicity. J Neurosci 2001;21:6475-6479.PubMed van der Stelt M, et al. Neuroprotection by Delta9-tetrahydrocannabinol, the main active compound in marijuana, against ouabain-induced in vivo excitotoxicity. J Neurosci 2001;21:6475-6479.PubMed
82.
Zurück zum Zitat El-Remessy AB, et al. Neuroprotective effect of (-)Delta9-tetrahydrocannabinol and cannabidiol in N-methyl-D-aspartate-induced retinal neurotoxicity: involvement of peroxynitrite. Am J Pathol 2003;163:1997-2008.PubMedCentralPubMedCrossRef El-Remessy AB, et al. Neuroprotective effect of (-)Delta9-tetrahydrocannabinol and cannabidiol in N-methyl-D-aspartate-induced retinal neurotoxicity: involvement of peroxynitrite. Am J Pathol 2003;163:1997-2008.PubMedCentralPubMedCrossRef
83.
Zurück zum Zitat Mechoulam R, Panikashvili D, Shohami E. Cannabinoids and brain injury: therapeutic implications. Trends Mol Med 2002;8:58-61.PubMedCrossRef Mechoulam R, Panikashvili D, Shohami E. Cannabinoids and brain injury: therapeutic implications. Trends Mol Med 2002;8:58-61.PubMedCrossRef
84.
Zurück zum Zitat Gilbert GL, et al. Delta9-tetrahydrocannabinol protects hippocampal neurons from excitotoxicity. Brain Res 2007;1128:61-69.PubMedCrossRef Gilbert GL, et al. Delta9-tetrahydrocannabinol protects hippocampal neurons from excitotoxicity. Brain Res 2007;1128:61-69.PubMedCrossRef
85.
Zurück zum Zitat Nagayama T, et al. Cannabinoids and neuroprotection in global and focal cerebral ischemia and in neuronal cultures. J Neurosci 1999;19:2987-2995.PubMed Nagayama T, et al. Cannabinoids and neuroprotection in global and focal cerebral ischemia and in neuronal cultures. J Neurosci 1999;19:2987-2995.PubMed
86.
Zurück zum Zitat Zani A, et al. Delta9-tetrahydrocannabinol (THC) and AM 404 protect against cerebral ischaemia in gerbils through a mechanism involving cannabinoid and opioid receptors. Br J Pharmacol 2007;152:1301-1311.PubMedCentralPubMedCrossRef Zani A, et al. Delta9-tetrahydrocannabinol (THC) and AM 404 protect against cerebral ischaemia in gerbils through a mechanism involving cannabinoid and opioid receptors. Br J Pharmacol 2007;152:1301-1311.PubMedCentralPubMedCrossRef
87.
88.
Zurück zum Zitat Molina-Holgado F, Lledo A, Guaza C. Anandamide suppresses nitric oxide and TNF-alpha responses to Theiler's virus or endotoxin in astrocytes. Neuroreport 1997;8:1929-1933.PubMedCrossRef Molina-Holgado F, Lledo A, Guaza C. Anandamide suppresses nitric oxide and TNF-alpha responses to Theiler's virus or endotoxin in astrocytes. Neuroreport 1997;8:1929-1933.PubMedCrossRef
89.
Zurück zum Zitat Molina-Holgado F, et al. Role of CB1 and CB2 receptors in the inhibitory effects of cannabinoids on lipopolysaccharide-induced nitric oxide release in astrocyte cultures. J Neurosci Res 2002;67:829-836.PubMedCrossRef Molina-Holgado F, et al. Role of CB1 and CB2 receptors in the inhibitory effects of cannabinoids on lipopolysaccharide-induced nitric oxide release in astrocyte cultures. J Neurosci Res 2002;67:829-836.PubMedCrossRef
90.
Zurück zum Zitat Shohami E, et al. Cytokine production in the brain following closed head injury: dexanabinol (HU-211) is a novel TNF-alpha inhibitor and an effective neuroprotectant. J Neuroimmunol 1997;72:169-177.PubMedCrossRef Shohami E, et al. Cytokine production in the brain following closed head injury: dexanabinol (HU-211) is a novel TNF-alpha inhibitor and an effective neuroprotectant. J Neuroimmunol 1997;72:169-177.PubMedCrossRef
91.
Zurück zum Zitat Puffenbarger RA, Boothe AC, Cabral GA. Cannabinoids inhibit LPS-inducible cytokine mRNA expression in rat microglial cells. Glia 2000;29:58-69.PubMedCrossRef Puffenbarger RA, Boothe AC, Cabral GA. Cannabinoids inhibit LPS-inducible cytokine mRNA expression in rat microglial cells. Glia 2000;29:58-69.PubMedCrossRef
92.
Zurück zum Zitat Cabral GA, Harmon KN, Carlisle SJ. Cannabinoid-mediated inhibition of inducible nitric oxide production by rat microglial cells: evidence for CB1 receptor participation. Adv Exp Med Biol 2001;493:207-214.PubMedCrossRef Cabral GA, Harmon KN, Carlisle SJ. Cannabinoid-mediated inhibition of inducible nitric oxide production by rat microglial cells: evidence for CB1 receptor participation. Adv Exp Med Biol 2001;493:207-214.PubMedCrossRef
94.
Zurück zum Zitat Klein TW, et al. The cannabinoid system and cytokine network. Proc Soc Exp Biol Med 2000;225:1-8.PubMedCrossRef Klein TW, et al. The cannabinoid system and cytokine network. Proc Soc Exp Biol Med 2000;225:1-8.PubMedCrossRef
95.
Zurück zum Zitat Molina-Holgado F, et al. Endogenous interleukin-1 receptor antagonist mediates anti-inflammatory and neuroprotective actions of cannabinoids in neurons and glia. J Neurosci 2003;23:6470-6474.PubMed Molina-Holgado F, et al. Endogenous interleukin-1 receptor antagonist mediates anti-inflammatory and neuroprotective actions of cannabinoids in neurons and glia. J Neurosci 2003;23:6470-6474.PubMed
97.
Zurück zum Zitat De Petrocellis L, et al. Plant-derived cannabinoids modulate the activity of transient receptor potential channels of ankyrin type-1 and melastatin type-8. J Pharmacol Exp Ther 2008;325:1007-1015.PubMedCrossRef De Petrocellis L, et al. Plant-derived cannabinoids modulate the activity of transient receptor potential channels of ankyrin type-1 and melastatin type-8. J Pharmacol Exp Ther 2008;325:1007-1015.PubMedCrossRef
98.
Zurück zum Zitat De Petrocellis L, et al. Effects of cannabinoids and cannabinoid-enriched Cannabis extracts on TRP channels and endocannabinoid metabolic enzymes. Br J Pharmacol 2011;163:1479-1494.PubMedCentralPubMedCrossRef De Petrocellis L, et al. Effects of cannabinoids and cannabinoid-enriched Cannabis extracts on TRP channels and endocannabinoid metabolic enzymes. Br J Pharmacol 2011;163:1479-1494.PubMedCentralPubMedCrossRef
99.
Zurück zum Zitat Qin N, et al. TRPV2 is activated by cannabidiol and mediates CGRP release in cultured rat dorsal root ganglion neurons. J Neurosci 2008;28:6231-6238.PubMedCrossRef Qin N, et al. TRPV2 is activated by cannabidiol and mediates CGRP release in cultured rat dorsal root ganglion neurons. J Neurosci 2008;28:6231-6238.PubMedCrossRef
101.
102.
Zurück zum Zitat Devinsky O, et al. Glia and epilepsy: excitability and inflammation. Trends Neurosci 2013;36:174-184.PubMedCrossRef Devinsky O, et al. Glia and epilepsy: excitability and inflammation. Trends Neurosci 2013;36:174-184.PubMedCrossRef
103.
Zurück zum Zitat Thomas BF, et al. Comparative receptor binding analyses of cannabinoid agonists and antagonists. J Pharmacol Exp Ther 1998;285:285-292.PubMed Thomas BF, et al. Comparative receptor binding analyses of cannabinoid agonists and antagonists. J Pharmacol Exp Ther 1998;285:285-292.PubMed
104.
Zurück zum Zitat Bisogno T, et al. Molecular targets for cannabidiol and its synthetic analogues: effect on vanilloid VR1 receptors and on the cellular uptake and enzymatic hydrolysis of anandamide. Br J Pharmacol 2001;134:845-852.PubMedCentralPubMedCrossRef Bisogno T, et al. Molecular targets for cannabidiol and its synthetic analogues: effect on vanilloid VR1 receptors and on the cellular uptake and enzymatic hydrolysis of anandamide. Br J Pharmacol 2001;134:845-852.PubMedCentralPubMedCrossRef
106.
107.
Zurück zum Zitat Russo EB, et al. Agonistic properties of cannabidiol at 5-HT1a receptors. Neurochem Res 2005;30:1037-1043.PubMedCrossRef Russo EB, et al. Agonistic properties of cannabidiol at 5-HT1a receptors. Neurochem Res 2005;30:1037-1043.PubMedCrossRef
108.
Zurück zum Zitat Ahrens J, et al. The nonpsychotropic cannabinoid cannabidiol modulates and directly activates alpha-1 and alpha-1-Beta glycine receptor function. Pharmacology 2009;83:217-222.PubMedCrossRef Ahrens J, et al. The nonpsychotropic cannabinoid cannabidiol modulates and directly activates alpha-1 and alpha-1-Beta glycine receptor function. Pharmacology 2009;83:217-222.PubMedCrossRef
109.
Zurück zum Zitat Ross HR, Napier I, Connor M. Inhibition of recombinant human T-type calcium channels by Delta9-tetrahydrocannabinol and cannabidiol. J Biol Chem 2008;283: 16124-16134.PubMedCentralPubMedCrossRef Ross HR, Napier I, Connor M. Inhibition of recombinant human T-type calcium channels by Delta9-tetrahydrocannabinol and cannabidiol. J Biol Chem 2008;283: 16124-16134.PubMedCentralPubMedCrossRef
110.
Zurück zum Zitat Drysdale AJ, et al. Cannabidiol-induced intracellular Ca2+ elevations in hippocampal cells. Neuropharmacology 2006;50:621-631.PubMedCrossRef Drysdale AJ, et al. Cannabidiol-induced intracellular Ca2+ elevations in hippocampal cells. Neuropharmacology 2006;50:621-631.PubMedCrossRef
111.
Zurück zum Zitat Ryan D, et al. Cannabidiol targets mitochondria to regulate intracellular Ca2+ levels. J Neurosci 2009;29:2053-2063.PubMedCrossRef Ryan D, et al. Cannabidiol targets mitochondria to regulate intracellular Ca2+ levels. J Neurosci 2009;29:2053-2063.PubMedCrossRef
112.
Zurück zum Zitat Rimmerman N, et al. The non-psychoactive plant cannabinoid, cannabidiol affects cholesterol metabolism-related genes in microglial cells. Cell Mol Neurobiol 2011; 31:921-930.PubMedCrossRef Rimmerman N, et al. The non-psychoactive plant cannabinoid, cannabidiol affects cholesterol metabolism-related genes in microglial cells. Cell Mol Neurobiol 2011; 31:921-930.PubMedCrossRef
113.
115.
Zurück zum Zitat Lauckner JE, et al. GPR55 is a cannabinoid receptor that increases intracellular calcium and inhibits M current. Proc Natl Acad Sci U S A 2008;105:2699-2704.PubMedCentralPubMedCrossRef Lauckner JE, et al. GPR55 is a cannabinoid receptor that increases intracellular calcium and inhibits M current. Proc Natl Acad Sci U S A 2008;105:2699-2704.PubMedCentralPubMedCrossRef
116.
Zurück zum Zitat Oka S, et al. Identification of GPR55 as a lysophosphatidylinositol receptor. Biochem Biophys Res Commun 2007;362:928-934.PubMedCrossRef Oka S, et al. Identification of GPR55 as a lysophosphatidylinositol receptor. Biochem Biophys Res Commun 2007;362:928-934.PubMedCrossRef
117.
Zurück zum Zitat Sylantyev S, et al. Cannabinoid- and lysophosphatidylinositol-sensitive receptor GPR55 boosts neurotransmitter release at central synapses. Proc Natl Acad Sci U S A 2013;110:5193-5198.PubMedCentralPubMedCrossRef Sylantyev S, et al. Cannabinoid- and lysophosphatidylinositol-sensitive receptor GPR55 boosts neurotransmitter release at central synapses. Proc Natl Acad Sci U S A 2013;110:5193-5198.PubMedCentralPubMedCrossRef
118.
Zurück zum Zitat Carrier EJ, Auchampach JA, Hillard CJ. Inhibition of an equilibrative nucleoside transporter by cannabidiol: a mechanism of cannabinoid immunosuppression. Proc Natl Acad Sci U S A 2006;103:7895-7900.PubMedCentralPubMedCrossRef Carrier EJ, Auchampach JA, Hillard CJ. Inhibition of an equilibrative nucleoside transporter by cannabidiol: a mechanism of cannabinoid immunosuppression. Proc Natl Acad Sci U S A 2006;103:7895-7900.PubMedCentralPubMedCrossRef
119.
Zurück zum Zitat Pandolfo P, et al. Cannabinoids inhibit the synaptic uptake of adenosine and dopamine in the rat and mouse striatum. Eur J Pharmacol 2011;655:38-45.PubMedCrossRef Pandolfo P, et al. Cannabinoids inhibit the synaptic uptake of adenosine and dopamine in the rat and mouse striatum. Eur J Pharmacol 2011;655:38-45.PubMedCrossRef
121.
Zurück zum Zitat De Petrocellis L, Di Marzo V. Non-CB1, non-CB2 receptors for endocannabinoids, plant cannabinoids, and synthetic cannabimimetics: focus on G-protein-coupled receptors and transient receptor potential channels. J Neuroimmune Pharmacol 2010;5:103-121.PubMedCrossRef De Petrocellis L, Di Marzo V. Non-CB1, non-CB2 receptors for endocannabinoids, plant cannabinoids, and synthetic cannabimimetics: focus on G-protein-coupled receptors and transient receptor potential channels. J Neuroimmune Pharmacol 2010;5:103-121.PubMedCrossRef
122.
Zurück zum Zitat Booz GW. Cannabidiol as an emergent therapeutic strategy for lessening the impact of inflammation on oxidative stress. Free Radic Biol Med 2011;51:1054-1061.PubMedCentralPubMedCrossRef Booz GW. Cannabidiol as an emergent therapeutic strategy for lessening the impact of inflammation on oxidative stress. Free Radic Biol Med 2011;51:1054-1061.PubMedCentralPubMedCrossRef
123.
Zurück zum Zitat Hampson AJ, et al. Neuroprotective antioxidants from marijuana. Ann N Y Acad Sci 2000;899:274-282.PubMedCrossRef Hampson AJ, et al. Neuroprotective antioxidants from marijuana. Ann N Y Acad Sci 2000;899:274-282.PubMedCrossRef
124.
Zurück zum Zitat Liou GI, et al. Mediation of cannabidiol anti-inflammation in the retina by equilibrative nucleoside transporter and A2A adenosine receptor. Invest Ophthalmol Vis Sci 2008;49:5526-5531.PubMedCentralPubMedCrossRef Liou GI, et al. Mediation of cannabidiol anti-inflammation in the retina by equilibrative nucleoside transporter and A2A adenosine receptor. Invest Ophthalmol Vis Sci 2008;49:5526-5531.PubMedCentralPubMedCrossRef
125.
Zurück zum Zitat Hayakawa K, et al. Delayed treatment with cannabidiol has a cerebroprotective action via a cannabinoid receptor-independent myeloperoxidase-inhibiting mechanism. J Neurochem 2007;102:1488-1496.PubMedCrossRef Hayakawa K, et al. Delayed treatment with cannabidiol has a cerebroprotective action via a cannabinoid receptor-independent myeloperoxidase-inhibiting mechanism. J Neurochem 2007;102:1488-1496.PubMedCrossRef
126.
Zurück zum Zitat Hayakawa K, et al. Therapeutic time window of cannabidiol treatment on delayed ischemic damage via high-mobility group box1-inhibiting mechanism. Biol Pharm Bull 2009;32:1538-1544.PubMedCrossRef Hayakawa K, et al. Therapeutic time window of cannabidiol treatment on delayed ischemic damage via high-mobility group box1-inhibiting mechanism. Biol Pharm Bull 2009;32:1538-1544.PubMedCrossRef
127.
Zurück zum Zitat Iuvone T, et al. Neuroprotective effect of cannabidiol, a non-psychoactive component from Cannabis sativa, on beta-amyloid-induced toxicity in PC12 cells. J Neurochem 2004;89:134-141.PubMedCrossRef Iuvone T, et al. Neuroprotective effect of cannabidiol, a non-psychoactive component from Cannabis sativa, on beta-amyloid-induced toxicity in PC12 cells. J Neurochem 2004;89:134-141.PubMedCrossRef
128.
Zurück zum Zitat Esposito G, et al. Cannabidiol inhibits inducible nitric oxide synthase protein expression and nitric oxide production in beta-amyloid stimulated PC12 neurons through p38 MAP kinase and NF-kappaB involvement. Neurosci Lett 2006;399:91-95.PubMedCrossRef Esposito G, et al. Cannabidiol inhibits inducible nitric oxide synthase protein expression and nitric oxide production in beta-amyloid stimulated PC12 neurons through p38 MAP kinase and NF-kappaB involvement. Neurosci Lett 2006;399:91-95.PubMedCrossRef
129.
Zurück zum Zitat Esposito G, et al. Cannabidiol in vivo blunts beta-amyloid induced neuroinflammation by suppressing IL-1beta and iNOS expression. Br J Pharmacol 2007;151:1272-1279.PubMedCentralPubMedCrossRef Esposito G, et al. Cannabidiol in vivo blunts beta-amyloid induced neuroinflammation by suppressing IL-1beta and iNOS expression. Br J Pharmacol 2007;151:1272-1279.PubMedCentralPubMedCrossRef
130.
Zurück zum Zitat Pietr M, et al. Differential changes in GPR55 during microglial cell activation. FEBS Lett 2009;583:2071-2076.PubMedCrossRef Pietr M, et al. Differential changes in GPR55 during microglial cell activation. FEBS Lett 2009;583:2071-2076.PubMedCrossRef
131.
Zurück zum Zitat Staton PC, et al. The putative cannabinoid receptor GPR55 plays a role in mechanical hyperalgesia associated with inflammatory and neuropathic pain. Pain 2008;139: 225-236.PubMedCrossRef Staton PC, et al. The putative cannabinoid receptor GPR55 plays a role in mechanical hyperalgesia associated with inflammatory and neuropathic pain. Pain 2008;139: 225-236.PubMedCrossRef
132.
Zurück zum Zitat Ben-Shabat S, et al. An entourage effect: inactive endogenous fatty acid glycerol esters enhance 2-arachidonoyl-glycerol cannabinoid activity. Eur J Pharmacol 1998;353: 23-31.PubMedCrossRef Ben-Shabat S, et al. An entourage effect: inactive endogenous fatty acid glycerol esters enhance 2-arachidonoyl-glycerol cannabinoid activity. Eur J Pharmacol 1998;353: 23-31.PubMedCrossRef
133.
Zurück zum Zitat Wagner H, Ulrich-Merzenich G. Synergy research: approaching a new generation of phytopharmaceuticals. Phytomedicine 2009;16:97-110.PubMedCrossRef Wagner H, Ulrich-Merzenich G. Synergy research: approaching a new generation of phytopharmaceuticals. Phytomedicine 2009;16:97-110.PubMedCrossRef
134.
Zurück zum Zitat Mechoulam R, Ben-Shabat S. From gan-zi-gun-nu to anandamide and 2-arachidonoylglycerol: the ongoing story of cannabis. Nat Prod Rep 1999;16:131-143.PubMedCrossRef Mechoulam R, Ben-Shabat S. From gan-zi-gun-nu to anandamide and 2-arachidonoylglycerol: the ongoing story of cannabis. Nat Prod Rep 1999;16:131-143.PubMedCrossRef
135.
136.
Zurück zum Zitat Karniol IG, Carlini EA. Pharmacological interaction between cannabidiol and delta 9-tetrahydrocannabinol. Psychopharmacologia 1973;33:53-70.PubMedCrossRef Karniol IG, Carlini EA. Pharmacological interaction between cannabidiol and delta 9-tetrahydrocannabinol. Psychopharmacologia 1973;33:53-70.PubMedCrossRef
137.
Zurück zum Zitat Englund A, et al. Cannabidiol inhibits THC-elicited paranoid symptoms and hippocampal-dependent memory impairment. J Psychopharmacol 2013;27:19-27.PubMedCrossRef Englund A, et al. Cannabidiol inhibits THC-elicited paranoid symptoms and hippocampal-dependent memory impairment. J Psychopharmacol 2013;27:19-27.PubMedCrossRef
138.
Zurück zum Zitat Russo E, Guy GW. A tale of two cannabinoids: the therapeutic rationale for combining tetrahydrocannabinol and cannabidiol. Med Hypotheses 2006;66:234-246.PubMedCrossRef Russo E, Guy GW. A tale of two cannabinoids: the therapeutic rationale for combining tetrahydrocannabinol and cannabidiol. Med Hypotheses 2006;66:234-246.PubMedCrossRef
139.
Zurück zum Zitat Schubart CD, et al. Cannabis with high cannabidiol content is associated with fewer psychotic experiences. Schizophr Res 2011;130:216-221.PubMedCrossRef Schubart CD, et al. Cannabis with high cannabidiol content is associated with fewer psychotic experiences. Schizophr Res 2011;130:216-221.PubMedCrossRef
140.
Zurück zum Zitat Hemaiswarya S, Kruthiventi AK, Doble M. Synergism between natural products and antibiotics against infectious diseases. Phytomedicine 2008;15:639-652.PubMedCrossRef Hemaiswarya S, Kruthiventi AK, Doble M. Synergism between natural products and antibiotics against infectious diseases. Phytomedicine 2008;15:639-652.PubMedCrossRef
142.
Zurück zum Zitat Hill AJ, et al. Phytocannabinoids as novel therapeutic agents in CNS disorders. Pharmacol Ther 2012;133:79-97.PubMedCrossRef Hill AJ, et al. Phytocannabinoids as novel therapeutic agents in CNS disorders. Pharmacol Ther 2012;133:79-97.PubMedCrossRef
143.
Zurück zum Zitat Raol YH, Brooks-Kayal AR. Experimental models of seizures and epilepsies. Prog Mol Biol Transl Sci 2012;105:57-82.PubMedCrossRef Raol YH, Brooks-Kayal AR. Experimental models of seizures and epilepsies. Prog Mol Biol Transl Sci 2012;105:57-82.PubMedCrossRef
144.
Zurück zum Zitat Loscher W. Critical review of current animal models of seizures and epilepsy used in the discovery and development of new antiepileptic drugs. Seizure 2011;20:359-368.PubMedCrossRef Loscher W. Critical review of current animal models of seizures and epilepsy used in the discovery and development of new antiepileptic drugs. Seizure 2011;20:359-368.PubMedCrossRef
145.
Zurück zum Zitat Simonato M, et al. The challenge and promise of anti-epileptic therapy development in animal models. Lancet Neurol 2014;13:949-960.PubMedCrossRef Simonato M, et al. The challenge and promise of anti-epileptic therapy development in animal models. Lancet Neurol 2014;13:949-960.PubMedCrossRef
146.
Zurück zum Zitat Marsicano G, et al. CB1 cannabinoid receptors and on-demand defense against excitotoxicity. Science 2003;302:84-88.PubMedCrossRef Marsicano G, et al. CB1 cannabinoid receptors and on-demand defense against excitotoxicity. Science 2003;302:84-88.PubMedCrossRef
147.
Zurück zum Zitat Wallace MJ, et al. The endogenous cannabinoid system regulates seizure frequency and duration in a model of temporal lobe epilepsy. J Pharmacol Exp Ther 2003;307: 129-137.PubMedCrossRef Wallace MJ, et al. The endogenous cannabinoid system regulates seizure frequency and duration in a model of temporal lobe epilepsy. J Pharmacol Exp Ther 2003;307: 129-137.PubMedCrossRef
148.
Zurück zum Zitat Karanian DA, et al. Endocannabinoid enhancement protects against kainic acid-induced seizures and associated brain damage. J Pharmacol Exp Ther 2007;322: 1059-1066.PubMedCrossRef Karanian DA, et al. Endocannabinoid enhancement protects against kainic acid-induced seizures and associated brain damage. J Pharmacol Exp Ther 2007;322: 1059-1066.PubMedCrossRef
149.
Zurück zum Zitat Karanian DA, et al. Dual modulation of endocannabinoid transport and fatty acid amide hydrolase protects against excitotoxicity. J Neurosci 2005;25:7813-7820.PubMedCrossRef Karanian DA, et al. Dual modulation of endocannabinoid transport and fatty acid amide hydrolase protects against excitotoxicity. J Neurosci 2005;25:7813-7820.PubMedCrossRef
150.
Zurück zum Zitat Naidoo V, et al. Equipotent inhibition of fatty acid amide hydrolase and monoacylglycerol lipase—dual targets of the endocannabinoid system to protect against seizure pathology. Neurotherapeutics 2012;9:801-813.PubMedCentralPubMedCrossRef Naidoo V, et al. Equipotent inhibition of fatty acid amide hydrolase and monoacylglycerol lipase—dual targets of the endocannabinoid system to protect against seizure pathology. Neurotherapeutics 2012;9:801-813.PubMedCentralPubMedCrossRef
153.
Zurück zum Zitat Guggenhuber S, et al. AAV vector-mediated overexpression of CB1 cannabinoid receptor in pyramidal neurons of the hippocampus protects against seizure-induced excitoxicity. PLoS One 2010;5:e15707.PubMedCentralPubMedCrossRef Guggenhuber S, et al. AAV vector-mediated overexpression of CB1 cannabinoid receptor in pyramidal neurons of the hippocampus protects against seizure-induced excitoxicity. PLoS One 2010;5:e15707.PubMedCentralPubMedCrossRef
155.
Zurück zum Zitat Falenski KW, et al. Status epilepticus causes a long-lasting redistribution of hippocampal cannabinoid type 1 receptor expression and function in the rat pilocarpine model of acquired epilepsy. Neuroscience 2007;146:1232-1244.PubMedCentralPubMedCrossRef Falenski KW, et al. Status epilepticus causes a long-lasting redistribution of hippocampal cannabinoid type 1 receptor expression and function in the rat pilocarpine model of acquired epilepsy. Neuroscience 2007;146:1232-1244.PubMedCentralPubMedCrossRef
156.
Zurück zum Zitat Falenski KW, et al. Temporal characterization of changes in hippocampal cannabinoid CB(1) receptor expression following pilocarpine-induced status epilepticus. Brain Res 2009;1262:64-72.PubMedCentralPubMedCrossRef Falenski KW, et al. Temporal characterization of changes in hippocampal cannabinoid CB(1) receptor expression following pilocarpine-induced status epilepticus. Brain Res 2009;1262:64-72.PubMedCentralPubMedCrossRef
157.
Zurück zum Zitat Bhaskaran MD, Smith BN. Cannabinoid-mediated inhibition of recurrent excitatory circuitry in the dentate gyrus in a mouse model of temporal lobe epilepsy. PLoS One 2010;5:e10683.PubMedCentralPubMedCrossRef Bhaskaran MD, Smith BN. Cannabinoid-mediated inhibition of recurrent excitatory circuitry in the dentate gyrus in a mouse model of temporal lobe epilepsy. PLoS One 2010;5:e10683.PubMedCentralPubMedCrossRef
158.
Zurück zum Zitat Sayers KW, et al. Statistical parametric mapping reveals regional alterations in cannabinoid CB1 receptor distribution and G-protein activation in the 3D reconstructed epileptic rat brain. Epilepsia 2012;53:897-907.PubMedCentralPubMedCrossRef Sayers KW, et al. Statistical parametric mapping reveals regional alterations in cannabinoid CB1 receptor distribution and G-protein activation in the 3D reconstructed epileptic rat brain. Epilepsia 2012;53:897-907.PubMedCentralPubMedCrossRef
159.
Zurück zum Zitat Ludanyi A, et al. Downregulation of the CB1 cannabinoid receptor and related molecular elements of the endocannabinoid system in epileptic human hippocampus. J Neurosci 2008;28:2976-2990.PubMedCrossRef Ludanyi A, et al. Downregulation of the CB1 cannabinoid receptor and related molecular elements of the endocannabinoid system in epileptic human hippocampus. J Neurosci 2008;28:2976-2990.PubMedCrossRef
160.
Zurück zum Zitat Romigi A, et al. Cerebrospinal fluid levels of the endocannabinoid anandamide are reduced in patients with untreated newly diagnosed temporal lobe epilepsy. Epilepsia 2010;51:768-772.PubMedCrossRef Romigi A, et al. Cerebrospinal fluid levels of the endocannabinoid anandamide are reduced in patients with untreated newly diagnosed temporal lobe epilepsy. Epilepsia 2010;51:768-772.PubMedCrossRef
161.
Zurück zum Zitat Wyeth MS, et al. Selective reduction of cholecystokinin-positive basket cell innervation in a model of temporal lobe epilepsy. J Neurosci 2010;30:8993-9006.PubMedCentralPubMedCrossRef Wyeth MS, et al. Selective reduction of cholecystokinin-positive basket cell innervation in a model of temporal lobe epilepsy. J Neurosci 2010;30:8993-9006.PubMedCentralPubMedCrossRef
162.
Zurück zum Zitat Sun C, et al. Loss of cholecystokinin-containing terminals in temporal lobe epilepsy. Neurobiol Dis 2014;62:44-55.PubMedCrossRef Sun C, et al. Loss of cholecystokinin-containing terminals in temporal lobe epilepsy. Neurobiol Dis 2014;62:44-55.PubMedCrossRef
163.
Zurück zum Zitat Karlocai MR, et al. Redistribution of CB1 cannabinoid receptors in the acute and chronic phases of pilocarpine-induced epilepsy. PLoS One 2011;6:e27196.PubMedCentralPubMedCrossRef Karlocai MR, et al. Redistribution of CB1 cannabinoid receptors in the acute and chronic phases of pilocarpine-induced epilepsy. PLoS One 2011;6:e27196.PubMedCentralPubMedCrossRef
164.
165.
Zurück zum Zitat Chen K, et al. Long-term plasticity of endocannabinoid signaling induced by developmental febrile seizures. Neuron 2003;39:599-611.PubMedCrossRef Chen K, et al. Long-term plasticity of endocannabinoid signaling induced by developmental febrile seizures. Neuron 2003;39:599-611.PubMedCrossRef
166.
Zurück zum Zitat Chen K, et al. Prevention of plasticity of endocannabinoid signaling inhibits persistent limbic hyperexcitability caused by developmental seizures. J Neurosci 2007;27: 46-58.PubMedCrossRef Chen K, et al. Prevention of plasticity of endocannabinoid signaling inhibits persistent limbic hyperexcitability caused by developmental seizures. J Neurosci 2007;27: 46-58.PubMedCrossRef
167.
Zurück zum Zitat Hill AJ, Hill TD, Whalley B. The development of cannabinoid based therapies for epilepsy. In: Murillo-Rodriguez (Ed.) Endocannabinoids: molecular, pharmacological, behavioral and clinical features. bentham science publishers, Oak Park, IL, 2013, pp 164-204. Hill AJ, Hill TD, Whalley B. The development of cannabinoid based therapies for epilepsy. In: Murillo-Rodriguez (Ed.) Endocannabinoids: molecular, pharmacological, behavioral and clinical features. bentham science publishers, Oak Park, IL, 2013, pp 164-204.
168.
Zurück zum Zitat Manna SS, Umathe SN. Involvement of transient receptor potential vanilloid type 1 channels in the pro-convulsant effect of anandamide in pentylenetetrazole-induced seizures. Epilepsy Res 2012;100:113-124.PubMedCrossRef Manna SS, Umathe SN. Involvement of transient receptor potential vanilloid type 1 channels in the pro-convulsant effect of anandamide in pentylenetetrazole-induced seizures. Epilepsy Res 2012;100:113-124.PubMedCrossRef
169.
Zurück zum Zitat Luszczki JJ, et al. Arachidonyl-2'-chloroethylamide, a highly selective cannabinoid CB1 receptor agonist, enhances the anticonvulsant action of valproate in the mouse maximal electroshock-induced seizure model. Eur J Pharmacol 2006;547:65-74.PubMedCrossRef Luszczki JJ, et al. Arachidonyl-2'-chloroethylamide, a highly selective cannabinoid CB1 receptor agonist, enhances the anticonvulsant action of valproate in the mouse maximal electroshock-induced seizure model. Eur J Pharmacol 2006;547:65-74.PubMedCrossRef
170.
Zurück zum Zitat Luszczki JJ, et al. Effect of arachidonyl-2'-chloroethylamide, a selective cannabinoid CB1 receptor agonist, on the protective action of the various antiepileptic drugs in the mouse maximal electroshock-induced seizure model. Prog Neuropsychopharmacol Biol Psychiatry 2010;34:18-25.PubMedCrossRef Luszczki JJ, et al. Effect of arachidonyl-2'-chloroethylamide, a selective cannabinoid CB1 receptor agonist, on the protective action of the various antiepileptic drugs in the mouse maximal electroshock-induced seizure model. Prog Neuropsychopharmacol Biol Psychiatry 2010;34:18-25.PubMedCrossRef
171.
Zurück zum Zitat Luszczki JJ, et al. Synthetic cannabinoid WIN 55,212-2 mesylate enhances the protective action of four classical antiepileptic drugs against maximal electroshock-induced seizures in mice. Pharmacol Biochem Behav 2011;98:261-267.PubMedCrossRef Luszczki JJ, et al. Synthetic cannabinoid WIN 55,212-2 mesylate enhances the protective action of four classical antiepileptic drugs against maximal electroshock-induced seizures in mice. Pharmacol Biochem Behav 2011;98:261-267.PubMedCrossRef
172.
Zurück zum Zitat Luszczki JJ, et al. Effects of WIN 55,212-2 mesylate (a synthetic cannabinoid) on the protective action of clonazepam, ethosuximide, phenobarbital and valproate against pentylenetetrazole-induced clonic seizures in mice. Prog Neuropsychopharmacol Biol Psychiatry 2011;35:1870-1876.PubMedCrossRef Luszczki JJ, et al. Effects of WIN 55,212-2 mesylate (a synthetic cannabinoid) on the protective action of clonazepam, ethosuximide, phenobarbital and valproate against pentylenetetrazole-induced clonic seizures in mice. Prog Neuropsychopharmacol Biol Psychiatry 2011;35:1870-1876.PubMedCrossRef
173.
Zurück zum Zitat Andres-Mach M, et al. Effect of ACEA--a selective cannabinoid CB1 receptor agonist on the protective action of different antiepileptic drugs in the mouse pentylenetetrazole-induced seizure model. Prog Neuropsychopharmacol Biol Psychiatry 2012;39: 301-309.PubMedCrossRef Andres-Mach M, et al. Effect of ACEA--a selective cannabinoid CB1 receptor agonist on the protective action of different antiepileptic drugs in the mouse pentylenetetrazole-induced seizure model. Prog Neuropsychopharmacol Biol Psychiatry 2012;39: 301-309.PubMedCrossRef
174.
Zurück zum Zitat Luszczki JJ, et al. Effects of WIN 55,212-2 mesylate on the anticonvulsant action of lamotrigine, oxcarbazepine, pregabalin and topiramate against maximal electroshock-induced seizures in mice. Eur J Pharmacol 2013;720:247-254.PubMedCrossRef Luszczki JJ, et al. Effects of WIN 55,212-2 mesylate on the anticonvulsant action of lamotrigine, oxcarbazepine, pregabalin and topiramate against maximal electroshock-induced seizures in mice. Eur J Pharmacol 2013;720:247-254.PubMedCrossRef
175.
Zurück zum Zitat Florek-Luszczki M, et al. Effects of WIN 55,212-2 (a non-selective cannabinoid CB1 and CB 2 receptor agonist) on the protective action of various classical antiepileptic drugs in the mouse 6 Hz psychomotor seizure model. J Neural Transm 2014;121: 707-715.PubMedCentralPubMedCrossRef Florek-Luszczki M, et al. Effects of WIN 55,212-2 (a non-selective cannabinoid CB1 and CB 2 receptor agonist) on the protective action of various classical antiepileptic drugs in the mouse 6 Hz psychomotor seizure model. J Neural Transm 2014;121: 707-715.PubMedCentralPubMedCrossRef
176.
Zurück zum Zitat Florek-Luszczki M, Zagaja M, Luszczki JJ. Influence of WIN 55,212-2 on the anticonvulsant and acute neurotoxic potential of clobazam and lacosamide in the maximal electroshock-induced seizure model and chimney test in mice. Epilepsy Res 2014;108:1728-1733.PubMedCrossRef Florek-Luszczki M, Zagaja M, Luszczki JJ. Influence of WIN 55,212-2 on the anticonvulsant and acute neurotoxic potential of clobazam and lacosamide in the maximal electroshock-induced seizure model and chimney test in mice. Epilepsy Res 2014;108:1728-1733.PubMedCrossRef
177.
Zurück zum Zitat Florek-Luszczki M, et al. Effects of WIN 55,212-2 (a synthetic cannabinoid CB1 and CB2 receptor agonist) on the anticonvulsant activity of various novel antiepileptic drugs against 6Hz-induced psychomotor seizures in mice. Pharmacol Biochem Behav 2015; 130:53-58.PubMedCrossRef Florek-Luszczki M, et al. Effects of WIN 55,212-2 (a synthetic cannabinoid CB1 and CB2 receptor agonist) on the anticonvulsant activity of various novel antiepileptic drugs against 6Hz-induced psychomotor seizures in mice. Pharmacol Biochem Behav 2015; 130:53-58.PubMedCrossRef
178.
Zurück zum Zitat Chesher GB, Jackson DM. The effect of withdrawal from cannabis on pentylenetetrazol convulsive threshold in mice. Psychopharmacologia 1974;40: 129-135.PubMedCrossRef Chesher GB, Jackson DM. The effect of withdrawal from cannabis on pentylenetetrazol convulsive threshold in mice. Psychopharmacologia 1974;40: 129-135.PubMedCrossRef
179.
Zurück zum Zitat Chesher GB, Jackson DM, Malor RM. Interaction of delta9-tetrahydrocannabinol and cannabidiol with phenobarbitone in protecting mice from electrically induced convulsions. J Pharm Pharmacol 1975;27:608-609.PubMedCrossRef Chesher GB, Jackson DM, Malor RM. Interaction of delta9-tetrahydrocannabinol and cannabidiol with phenobarbitone in protecting mice from electrically induced convulsions. J Pharm Pharmacol 1975;27:608-609.PubMedCrossRef
180.
Zurück zum Zitat National Toxicology Program. NTP toxicology and carcinogenesis studies of 1-trans-delta(9)-tetrahydrocannabinol (CAS No. 1972-08-3) in F344 rats and B6C3F1 mice (gavage studies). Natl Toxicol Program Tech Rep Ser 1996;446:1-317. National Toxicology Program. NTP toxicology and carcinogenesis studies of 1-trans-delta(9)-tetrahydrocannabinol (CAS No. 1972-08-3) in F344 rats and B6C3F1 mice (gavage studies). Natl Toxicol Program Tech Rep Ser 1996;446:1-317.
182.
Zurück zum Zitat Oviedo A, Glowa J, Herkenham M. Chronic cannabinoid administration alters cannabinoid receptor binding in rat brain: a quantitative autoradiographic study. Brain Res 1993;616:293-302.PubMedCrossRef Oviedo A, Glowa J, Herkenham M. Chronic cannabinoid administration alters cannabinoid receptor binding in rat brain: a quantitative autoradiographic study. Brain Res 1993;616:293-302.PubMedCrossRef
183.
Zurück zum Zitat Rodriguez de Fonseca F, et al. Downregulation of rat brain cannabinoid binding sites after chronic delta 9-tetrahydrocannabinol treatment. Pharmacol Biochem Behav 1994;47:33-40.PubMedCrossRef Rodriguez de Fonseca F, et al. Downregulation of rat brain cannabinoid binding sites after chronic delta 9-tetrahydrocannabinol treatment. Pharmacol Biochem Behav 1994;47:33-40.PubMedCrossRef
184.
Zurück zum Zitat Sim LJ, et al. Effects of chronic treatment with delta9-tetrahydrocannabinol on cannabinoid-stimulated [35S]GTPgammaS autoradiography in rat brain. J Neurosci 1996;16:8057-8066.PubMed Sim LJ, et al. Effects of chronic treatment with delta9-tetrahydrocannabinol on cannabinoid-stimulated [35S]GTPgammaS autoradiography in rat brain. J Neurosci 1996;16:8057-8066.PubMed
185.
Zurück zum Zitat Fan F, et al. Cannabinoid receptor down-regulation without alteration of the inhibitory effect of CP 55,940 on adenylyl cyclase in the cerebellum of CP 55,940-tolerant mice. Brain Res 1996;706:13-20.PubMedCrossRef Fan F, et al. Cannabinoid receptor down-regulation without alteration of the inhibitory effect of CP 55,940 on adenylyl cyclase in the cerebellum of CP 55,940-tolerant mice. Brain Res 1996;706:13-20.PubMedCrossRef
186.
Zurück zum Zitat Romero J, et al. Effects of chronic exposure to delta9-tetrahydrocannabinol on cannabinoid receptor binding and mRNA levels in several rat brain regions. Brain Res Mol Brain Res 1997;46:100-108.PubMedCrossRef Romero J, et al. Effects of chronic exposure to delta9-tetrahydrocannabinol on cannabinoid receptor binding and mRNA levels in several rat brain regions. Brain Res Mol Brain Res 1997;46:100-108.PubMedCrossRef
187.
Zurück zum Zitat Romero J, et al. Autoradiographic analysis of cannabinoid receptor binding and cannabinoid agonist-stimulated [35S]GTP gamma S binding in morphine-dependent mice. Drug Alcohol Depend 1998;50:241-249.PubMedCrossRef Romero J, et al. Autoradiographic analysis of cannabinoid receptor binding and cannabinoid agonist-stimulated [35S]GTP gamma S binding in morphine-dependent mice. Drug Alcohol Depend 1998;50:241-249.PubMedCrossRef
188.
Zurück zum Zitat Romero J, et al. Cannabinoid receptor and WIN-55,212-2-stimulated [35S]GTP gamma S binding and cannabinoid receptor mRNA levels in the basal ganglia and the cerebellum of adult male rats chronically exposed to delta 9-tetrahydrocannabinol. J Mol Neurosci 1998;11:109-119.PubMedCrossRef Romero J, et al. Cannabinoid receptor and WIN-55,212-2-stimulated [35S]GTP gamma S binding and cannabinoid receptor mRNA levels in the basal ganglia and the cerebellum of adult male rats chronically exposed to delta 9-tetrahydrocannabinol. J Mol Neurosci 1998;11:109-119.PubMedCrossRef
189.
Zurück zum Zitat Romero J, et al. Time-course of the cannabinoid receptor down-regulation in the adult rat brain caused by repeated exposure to delta9-tetrahydrocannabinol. Synapse 1998;30:298-308.PubMedCrossRef Romero J, et al. Time-course of the cannabinoid receptor down-regulation in the adult rat brain caused by repeated exposure to delta9-tetrahydrocannabinol. Synapse 1998;30:298-308.PubMedCrossRef
190.
Zurück zum Zitat Zhuang S, et al. Effects of long-term exposure to delta9-THC on expression of cannabinoid receptor (CB1) mRNA in different rat brain regions. Brain Res Mol Brain Res 1998;62:141-149.PubMedCrossRef Zhuang S, et al. Effects of long-term exposure to delta9-THC on expression of cannabinoid receptor (CB1) mRNA in different rat brain regions. Brain Res Mol Brain Res 1998;62:141-149.PubMedCrossRef
191.
Zurück zum Zitat Hsieh C, et al. Internalization and recycling of the CB1 cannabinoid receptor. J Neurochem 1999;73:493-501.PubMedCrossRef Hsieh C, et al. Internalization and recycling of the CB1 cannabinoid receptor. J Neurochem 1999;73:493-501.PubMedCrossRef
192.
Zurück zum Zitat Corchero J, et al. Time-dependent differences of repeated administration with Delta9-tetrahydrocannabinol in proenkephalin and cannabinoid receptor gene expression and G-protein activation by mu-opioid and CB1-cannabinoid receptors in the caudateputamen. Brain Res Mol Brain Res 1999;67:148-157.PubMedCrossRef Corchero J, et al. Time-dependent differences of repeated administration with Delta9-tetrahydrocannabinol in proenkephalin and cannabinoid receptor gene expression and G-protein activation by mu-opioid and CB1-cannabinoid receptors in the caudateputamen. Brain Res Mol Brain Res 1999;67:148-157.PubMedCrossRef
193.
Zurück zum Zitat Breivogel CS, et al. Chronic delta9-tetrahydrocannabinol treatment produces a time-dependent loss of cannabinoid receptors and cannabinoid receptor-activated G proteins in rat brain. J Neurochem 1999;73:2447-2459.PubMedCrossRef Breivogel CS, et al. Chronic delta9-tetrahydrocannabinol treatment produces a time-dependent loss of cannabinoid receptors and cannabinoid receptor-activated G proteins in rat brain. J Neurochem 1999;73:2447-2459.PubMedCrossRef
194.
Zurück zum Zitat Breivogel CS, et al. The effects of delta9-tetrahydrocannabinol physical dependence on brain cannabinoid receptors. Eur J Pharmacol 2003;459:139-150.PubMedCrossRef Breivogel CS, et al. The effects of delta9-tetrahydrocannabinol physical dependence on brain cannabinoid receptors. Eur J Pharmacol 2003;459:139-150.PubMedCrossRef
195.
Zurück zum Zitat McKinney DL, et al. Dose-related differences in the regional pattern of cannabinoid receptor adaptation and in vivo tolerance development to delta9-tetrahydrocannabinol. J Pharmacol Exp Ther 2008;324:664-673.PubMedCentralPubMedCrossRef McKinney DL, et al. Dose-related differences in the regional pattern of cannabinoid receptor adaptation and in vivo tolerance development to delta9-tetrahydrocannabinol. J Pharmacol Exp Ther 2008;324:664-673.PubMedCentralPubMedCrossRef
196.
Zurück zum Zitat Sim-Selley LJ, Martin BR. Effect of chronic administration of R-(+)-[2,3-Dihydro-5-methyl-3-[(morpholinyl)methyl]pyrrolo[1,2,3-de]-1,4-benzoxaz inyl]-(1-naphthalenyl)methanone mesylate (WIN55,212-2) or delta(9)-tetrahydrocannabinol on cannabinoid receptor adaptation in mice. J Pharmacol Exp Ther 2002;303:36-44.PubMedCrossRef Sim-Selley LJ, Martin BR. Effect of chronic administration of R-(+)-[2,3-Dihydro-5-methyl-3-[(morpholinyl)methyl]pyrrolo[1,2,3-de]-1,4-benzoxaz inyl]-(1-naphthalenyl)methanone mesylate (WIN55,212-2) or delta(9)-tetrahydrocannabinol on cannabinoid receptor adaptation in mice. J Pharmacol Exp Ther 2002;303:36-44.PubMedCrossRef
197.
Zurück zum Zitat Sim-Selley LJ. Regulation of cannabinoid CB1 receptors in the central nervous system by chronic cannabinoids. Crit Rev Neurobiol 2003;15:91-119.PubMedCrossRef Sim-Selley LJ. Regulation of cannabinoid CB1 receptors in the central nervous system by chronic cannabinoids. Crit Rev Neurobiol 2003;15:91-119.PubMedCrossRef
198.
Zurück zum Zitat Sim-Selley LJ, et al. Prolonged recovery rate of CB1 receptor adaptation after cessation of long-term cannabinoid administration. Mol Pharmacol 2006;70:986-996.PubMedCrossRef Sim-Selley LJ, et al. Prolonged recovery rate of CB1 receptor adaptation after cessation of long-term cannabinoid administration. Mol Pharmacol 2006;70:986-996.PubMedCrossRef
199.
Zurück zum Zitat Martin BR, Sim-Selley LJ, Selley DE. Signaling pathways involved in the development of cannabinoid tolerance. Trends Pharmacol Sci 2004;25:325-330.PubMedCrossRef Martin BR, Sim-Selley LJ, Selley DE. Signaling pathways involved in the development of cannabinoid tolerance. Trends Pharmacol Sci 2004;25:325-330.PubMedCrossRef
200.
Zurück zum Zitat Villares J. Chronic use of marijuana decreases cannabinoid receptor binding and mRNA expression in the human brain. Neuroscience 2007;145:323-334.PubMedCrossRef Villares J. Chronic use of marijuana decreases cannabinoid receptor binding and mRNA expression in the human brain. Neuroscience 2007;145:323-334.PubMedCrossRef
201.
Zurück zum Zitat Coutts AA, et al. Agonist-induced internalization and trafficking of cannabinoid CB1 receptors in hippocampal neurons. J Neurosci 2001;21:2425-2433.PubMed Coutts AA, et al. Agonist-induced internalization and trafficking of cannabinoid CB1 receptors in hippocampal neurons. J Neurosci 2001;21:2425-2433.PubMed
202.
Zurück zum Zitat Lundberg DJ, Daniel AR, Thayer SA. Delta(9)-Tetrahydrocannabinol-induced desensitization of cannabinoid-mediated inhibition of synaptic transmission between hippocampal neurons in culture. Neuropharmacology 2005;49:1170-1177.PubMedCrossRef Lundberg DJ, Daniel AR, Thayer SA. Delta(9)-Tetrahydrocannabinol-induced desensitization of cannabinoid-mediated inhibition of synaptic transmission between hippocampal neurons in culture. Neuropharmacology 2005;49:1170-1177.PubMedCrossRef
203.
Zurück zum Zitat Deshpande LS, Blair RE, DeLorenzo RJ. Prolonged cannabinoid exposure alters GABA(A) receptor mediated synaptic function in cultured hippocampal neurons. Exp Neurol 2011;229:264-273.PubMedCentralPubMedCrossRef Deshpande LS, Blair RE, DeLorenzo RJ. Prolonged cannabinoid exposure alters GABA(A) receptor mediated synaptic function in cultured hippocampal neurons. Exp Neurol 2011;229:264-273.PubMedCentralPubMedCrossRef
204.
Zurück zum Zitat Dewey WL. Cannabinoid pharmacology. Pharmacol Rev 1986;38:151-178.PubMed Dewey WL. Cannabinoid pharmacology. Pharmacol Rev 1986;38:151-178.PubMed
205.
Zurück zum Zitat Abood ME, et al. Development of behavioral tolerance to delta 9-THC without alteration of cannabinoid receptor binding or mRNA levels in whole brain. Pharmacol Biochem Behav 1993;46:575-579.PubMedCrossRef Abood ME, et al. Development of behavioral tolerance to delta 9-THC without alteration of cannabinoid receptor binding or mRNA levels in whole brain. Pharmacol Biochem Behav 1993;46:575-579.PubMedCrossRef
206.
Zurück zum Zitat Ten Ham M, Loskota WJ, Lomax P. Acute and chronic effects of beta9-tetrahydrocannabinol on seizures in the gerbil. Eur J Pharmacol 1975;31:148-152.PubMedCrossRef Ten Ham M, Loskota WJ, Lomax P. Acute and chronic effects of beta9-tetrahydrocannabinol on seizures in the gerbil. Eur J Pharmacol 1975;31:148-152.PubMedCrossRef
207.
Zurück zum Zitat Corcoran ME, McCaughran JA, Jr., Wada JA, Antiepileptic and prophylactic effects of tetrahydrocannabinols in amygdaloid kindled rats. Epilepsia 1978;19: 47-55.PubMedCrossRef Corcoran ME, McCaughran JA, Jr., Wada JA, Antiepileptic and prophylactic effects of tetrahydrocannabinols in amygdaloid kindled rats. Epilepsia 1978;19: 47-55.PubMedCrossRef
208.
Zurück zum Zitat Colasanti BK, Lindamood C, 3rd, Craig CR. Effects of marihuana cannabinoids on seizure activity in cobalt-epileptic rats. Pharmacol Biochem Behav 1982;16: 573-578.PubMedCrossRef Colasanti BK, Lindamood C, 3rd, Craig CR. Effects of marihuana cannabinoids on seizure activity in cobalt-epileptic rats. Pharmacol Biochem Behav 1982;16: 573-578.PubMedCrossRef
209.
Zurück zum Zitat Karler R, Turkanis SA. Subacute cannabinoid treatment: anticonvulsant activity and withdrawal excitability in mice. Br J Pharmacol 1980;68:479-484.PubMedCentralPubMedCrossRef Karler R, Turkanis SA. Subacute cannabinoid treatment: anticonvulsant activity and withdrawal excitability in mice. Br J Pharmacol 1980;68:479-484.PubMedCentralPubMedCrossRef
210.
Zurück zum Zitat Blair RE, et al. Prolonged exposure to WIN55,212-2 causes downregulation of the CB1 receptor and the development of tolerance to its anticonvulsant effects in the hippocampal neuronal culture model of acquired epilepsy. Neuropharmacology 2009;57:208-218.PubMedCentralPubMedCrossRef Blair RE, et al. Prolonged exposure to WIN55,212-2 causes downregulation of the CB1 receptor and the development of tolerance to its anticonvulsant effects in the hippocampal neuronal culture model of acquired epilepsy. Neuropharmacology 2009;57:208-218.PubMedCentralPubMedCrossRef
211.
Zurück zum Zitat Jones RT, Benowitz N, Bachman J. Clinical studies of cannabis tolerance and dependence. Ann N Y Acad Sci 1976;282:221-239.PubMedCrossRef Jones RT, Benowitz N, Bachman J. Clinical studies of cannabis tolerance and dependence. Ann N Y Acad Sci 1976;282:221-239.PubMedCrossRef
212.
Zurück zum Zitat Jones RT, Benowitz NL, Herning RI. Clinical relevance of cannabis tolerance and dependence. J Clin Pharmacol 1981;21(8-9 Suppl.):143S-152S.PubMedCrossRef Jones RT, Benowitz NL, Herning RI. Clinical relevance of cannabis tolerance and dependence. J Clin Pharmacol 1981;21(8-9 Suppl.):143S-152S.PubMedCrossRef
213.
Zurück zum Zitat Kirk JM, de Wit H. Responses to oral delta9-tetrahydrocannabinol in frequent and infrequent marijuana users. Pharmacol Biochem Behav 1999;63:137-142.PubMedCrossRef Kirk JM, de Wit H. Responses to oral delta9-tetrahydrocannabinol in frequent and infrequent marijuana users. Pharmacol Biochem Behav 1999;63:137-142.PubMedCrossRef
214.
Zurück zum Zitat Hart CL, et al. Comparison of smoked marijuana and oral Delta(9)-tetrahydrocannabinol in humans. Psychopharmacology (Berl) 2002;164:407-415.CrossRef Hart CL, et al. Comparison of smoked marijuana and oral Delta(9)-tetrahydrocannabinol in humans. Psychopharmacology (Berl) 2002;164:407-415.CrossRef
215.
Zurück zum Zitat Babor TF, et al. Marijuana consumption and tolerance to physiological and subjective effects. Arch Gen Psychiatry 1975;32:1548-1552.PubMedCrossRef Babor TF, et al. Marijuana consumption and tolerance to physiological and subjective effects. Arch Gen Psychiatry 1975;32:1548-1552.PubMedCrossRef
216.
Zurück zum Zitat Nowlan R, Cohen S. Tolerance to marijuana: heart rate and subjective "high". Clin Pharmacol Ther 1977;22:550-556.PubMedCrossRef Nowlan R, Cohen S. Tolerance to marijuana: heart rate and subjective "high". Clin Pharmacol Ther 1977;22:550-556.PubMedCrossRef
217.
Zurück zum Zitat Aceto MD, et al. Cannabinoid precipitated withdrawal by the selective cannabinoid receptor antagonist, SR 141716A. Eur J Pharmacol 1995;282:R1-R2.PubMedCrossRef Aceto MD, et al. Cannabinoid precipitated withdrawal by the selective cannabinoid receptor antagonist, SR 141716A. Eur J Pharmacol 1995;282:R1-R2.PubMedCrossRef
218.
Zurück zum Zitat Tsou K, Patrick SL, Walker JM. Physical withdrawal in rats tolerant to delta 9-tetrahydrocannabinol precipitated by a cannabinoid receptor antagonist. Eur J Pharmacol 1995;280:R13-R15.PubMedCrossRef Tsou K, Patrick SL, Walker JM. Physical withdrawal in rats tolerant to delta 9-tetrahydrocannabinol precipitated by a cannabinoid receptor antagonist. Eur J Pharmacol 1995;280:R13-R15.PubMedCrossRef
219.
Zurück zum Zitat Rodriguez de Fonseca F, et al. Activation of corticotropin-releasing factor in the limbic system during cannabinoid withdrawal. Science 1997;276:2050-2054.PubMedCrossRef Rodriguez de Fonseca F, et al. Activation of corticotropin-releasing factor in the limbic system during cannabinoid withdrawal. Science 1997;276:2050-2054.PubMedCrossRef
220.
Zurück zum Zitat Kaymakcalan S. Tolerance to and dependence on cannabis. Bull Narc 1973;25:39–47. Kaymakcalan S. Tolerance to and dependence on cannabis. Bull Narc 1973;25:39–47.
221.
Zurück zum Zitat Beardsley PM, Balster RL, Harris LS. Dependence on tetrahydrocannabinol in rhesus monkeys. J Pharmacol Exp Ther 1986;239:311-319.PubMed Beardsley PM, Balster RL, Harris LS. Dependence on tetrahydrocannabinol in rhesus monkeys. J Pharmacol Exp Ther 1986;239:311-319.PubMed
222.
Zurück zum Zitat Budney AJ, Hughes JR. The cannabis withdrawal syndrome. Curr Opin Psychiatry 2006;19:233-238.PubMedCrossRef Budney AJ, Hughes JR. The cannabis withdrawal syndrome. Curr Opin Psychiatry 2006;19:233-238.PubMedCrossRef
223.
Zurück zum Zitat Karler R, et al. Interaction between delta-9-tetrahydrocannabinol and kindling by electrical and chemical stimuli in mice. Neuropharmacology 1984;23:1315-1320.PubMedCrossRef Karler R, et al. Interaction between delta-9-tetrahydrocannabinol and kindling by electrical and chemical stimuli in mice. Neuropharmacology 1984;23:1315-1320.PubMedCrossRef
224.
Zurück zum Zitat Karler R, Calder LD, Turkanis SA. Prolonged CNS hyperexcitability in mice after a single exposure to delta-9-tetrahydrocannabinol. Neuropharmacology 1986;25:441-446.PubMedCrossRef Karler R, Calder LD, Turkanis SA. Prolonged CNS hyperexcitability in mice after a single exposure to delta-9-tetrahydrocannabinol. Neuropharmacology 1986;25:441-446.PubMedCrossRef
225.
Zurück zum Zitat Hegde M, et al. Seizure exacerbation in two patients with focal epilepsy following marijuana cessation. Epilepsy Behav 2012;25:563-566.PubMedCrossRef Hegde M, et al. Seizure exacerbation in two patients with focal epilepsy following marijuana cessation. Epilepsy Behav 2012;25:563-566.PubMedCrossRef
226.
Zurück zum Zitat Ellison JM, Gelwan E, Ogletree J. Complex partial seizure symptoms affected by marijuana abuse. J Clin Psychiatry 1990;51:439-440.PubMed Ellison JM, Gelwan E, Ogletree J. Complex partial seizure symptoms affected by marijuana abuse. J Clin Psychiatry 1990;51:439-440.PubMed
227.
Zurück zum Zitat Leite JR, Carlini EA. Failure to obtain "cannabis-directed behavior" and abstinence syndrome in rats chronically treated with cannabis sativa extracts. Psychopharmacologia 1974;36:133-145.PubMedCrossRef Leite JR, Carlini EA. Failure to obtain "cannabis-directed behavior" and abstinence syndrome in rats chronically treated with cannabis sativa extracts. Psychopharmacologia 1974;36:133-145.PubMedCrossRef
228.
Zurück zum Zitat Robson P. Abuse potential and psychoactive effects of delta-9-tetrahydrocannabinol and cannabidiol oromucosal spray (Sativex), a new cannabinoid medicine. Expert Opin Drug Saf 2011;10:675-685.PubMedCrossRef Robson P. Abuse potential and psychoactive effects of delta-9-tetrahydrocannabinol and cannabidiol oromucosal spray (Sativex), a new cannabinoid medicine. Expert Opin Drug Saf 2011;10:675-685.PubMedCrossRef
229.
Zurück zum Zitat Wade DT, et al. Do cannabis-based medicinal extracts have general or specific effects on symptoms in multiple sclerosis? A double-blind, randomized, placebo-controlled study on 160 patients. Mult Scler 2004;10:434-441.PubMedCrossRef Wade DT, et al. Do cannabis-based medicinal extracts have general or specific effects on symptoms in multiple sclerosis? A double-blind, randomized, placebo-controlled study on 160 patients. Mult Scler 2004;10:434-441.PubMedCrossRef
230.
Zurück zum Zitat Russo EB, Guy GW, Robson PJ. Cannabis, pain, and sleep: lessons from therapeutic clinical trials of Sativex, a cannabis-based medicine. Chem Biodivers 2007; 4:1729-1743.PubMedCrossRef Russo EB, Guy GW, Robson PJ. Cannabis, pain, and sleep: lessons from therapeutic clinical trials of Sativex, a cannabis-based medicine. Chem Biodivers 2007; 4:1729-1743.PubMedCrossRef
231.
Zurück zum Zitat Rog DJ, Nurmikko TJ, Young CA. Oromucosal delta9-tetrahydrocannabinol/cannabidiol for neuropathic pain associated with multiple sclerosis: an uncontrolled, open-label, 2-year extension trial. Clin Ther 2007;29: 2068-2079.PubMedCrossRef Rog DJ, Nurmikko TJ, Young CA. Oromucosal delta9-tetrahydrocannabinol/cannabidiol for neuropathic pain associated with multiple sclerosis: an uncontrolled, open-label, 2-year extension trial. Clin Ther 2007;29: 2068-2079.PubMedCrossRef
232.
Zurück zum Zitat Perez J. Combined cannabinoid therapy via an oromucosal spray. Drugs Today (Barc) 2006;42:495-503.CrossRef Perez J. Combined cannabinoid therapy via an oromucosal spray. Drugs Today (Barc) 2006;42:495-503.CrossRef
233.
Zurück zum Zitat Crippa JA, et al. Cannabidiol for the treatment of cannabis withdrawal syndrome: a case report. J Clin Pharm Ther 2013;38:162-164.PubMedCrossRef Crippa JA, et al. Cannabidiol for the treatment of cannabis withdrawal syndrome: a case report. J Clin Pharm Ther 2013;38:162-164.PubMedCrossRef
234.
Zurück zum Zitat Allsop DJ, et al. Nabiximols as an agonist replacement therapy during cannabis withdrawal: a randomized clinical trial. JAMA Psychiatry 2014;71:281-291.PubMedCrossRef Allsop DJ, et al. Nabiximols as an agonist replacement therapy during cannabis withdrawal: a randomized clinical trial. JAMA Psychiatry 2014;71:281-291.PubMedCrossRef
235.
Zurück zum Zitat Allsop DJ, Lintzeris N, Copeland J, Dunlop A, McGregor IS. Cannabinoid replacement therapy (CRT): Nabiximols (Sativex) as a novel treatment for cannabis withdrawal. Clin Pharmacol Ther 2015;97:571-574.PubMedCrossRef Allsop DJ, Lintzeris N, Copeland J, Dunlop A, McGregor IS. Cannabinoid replacement therapy (CRT): Nabiximols (Sativex) as a novel treatment for cannabis withdrawal. Clin Pharmacol Ther 2015;97:571-574.PubMedCrossRef
236.
Zurück zum Zitat Keeler MH, Reifler CB. Grand mal convulsions subsequent to marijuana use. Case report. Dis Nerv Syst 1967;28:474-475.PubMed Keeler MH, Reifler CB. Grand mal convulsions subsequent to marijuana use. Case report. Dis Nerv Syst 1967;28:474-475.PubMed
237.
Zurück zum Zitat Lapoint J, et al. Severe toxicity following synthetic cannabinoid ingestion. Clin Toxicol (Phila) 2011;49:760-764.CrossRef Lapoint J, et al. Severe toxicity following synthetic cannabinoid ingestion. Clin Toxicol (Phila) 2011;49:760-764.CrossRef
238.
Zurück zum Zitat Jinwala FN, Gupta M. Synthetic cannabis and respiratory depression. J Child Adolesc Psychopharmacol 2012;22:459-462.PubMedCrossRef Jinwala FN, Gupta M. Synthetic cannabis and respiratory depression. J Child Adolesc Psychopharmacol 2012;22:459-462.PubMedCrossRef
239.
Zurück zum Zitat Hermanns-Clausen M, et al. Acute intoxication by synthetic cannabinoids—four case reports. Drug Test Anal 2013;5:790-794.PubMedCrossRef Hermanns-Clausen M, et al. Acute intoxication by synthetic cannabinoids—four case reports. Drug Test Anal 2013;5:790-794.PubMedCrossRef
240.
Zurück zum Zitat Hermanns-Clausen M, et al. Acute toxicity due to the confirmed consumption of synthetic cannabinoids: clinical and laboratory findings. Addiction 2013;108: 534-544.PubMedCrossRef Hermanns-Clausen M, et al. Acute toxicity due to the confirmed consumption of synthetic cannabinoids: clinical and laboratory findings. Addiction 2013;108: 534-544.PubMedCrossRef
241.
Zurück zum Zitat McQuade D, et al. First European case of convulsions related to analytically confirmed use of the synthetic cannabinoid receptor agonist AM-2201. Eur J Clin Pharmacol 2013; 69:373-376.PubMedCrossRef McQuade D, et al. First European case of convulsions related to analytically confirmed use of the synthetic cannabinoid receptor agonist AM-2201. Eur J Clin Pharmacol 2013; 69:373-376.PubMedCrossRef
243.
Zurück zum Zitat Tofighi B, Lee JD. Internet highs—seizures after consumption of synthetic cannabinoids purchased online. J Addict Med 2012;6:240-241.PubMedCrossRef Tofighi B, Lee JD. Internet highs—seizures after consumption of synthetic cannabinoids purchased online. J Addict Med 2012;6:240-241.PubMedCrossRef
245.
Zurück zum Zitat Castaneto MS, et al. Synthetic cannabinoids: epidemiology, pharmacodynamics, and clinical implications. Drug Alcohol Depend 2014;144:12-41.PubMedCrossRef Castaneto MS, et al. Synthetic cannabinoids: epidemiology, pharmacodynamics, and clinical implications. Drug Alcohol Depend 2014;144:12-41.PubMedCrossRef
246.
Zurück zum Zitat Davis JP, Ramsey HH. Anti-epileptic action of marijuana-active substances. Fed Proc Am Soc Exp Biol 1949;8:284. Davis JP, Ramsey HH. Anti-epileptic action of marijuana-active substances. Fed Proc Am Soc Exp Biol 1949;8:284.
247.
Zurück zum Zitat Consroe PF, Wood GC, Buchsbaum H. Anticonvulsant nature of marihuana smoking. JAMA 1975;234:306-307.PubMedCrossRef Consroe PF, Wood GC, Buchsbaum H. Anticonvulsant nature of marihuana smoking. JAMA 1975;234:306-307.PubMedCrossRef
248.
Zurück zum Zitat Lorenz R. On the application of cannabis in paediatrics and epileptology. Neuro Endocrinol Lett 2004;25:40-44.PubMed Lorenz R. On the application of cannabis in paediatrics and epileptology. Neuro Endocrinol Lett 2004;25:40-44.PubMed
249.
Zurück zum Zitat Mortati K, Dworetzky B, Devinsky O. Marijuana: an effective antiepileptic treatment in partial epilepsy? A case report and review of the literature. Rev Neurol Dis 2007;4:103-106.PubMed Mortati K, Dworetzky B, Devinsky O. Marijuana: an effective antiepileptic treatment in partial epilepsy? A case report and review of the literature. Rev Neurol Dis 2007;4:103-106.PubMed
250.
Zurück zum Zitat Gordon E, Devinsky O. Alcohol and marijuana: effects on epilepsy and use by patients with epilepsy. Epilepsia 2001;42:1266-1272.PubMedCrossRef Gordon E, Devinsky O. Alcohol and marijuana: effects on epilepsy and use by patients with epilepsy. Epilepsia 2001;42:1266-1272.PubMedCrossRef
251.
252.
Zurück zum Zitat Corral VJ. Differential effects of medical marijuana based on strain and route of administration: a three-year observational study. J Cannabis Ther 2001;1:43-59.CrossRef Corral VJ. Differential effects of medical marijuana based on strain and route of administration: a three-year observational study. J Cannabis Ther 2001;1:43-59.CrossRef
253.
Zurück zum Zitat Hamerle M, et al. Cannabis and other illicit drug use in epilepsy patients. Eur J Neurol, 2014;21:167-170.PubMedCrossRef Hamerle M, et al. Cannabis and other illicit drug use in epilepsy patients. Eur J Neurol, 2014;21:167-170.PubMedCrossRef
254.
Zurück zum Zitat Gieringer D. Madical use of cannabis: experience in California. Haworth Press, Binghamton, NY, 2001. Gieringer D. Madical use of cannabis: experience in California. Haworth Press, Binghamton, NY, 2001.
255.
Zurück zum Zitat Feeney D, Spiker M. Marijuana and epilepsy: activation of symptoms by delta-9-THC. In: C.S and S.RC (Eds.). The therapeutic potential of marihuana. Plenum Press, New York, 1976. Feeney D, Spiker M. Marijuana and epilepsy: activation of symptoms by delta-9-THC. In: C.S and S.RC (Eds.). The therapeutic potential of marihuana. Plenum Press, New York, 1976.
256.
Zurück zum Zitat Alldredge BK, Lowenstein DH, Simon RP. Seizures associated with recreational drug abuse. Neurology 1989;39:1037-1039.PubMedCrossRef Alldredge BK, Lowenstein DH, Simon RP. Seizures associated with recreational drug abuse. Neurology 1989;39:1037-1039.PubMedCrossRef
257.
Zurück zum Zitat Brust JC, et al. Marijuana use and the risk of new onset seizures. Trans Am Clin Climatol Assoc 1992;103:176-181.PubMedCentralPubMed Brust JC, et al. Marijuana use and the risk of new onset seizures. Trans Am Clin Climatol Assoc 1992;103:176-181.PubMedCentralPubMed
258.
Zurück zum Zitat Gross DW, et al. Marijuana use and epilepsy: prevalence in patients of a tertiary care epilepsy center. Neurology 2004;62:2095-2097.PubMedCrossRef Gross DW, et al. Marijuana use and epilepsy: prevalence in patients of a tertiary care epilepsy center. Neurology 2004;62:2095-2097.PubMedCrossRef
259.
Zurück zum Zitat Porter BE, Jacobson C. Report of a parent survey of cannabidiol-enriched cannabis use in pediatric treatment-resistant epilepsy. Epilepsy Behav 2013;29:574-577.PubMedCentralPubMedCrossRef Porter BE, Jacobson C. Report of a parent survey of cannabidiol-enriched cannabis use in pediatric treatment-resistant epilepsy. Epilepsy Behav 2013;29:574-577.PubMedCentralPubMedCrossRef
260.
Zurück zum Zitat Press CA, Knupp KG, Chapman KE. Parental reporting of response to oral cannabis extracts for treatment of refractory epilepsy. Epilepsy Behav 2015;45: 49–52.PubMedCrossRef Press CA, Knupp KG, Chapman KE. Parental reporting of response to oral cannabis extracts for treatment of refractory epilepsy. Epilepsy Behav 2015;45: 49–52.PubMedCrossRef
261.
Zurück zum Zitat Mechoulam R, Carlini EA. Toward drugs derived from cannabis. Naturwissenschaften 1978;65:174-179.PubMedCrossRef Mechoulam R, Carlini EA. Toward drugs derived from cannabis. Naturwissenschaften 1978;65:174-179.PubMedCrossRef
262.
Zurück zum Zitat Cunha JM, et al. Chronic administration of cannabidiol to healthy volunteers and epileptic patients. Pharmacology 1980;21:175-185.PubMedCrossRef Cunha JM, et al. Chronic administration of cannabidiol to healthy volunteers and epileptic patients. Pharmacology 1980;21:175-185.PubMedCrossRef
263.
Zurück zum Zitat Ames FR, Cridland S. Anticonvulsant effect of cannabidiol. S Afr Med J 1986; 69:14.PubMed Ames FR, Cridland S. Anticonvulsant effect of cannabidiol. S Afr Med J 1986; 69:14.PubMed
264.
Zurück zum Zitat Trembly B, Sherman M. Double-blind clinical study of cannabidiol as a secondary anticonvulsant. In: Marijuana '90 international conference on cannabis and cannabinoids, Kolympari, Crete, 1990. Trembly B, Sherman M. Double-blind clinical study of cannabidiol as a secondary anticonvulsant. In: Marijuana '90 international conference on cannabis and cannabinoids, Kolympari, Crete, 1990.
265.
266.
267.
Zurück zum Zitat Mathern GW, Beninsig L, Nehlig A. Fewer specialists support using medical marijuana and CBD in treating epilepsy patients compared with other medical professionals and patients: result of Epilepsia's survey. Epilepsia 2015;56:1-6.PubMedCrossRef Mathern GW, Beninsig L, Nehlig A. Fewer specialists support using medical marijuana and CBD in treating epilepsy patients compared with other medical professionals and patients: result of Epilepsia's survey. Epilepsia 2015;56:1-6.PubMedCrossRef
268.
Zurück zum Zitat Volkow ND, Compton WM, Weiss SR. Adverse health effects of marijuana use. N Engl J Med 2014;371:879.PubMed Volkow ND, Compton WM, Weiss SR. Adverse health effects of marijuana use. N Engl J Med 2014;371:879.PubMed
269.
Zurück zum Zitat Morales-Munoz I, et al. Characterizing cannabis-induced psychosis: a study with prepulse inhibition of the startle reflex. Psychiatry Res 2014;220:535-540.PubMedCrossRef Morales-Munoz I, et al. Characterizing cannabis-induced psychosis: a study with prepulse inhibition of the startle reflex. Psychiatry Res 2014;220:535-540.PubMedCrossRef
270.
Zurück zum Zitat Lynskey M, Hall W. The effects of adolescent cannabis use on educational attainment: a review. Addiction 2000;95:1621-1630.PubMedCrossRef Lynskey M, Hall W. The effects of adolescent cannabis use on educational attainment: a review. Addiction 2000;95:1621-1630.PubMedCrossRef
271.
Zurück zum Zitat Crean RD, Crane NA, Mason BJ. An evidence based review of acute and long-term effects of cannabis use on executive cognitive functions. J Addict Med 2011;5: 1-8.PubMedCentralPubMedCrossRef Crean RD, Crane NA, Mason BJ. An evidence based review of acute and long-term effects of cannabis use on executive cognitive functions. J Addict Med 2011;5: 1-8.PubMedCentralPubMedCrossRef
272.
Zurück zum Zitat Lisdahl KM, et al. Dare to delay? The impacts of adolescent alcohol and marijuana use onset on cognition, brain structure, and function. Front Psychiatry 2013;4:53.PubMedCentralPubMedCrossRef Lisdahl KM, et al. Dare to delay? The impacts of adolescent alcohol and marijuana use onset on cognition, brain structure, and function. Front Psychiatry 2013;4:53.PubMedCentralPubMedCrossRef
273.
Zurück zum Zitat Crane NA, Schuster RM, Gonzalez R. Preliminary evidence for a sex-specific relationship between amount of cannabis use and neurocognitive performance in young adult cannabis users. J Int Neuropsychol Soc 2013;19:1009-1015.PubMedCentralPubMedCrossRef Crane NA, Schuster RM, Gonzalez R. Preliminary evidence for a sex-specific relationship between amount of cannabis use and neurocognitive performance in young adult cannabis users. J Int Neuropsychol Soc 2013;19:1009-1015.PubMedCentralPubMedCrossRef
274.
Zurück zum Zitat Jacobus J, et al. Cortical thickness and neurocognition in adolescent marijuana and alcohol users following 28 days of monitored abstinence. J Stud Alcohol Drugs 2014; 75:729-743.PubMedCentralPubMedCrossRef Jacobus J, et al. Cortical thickness and neurocognition in adolescent marijuana and alcohol users following 28 days of monitored abstinence. J Stud Alcohol Drugs 2014; 75:729-743.PubMedCentralPubMedCrossRef
275.
Zurück zum Zitat Gilman JM, et al. Cannabis use is quantitatively associated with nucleus accumbens and amygdala abnormalities in young adult recreational users. J Neurosci 2014;34: 5529-5538.PubMedCentralPubMedCrossRef Gilman JM, et al. Cannabis use is quantitatively associated with nucleus accumbens and amygdala abnormalities in young adult recreational users. J Neurosci 2014;34: 5529-5538.PubMedCentralPubMedCrossRef
276.
Zurück zum Zitat Gruber SA, et al. Worth the wait: effects of age of onset of marijuana use on white matter and impulsivity. Psychopharmacology (Berl) 2014;231:1455-1465.CrossRef Gruber SA, et al. Worth the wait: effects of age of onset of marijuana use on white matter and impulsivity. Psychopharmacology (Berl) 2014;231:1455-1465.CrossRef
277.
Zurück zum Zitat Tortoriello G, et al. Miswiring the brain: Delta9-tetrahydrocannabinol disrupts cortical development by inducing an SCG10/stathmin-2 degradation pathway. EMBO J 2014;33:668-685.PubMedCentralPubMedCrossRef Tortoriello G, et al. Miswiring the brain: Delta9-tetrahydrocannabinol disrupts cortical development by inducing an SCG10/stathmin-2 degradation pathway. EMBO J 2014;33:668-685.PubMedCentralPubMedCrossRef
278.
Zurück zum Zitat Raver SM, Haughwout SP, Keller A. Adolescent cannabinoid exposure permanently suppresses cortical oscillations in adult mice. Neuropsychopharmacology 2013;38:2338-2347.PubMedCentralPubMedCrossRef Raver SM, Haughwout SP, Keller A. Adolescent cannabinoid exposure permanently suppresses cortical oscillations in adult mice. Neuropsychopharmacology 2013;38:2338-2347.PubMedCentralPubMedCrossRef
279.
Zurück zum Zitat Raver SM, Keller A. Permanent suppression of cortical oscillations in mice after adolescent exposure to cannabinoids: receptor mechanisms. Neuropharmacology 2014;86:161-173.PubMedPubMedCentralCrossRef Raver SM, Keller A. Permanent suppression of cortical oscillations in mice after adolescent exposure to cannabinoids: receptor mechanisms. Neuropharmacology 2014;86:161-173.PubMedPubMedCentralCrossRef
280.
Zurück zum Zitat Houck JM, Bryan AD, Feldstein Ewing SW. Functional connectivity and cannabis use in high-risk adolescents. Am J Drug Alcohol Abuse 2013;39:414-423.PubMedCentralPubMedCrossRef Houck JM, Bryan AD, Feldstein Ewing SW. Functional connectivity and cannabis use in high-risk adolescents. Am J Drug Alcohol Abuse 2013;39:414-423.PubMedCentralPubMedCrossRef
281.
282.
Zurück zum Zitat Guy GW, Robson PJ. A phase I, open label, four-way crossover study to compare the pharmacokinetic profiles of a single dose of 20 mg of a cannabis based medicine extract (CBME) administered on 3 different areas of the buccal mucosa and to investigate the pharmacokinetics of CBME per oral in healthy male and female volunteers (GWPK0112). J Cannabis Ther 2003;3:79-120.CrossRef Guy GW, Robson PJ. A phase I, open label, four-way crossover study to compare the pharmacokinetic profiles of a single dose of 20 mg of a cannabis based medicine extract (CBME) administered on 3 different areas of the buccal mucosa and to investigate the pharmacokinetics of CBME per oral in healthy male and female volunteers (GWPK0112). J Cannabis Ther 2003;3:79-120.CrossRef
283.
Zurück zum Zitat Hawksworth G, McArdle K. Metabolism and pharmacokinetics of cannabinoids. Pharmaceutical Press, London, 2004. Hawksworth G, McArdle K. Metabolism and pharmacokinetics of cannabinoids. Pharmaceutical Press, London, 2004.
284.
Zurück zum Zitat Bornheim LM, et al. Characterization of cannabidiol-mediated cytochrome P450 inactivation. Biochem Pharmacol 1993;45:1323-1331.PubMedCrossRef Bornheim LM, et al. Characterization of cannabidiol-mediated cytochrome P450 inactivation. Biochem Pharmacol 1993;45:1323-1331.PubMedCrossRef
285.
Zurück zum Zitat Yamaori S, et al. Cannabidiol, a major phytocannabinoid, as a potent atypical inhibitor for CYP2D6. Drug Metab Dispos 2011;39:2049-2056.PubMedCrossRef Yamaori S, et al. Cannabidiol, a major phytocannabinoid, as a potent atypical inhibitor for CYP2D6. Drug Metab Dispos 2011;39:2049-2056.PubMedCrossRef
286.
Zurück zum Zitat Jiang R, et al. Identification of cytochrome P450 enzymes responsible for metabolism of cannabidiol by human liver microsomes. Life Sci 2011;89:165-170.PubMedCrossRef Jiang R, et al. Identification of cytochrome P450 enzymes responsible for metabolism of cannabidiol by human liver microsomes. Life Sci 2011;89:165-170.PubMedCrossRef
287.
Zurück zum Zitat Yamaori S, et al. Potent inhibition of human cytochrome P450 3A isoforms by cannabidiol: role of phenolic hydroxyl groups in the resorcinol moiety. Life Sci 2011;88:730-736.PubMedCrossRef Yamaori S, et al. Potent inhibition of human cytochrome P450 3A isoforms by cannabidiol: role of phenolic hydroxyl groups in the resorcinol moiety. Life Sci 2011;88:730-736.PubMedCrossRef
288.
Zurück zum Zitat Jiang R, et al. Cannabidiol is a potent inhibitor of the catalytic activity of cytochrome P450 2C19. Drug Metab Pharmacokinet 2013;28:332-338.PubMedCrossRef Jiang R, et al. Cannabidiol is a potent inhibitor of the catalytic activity of cytochrome P450 2C19. Drug Metab Pharmacokinet 2013;28:332-338.PubMedCrossRef
289.
Zurück zum Zitat Stout SM, Cimino NM. Exogenous cannabinoids as substrates, inhibitors, and inducers of human drug metabolizing enzymes: a systematic review. Drug Metab Rev 2014;46:86-95.PubMedCrossRef Stout SM, Cimino NM. Exogenous cannabinoids as substrates, inhibitors, and inducers of human drug metabolizing enzymes: a systematic review. Drug Metab Rev 2014;46:86-95.PubMedCrossRef
290.
Zurück zum Zitat Patsalos PN, Perucca E. Clinically important drug interactions in epilepsy: interactions between antiepileptic drugs and other drugs. Lancet Neurol 2003;2: 473-481.PubMedCrossRef Patsalos PN, Perucca E. Clinically important drug interactions in epilepsy: interactions between antiepileptic drugs and other drugs. Lancet Neurol 2003;2: 473-481.PubMedCrossRef
291.
Zurück zum Zitat Yamaori S, et al. Characterization of major phytocannabinoids, cannabidiol and cannabinol, as isoform-selective and potent inhibitors of human CYP1 enzymes. Biochem Pharmacol 2010;79:1691-1698.PubMedCrossRef Yamaori S, et al. Characterization of major phytocannabinoids, cannabidiol and cannabinol, as isoform-selective and potent inhibitors of human CYP1 enzymes. Biochem Pharmacol 2010;79:1691-1698.PubMedCrossRef
292.
Zurück zum Zitat Friedman D, et al. The effect of Epidiolex (Cannabidiol) on serum levels of concomminant anti-epileptic drugs in children and young adults with treatment-resistant epilepsy in an expanded access program. In: American Epilepsy Society, Seattle, WA, 2014. Friedman D, et al. The effect of Epidiolex (Cannabidiol) on serum levels of concomminant anti-epileptic drugs in children and young adults with treatment-resistant epilepsy in an expanded access program. In: American Epilepsy Society, Seattle, WA, 2014.
293.
294.
295.
Zurück zum Zitat Kemeny ME, et al. Placebo response in asthma: a robust and objective phenomenon. J Allergy Clin Immunol 2007;119:1375-1381.PubMedCrossRef Kemeny ME, et al. Placebo response in asthma: a robust and objective phenomenon. J Allergy Clin Immunol 2007;119:1375-1381.PubMedCrossRef
296.
Zurück zum Zitat Rheims S, et al. Greater response to placebo in children than in adults: a systematic review and meta-analysis in drug-resistant partial epilepsy. PLoS Med 2008;5: e166.PubMedCentralPubMedCrossRef Rheims S, et al. Greater response to placebo in children than in adults: a systematic review and meta-analysis in drug-resistant partial epilepsy. PLoS Med 2008;5: e166.PubMedCentralPubMedCrossRef
297.
Zurück zum Zitat Anon. Double-blind, placebo-controlled evaluation of cinromide in patients with the Lennox-Gastaut Syndrome. The Group for the Evaluation of Cinromide in the Lennox-Gastaut Syndrome. Epilepsia 1989;30:422-429.CrossRef Anon. Double-blind, placebo-controlled evaluation of cinromide in patients with the Lennox-Gastaut Syndrome. The Group for the Evaluation of Cinromide in the Lennox-Gastaut Syndrome. Epilepsia 1989;30:422-429.CrossRef
298.
Zurück zum Zitat Rekand T. THC:CBD spray and MS spasticity symptoms: data from latest studies. Eur Neurol 2014;71(Suppl. 1):4-9.PubMedCrossRef Rekand T. THC:CBD spray and MS spasticity symptoms: data from latest studies. Eur Neurol 2014;71(Suppl. 1):4-9.PubMedCrossRef
299.
Zurück zum Zitat Naderi N, et al. Evaluation of interactions between cannabinoid compounds and diazepam in electroshock-induced seizure model in mice. J Neural Transm 2008;115:1501-1511.PubMedCrossRef Naderi N, et al. Evaluation of interactions between cannabinoid compounds and diazepam in electroshock-induced seizure model in mice. J Neural Transm 2008;115:1501-1511.PubMedCrossRef
300.
Zurück zum Zitat Naderi N, et al. Modulation of anticonvulsant effects of cannabinoid compounds by GABA-A receptor agonist in acute pentylenetetrazole model of seizure in rat. Neurochem Res 2011;36:1520-1525.PubMedCrossRef Naderi N, et al. Modulation of anticonvulsant effects of cannabinoid compounds by GABA-A receptor agonist in acute pentylenetetrazole model of seizure in rat. Neurochem Res 2011;36:1520-1525.PubMedCrossRef
301.
Zurück zum Zitat Vilela LR, et al. Effects of cannabinoids and endocannabinoid hydrolysis inhibition on pentylenetetrazole-induced seizure and electroencephalographic activity in rats. Epilepsy Res 2013;104:195-202.PubMedCrossRef Vilela LR, et al. Effects of cannabinoids and endocannabinoid hydrolysis inhibition on pentylenetetrazole-induced seizure and electroencephalographic activity in rats. Epilepsy Res 2013;104:195-202.PubMedCrossRef
302.
Zurück zum Zitat Shubina L, Aliev R, Kitchigina V. Attenuation of kainic acid-induced status epilepticus by inhibition of endocannabinoid transport and degradation in guinea pigs. Epilepsy Res 2015;111:33-44.PubMedCrossRef Shubina L, Aliev R, Kitchigina V. Attenuation of kainic acid-induced status epilepticus by inhibition of endocannabinoid transport and degradation in guinea pigs. Epilepsy Res 2015;111:33-44.PubMedCrossRef
303.
Zurück zum Zitat Wendt H, et al. Targeting the endocannabinoid system in the amygdala kindling model of temporal lobe epilepsy in mice. Epilepsia 2011;52:e62-e65.PubMedCrossRef Wendt H, et al. Targeting the endocannabinoid system in the amygdala kindling model of temporal lobe epilepsy in mice. Epilepsia 2011;52:e62-e65.PubMedCrossRef
304.
Zurück zum Zitat Wallace MJ, et al. Assessment of the role of CB1 receptors in cannabinoid anticonvulsant effects. Eur J Pharmacol 2001;428:51-57.PubMedCrossRef Wallace MJ, et al. Assessment of the role of CB1 receptors in cannabinoid anticonvulsant effects. Eur J Pharmacol 2001;428:51-57.PubMedCrossRef
305.
Zurück zum Zitat Payandemehr B, et al. Involvement of PPAR receptors in the anticonvulsant effects of a cannabinoid agonist, WIN 55,212-2. Prog Neuropsychopharmacol Biol Psychiatry 2015;57:140-145.PubMedCrossRef Payandemehr B, et al. Involvement of PPAR receptors in the anticonvulsant effects of a cannabinoid agonist, WIN 55,212-2. Prog Neuropsychopharmacol Biol Psychiatry 2015;57:140-145.PubMedCrossRef
306.
Zurück zum Zitat van Rijn CM, et al. WAG/Rij rats show a reduced expression of CB(1) receptors in thalamic nuclei and respond to the CB(1) receptor agonist, R(+)WIN55,212-2, with a reduced incidence of spike-wave discharges. Epilepsia 2010;51:1511-1521.PubMedCrossRef van Rijn CM, et al. WAG/Rij rats show a reduced expression of CB(1) receptors in thalamic nuclei and respond to the CB(1) receptor agonist, R(+)WIN55,212-2, with a reduced incidence of spike-wave discharges. Epilepsia 2010;51:1511-1521.PubMedCrossRef
307.
Zurück zum Zitat Citraro R, et al. CB1 agonists, locally applied to the cortico-thalamic circuit of rats with genetic absence epilepsy, reduce epileptic manifestations. Epilepsy Res 2013; 106:74-82.PubMedCrossRef Citraro R, et al. CB1 agonists, locally applied to the cortico-thalamic circuit of rats with genetic absence epilepsy, reduce epileptic manifestations. Epilepsy Res 2013; 106:74-82.PubMedCrossRef
308.
Zurück zum Zitat Lambert DM, et al. Anticonvulsant activity of N-palmitoylethanolamide, a putative endocannabinoid, in mice. Epilepsia 2001;42:321-327.PubMedCrossRef Lambert DM, et al. Anticonvulsant activity of N-palmitoylethanolamide, a putative endocannabinoid, in mice. Epilepsia 2001;42:321-327.PubMedCrossRef
309.
Zurück zum Zitat Sheerin AH, et al. Selective antiepileptic effects of N-palmitoylethanolamide, a putative endocannabinoid. Epilepsia 2004;45:1184-1188.PubMedCrossRef Sheerin AH, et al. Selective antiepileptic effects of N-palmitoylethanolamide, a putative endocannabinoid. Epilepsia 2004;45:1184-1188.PubMedCrossRef
310.
Zurück zum Zitat Wallace MJ, Martin BR, DeLorenzo RJ. Evidence for a physiological role of endocannabinoids in the modulation of seizure threshold and severity. Eur J Pharmacol 2002;452:295-301.PubMedCrossRef Wallace MJ, Martin BR, DeLorenzo RJ. Evidence for a physiological role of endocannabinoids in the modulation of seizure threshold and severity. Eur J Pharmacol 2002;452:295-301.PubMedCrossRef
311.
Zurück zum Zitat Shafaroodi H, et al. The interaction of cannabinoids and opioids on pentylenetetrazole-induced seizure threshold in mice. Neuropharmacology 2004;47:390-400.PubMedCrossRef Shafaroodi H, et al. The interaction of cannabinoids and opioids on pentylenetetrazole-induced seizure threshold in mice. Neuropharmacology 2004;47:390-400.PubMedCrossRef
312.
Zurück zum Zitat Bahremand A, et al. The cannabinoid anticonvulsant effect on pentylenetetrazole-induced seizure is potentiated by ultra-low dose naltrexone in mice. Epilepsy Res 2008;81:44-51.PubMedCrossRef Bahremand A, et al. The cannabinoid anticonvulsant effect on pentylenetetrazole-induced seizure is potentiated by ultra-low dose naltrexone in mice. Epilepsy Res 2008;81:44-51.PubMedCrossRef
313.
Zurück zum Zitat Bahremand A, et al. Involvement of nitrergic system in the anticonvulsant effect of the cannabinoid CB(1) agonist ACEA in the pentylenetetrazole-induced seizure in mice. Epilepsy Res 2009;84:110-119.PubMedCrossRef Bahremand A, et al. Involvement of nitrergic system in the anticonvulsant effect of the cannabinoid CB(1) agonist ACEA in the pentylenetetrazole-induced seizure in mice. Epilepsy Res 2009;84:110-119.PubMedCrossRef
314.
Zurück zum Zitat Rudenko V, et al. Inverse relationship of cannabimimetic (R+)WIN 55, 212 on behavior and seizure threshold during the juvenile period. Pharmacol Biochem Behav 2012;100:474-484.PubMedCrossRef Rudenko V, et al. Inverse relationship of cannabimimetic (R+)WIN 55, 212 on behavior and seizure threshold during the juvenile period. Pharmacol Biochem Behav 2012;100:474-484.PubMedCrossRef
315.
Zurück zum Zitat Di Maio R, Cannon JR, Timothy Greenamyre J. Post-status epilepticus treatment with the cannabinoid agonist WIN 55,212-2 prevents chronic epileptic hippocampal damage in rats. Neurobiol Dis 2014;73C:356-365. Di Maio R, Cannon JR, Timothy Greenamyre J. Post-status epilepticus treatment with the cannabinoid agonist WIN 55,212-2 prevents chronic epileptic hippocampal damage in rats. Neurobiol Dis 2014;73C:356-365.
316.
Zurück zum Zitat Rizzo V, et al. Evidences of cannabinoids-induced modulation of paroxysmal events in an experimental model of partial epilepsy in the rat. Neurosci Lett 2009;462:135-139.PubMedCrossRef Rizzo V, et al. Evidences of cannabinoids-induced modulation of paroxysmal events in an experimental model of partial epilepsy in the rat. Neurosci Lett 2009;462:135-139.PubMedCrossRef
318.
Zurück zum Zitat Kozan R, Ayyildiz M, Agar E. The effects of intracerebroventricular AM-251, a CB1-receptor antagonist, and ACEA, a CB1-receptor agonist, on penicillin-induced epileptiform activity in rats. Epilepsia 2009;50:1760-1767.PubMedCrossRef Kozan R, Ayyildiz M, Agar E. The effects of intracerebroventricular AM-251, a CB1-receptor antagonist, and ACEA, a CB1-receptor agonist, on penicillin-induced epileptiform activity in rats. Epilepsia 2009;50:1760-1767.PubMedCrossRef
319.
Zurück zum Zitat Cakil D, et al. The effect of co-administration of the NMDA blocker with agonist and antagonist of CB1-receptor on penicillin-induced epileptiform activity in rats. Epilepsy Res 2011;93:128-137.PubMedCrossRef Cakil D, et al. The effect of co-administration of the NMDA blocker with agonist and antagonist of CB1-receptor on penicillin-induced epileptiform activity in rats. Epilepsy Res 2011;93:128-137.PubMedCrossRef
320.
Zurück zum Zitat van Rijn CM, et al. Endocannabinoid system protects against cryptogenic seizures. Pharmacol Rep 2011;63:165-168.PubMed van Rijn CM, et al. Endocannabinoid system protects against cryptogenic seizures. Pharmacol Rep 2011;63:165-168.PubMed
321.
Zurück zum Zitat Vinogradova LV, Shatskova AB, van Rijn CM. Pro-epileptic effects of the cannabinoid receptor antagonist SR141716 in a model of audiogenic epilepsy. Epilepsy Res 2011;96:250-256.PubMedCrossRef Vinogradova LV, Shatskova AB, van Rijn CM. Pro-epileptic effects of the cannabinoid receptor antagonist SR141716 in a model of audiogenic epilepsy. Epilepsy Res 2011;96:250-256.PubMedCrossRef
322.
Zurück zum Zitat Gholizadeh S, et al. Ultra-low dose cannabinoid antagonist AM251 enhances cannabinoid anticonvulsant effects in the pentylenetetrazole-induced seizure in mice. Neuropharmacology 2007;53:763-770.PubMedCrossRef Gholizadeh S, et al. Ultra-low dose cannabinoid antagonist AM251 enhances cannabinoid anticonvulsant effects in the pentylenetetrazole-induced seizure in mice. Neuropharmacology 2007;53:763-770.PubMedCrossRef
323.
Zurück zum Zitat Dudek FE, et al. The effect of the cannabinoid-receptor antagonist, SR141716, on the early stage of kainate-induced epileptogenesis in the adult rat. Epilepsia 2010;51(Suppl. 3):126-130.PubMedCentralPubMedCrossRef Dudek FE, et al. The effect of the cannabinoid-receptor antagonist, SR141716, on the early stage of kainate-induced epileptogenesis in the adult rat. Epilepsia 2010;51(Suppl. 3):126-130.PubMedCentralPubMedCrossRef
324.
Zurück zum Zitat Echegoyen J, et al. Single application of a CB1 receptor antagonist rapidly following head injury prevents long-term hyperexcitability in a rat model. Epilepsy Res 2009;85:123-127.PubMedCentralPubMedCrossRef Echegoyen J, et al. Single application of a CB1 receptor antagonist rapidly following head injury prevents long-term hyperexcitability in a rat model. Epilepsy Res 2009;85:123-127.PubMedCentralPubMedCrossRef
325.
Zurück zum Zitat Sofia RD, Kubena RK, Barry, H, 3rd. Comparison among four vehicles and four routes for administering delta9-tetrahydrocannabinol. J Pharm Sci 1974;63:939-941.PubMedCrossRef Sofia RD, Kubena RK, Barry, H, 3rd. Comparison among four vehicles and four routes for administering delta9-tetrahydrocannabinol. J Pharm Sci 1974;63:939-941.PubMedCrossRef
326.
Zurück zum Zitat Chesher GB, Jackson DM. Anticonvulsant effects of cannabinoids in mice: drug interactions within cannabinoids and cannabinoid interactions with phenytoin. Psychopharmacologia 1974;37:255-264.PubMedCrossRef Chesher GB, Jackson DM. Anticonvulsant effects of cannabinoids in mice: drug interactions within cannabinoids and cannabinoid interactions with phenytoin. Psychopharmacologia 1974;37:255-264.PubMedCrossRef
327.
Zurück zum Zitat Johnson DD, et al. Epileptiform seizures in domestic fowl. V. The anticonvulsant activity of delta9-tetrahydrocannabinol. Can J Physiol Pharmacol 1975;53:1007-1013.PubMedCrossRef Johnson DD, et al. Epileptiform seizures in domestic fowl. V. The anticonvulsant activity of delta9-tetrahydrocannabinol. Can J Physiol Pharmacol 1975;53:1007-1013.PubMedCrossRef
328.
Zurück zum Zitat Wada JA, Osawa T, Corcoran ME. Effects of tetrahydrocannabinols on kindled amygdaloid seizures and photogenic seizures in Senegalese baboons, Papio papio. Epilepsia 1975;16:439-448.PubMedCrossRef Wada JA, Osawa T, Corcoran ME. Effects of tetrahydrocannabinols on kindled amygdaloid seizures and photogenic seizures in Senegalese baboons, Papio papio. Epilepsia 1975;16:439-448.PubMedCrossRef
329.
Zurück zum Zitat Boggan WO, Steele RA, Freedman DX. 9 -Tetrahydrocannabinol effect on audiogenic seizure susceptibility. Psychopharmacologia 1973;29:101-106.PubMedCrossRef Boggan WO, Steele RA, Freedman DX. 9 -Tetrahydrocannabinol effect on audiogenic seizure susceptibility. Psychopharmacologia 1973;29:101-106.PubMedCrossRef
330.
Zurück zum Zitat Corcoran ME, McCaughran JA, Jr., Wada JA. Acute antiepileptic effects of 9-tetrahydrocannabinol in rats with kindled seizures. Exp Neurol 1973;40:471-483.PubMedCrossRef Corcoran ME, McCaughran JA, Jr., Wada JA. Acute antiepileptic effects of 9-tetrahydrocannabinol in rats with kindled seizures. Exp Neurol 1973;40:471-483.PubMedCrossRef
331.
Zurück zum Zitat Wada JA, et al. Antiepileptic and prophylactic effects of tetrahydrocannabinols in amygdaloid kindled cats. Epilepsia 1975;16:503-510.PubMedCrossRef Wada JA, et al. Antiepileptic and prophylactic effects of tetrahydrocannabinols in amygdaloid kindled cats. Epilepsia 1975;16:503-510.PubMedCrossRef
332.
Zurück zum Zitat Turkanis SA, et al. An electrophysiological analysis of the anticonvulsant action of cannabidiol on limbic seizures in conscious rats. Epilepsia 1979;20:351-363.PubMedCrossRef Turkanis SA, et al. An electrophysiological analysis of the anticonvulsant action of cannabidiol on limbic seizures in conscious rats. Epilepsia 1979;20:351-363.PubMedCrossRef
333.
Zurück zum Zitat Izquierdo I, Orsingher OA, Berardi AC. Effect of cannabidiol and of other cannabis sativa compounds on hippocampal seizure discharges. Psychopharmacologia 1973;28:95-102.PubMedCrossRef Izquierdo I, Orsingher OA, Berardi AC. Effect of cannabidiol and of other cannabis sativa compounds on hippocampal seizure discharges. Psychopharmacologia 1973;28:95-102.PubMedCrossRef
334.
Zurück zum Zitat Karler R, Turkanis SA. Cannabis and epilepsy. Adv Biosci 1978;22-23:619-641.PubMed Karler R, Turkanis SA. Cannabis and epilepsy. Adv Biosci 1978;22-23:619-641.PubMed
335.
Zurück zum Zitat Consroe P, et al. Effects of cannabidiol on behavioral seizures caused by convulsant drugs or current in mice. Eur J Pharmacol 1982;83:293-298.PubMedCrossRef Consroe P, et al. Effects of cannabidiol on behavioral seizures caused by convulsant drugs or current in mice. Eur J Pharmacol 1982;83:293-298.PubMedCrossRef
336.
Zurück zum Zitat Shirazi-zand Z, et al. The role of potassium BK channels in anticonvulsant effect of cannabidiol in pentylenetetrazole and maximal electroshock models of seizure in mice. Epilepsy Behav 2013;28:1-7.PubMedCrossRef Shirazi-zand Z, et al. The role of potassium BK channels in anticonvulsant effect of cannabidiol in pentylenetetrazole and maximal electroshock models of seizure in mice. Epilepsy Behav 2013;28:1-7.PubMedCrossRef
337.
Zurück zum Zitat Hill TD, et al. Cannabidivarin-rich cannabis extracts are anticonvulsant in mouse and rat via a CB1 receptor-independent mechanism. Br J Pharmacol 2013;170:679-692.PubMedCentralPubMedCrossRef Hill TD, et al. Cannabidivarin-rich cannabis extracts are anticonvulsant in mouse and rat via a CB1 receptor-independent mechanism. Br J Pharmacol 2013;170:679-692.PubMedCentralPubMedCrossRef
338.
Zurück zum Zitat Jones NA, et al. Cannabidiol exerts anti-convulsant effects in animal models of temporal lobe and partial seizures. Seizure 2012;21:344-352.PubMedCrossRef Jones NA, et al. Cannabidiol exerts anti-convulsant effects in animal models of temporal lobe and partial seizures. Seizure 2012;21:344-352.PubMedCrossRef
Metadaten
Titel
Cannabinoids and Epilepsy
verfasst von
Evan C. Rosenberg
Richard W. Tsien
Benjamin J. Whalley
Orrin Devinsky
Publikationsdatum
01.10.2015
Verlag
Springer US
Erschienen in
Neurotherapeutics / Ausgabe 4/2015
Print ISSN: 1933-7213
Elektronische ISSN: 1878-7479
DOI
https://doi.org/10.1007/s13311-015-0375-5

Weitere Artikel der Ausgabe 4/2015

Neurotherapeutics 4/2015 Zur Ausgabe

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Demenzkranke durch Antipsychotika vielfach gefährdet

Demenz Nachrichten

Der Einsatz von Antipsychotika gegen psychische und Verhaltenssymptome in Zusammenhang mit Demenzerkrankungen erfordert eine sorgfältige Nutzen-Risiken-Abwägung. Neuen Erkenntnissen zufolge sind auf der Risikoseite weitere schwerwiegende Ereignisse zu berücksichtigen.

Nicht Creutzfeldt Jakob, sondern Abführtee-Vergiftung

29.05.2024 Hyponatriämie Nachrichten

Eine ältere Frau trinkt regelmäßig Sennesblättertee gegen ihre Verstopfung. Der scheint plötzlich gut zu wirken. Auf Durchfall und Erbrechen folgt allerdings eine Hyponatriämie. Nach deren Korrektur kommt es plötzlich zu progredienten Kognitions- und Verhaltensstörungen.

Schutz der Synapsen bei Alzheimer

29.05.2024 Morbus Alzheimer Nachrichten

Mit einem Neurotrophin-Rezeptor-Modulator lässt sich möglicherweise eine bestehende Alzheimerdemenz etwas abschwächen: Erste Phase-2-Daten deuten auf einen verbesserten Synapsenschutz.

Sozialer Aufstieg verringert Demenzgefahr

24.05.2024 Demenz Nachrichten

Ein hohes soziales Niveau ist mit die beste Versicherung gegen eine Demenz. Noch geringer ist das Demenzrisiko für Menschen, die sozial aufsteigen: Sie gewinnen fast zwei demenzfreie Lebensjahre. Umgekehrt steigt die Demenzgefahr beim sozialen Abstieg.

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.