Skip to main content
Erschienen in: Clinical Pharmacokinetics 6/2013

01.06.2013 | Original Research Article

A Population Pharmacokinetic Model for Low-Dose Methotrexate and its Polyglutamated Metabolites in Red Blood Cells

verfasst von: Julia Korell, Lisa K. Stamp, Murray L. Barclay, Judith M. Dalrymple, Jill Drake, Mei Zhang, Stephen B. Duffull

Erschienen in: Clinical Pharmacokinetics | Ausgabe 6/2013

Einloggen, um Zugang zu erhalten

Abstract

Background

Measurement of intracellular concentrations of methotrexate (MTX) and its polyglutamated metabolites (MTXGlu2–5) in red blood cells (RBCs) has been suggested as a potential means of monitoring low-dose MTX treatment of rheumatoid arthritis (RA). However, a possible correlation between RBC MTX and MTXGlu2–5 concentrations and clinical outcomes of MTX treatment in RA is debated. A better understanding of the dose-concentration–time relationship of MTX and MTXGlu2–5 in RBCs by population pharmacokinetic modelling is desirable and will facilitate assessing a potential RBC concentration–effect relationship in the future.

Aim

The purpose of this analysis was to describe the pharmacokinetics of MTX and MTXGlu2–5 in RBCs. Secondary objectives included investigation of deglutamation reactions and the loss of MTX and MTXGlu2–5 from the RBC.

Methods

A model was developed using NONMEM® version 7.2 based on RBC data obtained from 48 patients with RA receiving once-weekly low-dose MTX treatment. This model was linked to a fixed two-compartment model that was used to describe the pharmacokinetics of MTX in the plasma. A series of five compartments were used to describe the intracellular pharmacokinetics of MTX and MTXGlu2–5 in RBCs. Biologically plausible covariates were tested for a significant effect on MTX plasma clearance and the intracellular volume of distribution of all MTX species in RBCs (\({V}_{\text{Glu}_{1-5}}\)). The developed model was used to test hypotheses related to the enzymatic deglutamation of MTXGlu2–5 and potential loss of MTXGlu2–5 from RBCs.

Results

The final RBC pharmacokinetic model required the intracellular volumes of distribution for the parent and metabolites to be set to the value estimated for the parent drug MTX alone, and the rate constants describing the polyglutamation steps were fixed at literature values. Significant covariates included effect of body surface area-adjusted estimated glomerular filtration rate on renal plasma clearance and effect of allometrically scaled total body weight with a fixed exponent of 0.75 on non-renal plasma clearance of MTX. The only significant covariate with an effect on \({V}_{\text{Glu}_{1-5}}\) was mean corpuscular volume (MCV). The model supported single deglutamation steps and a single mechanism of MTX and MTXGlu2–5 loss from RBCs.

Conclusions

The developed model enabled acceptable description of the intracellular kinetics of MTX and MTXGlu2–5 in RBCs. In the future it can form the basis of a full pharmacokinetic–pharmacodynamic model to assess the time–RBC concentration–effect relationship of low-dose MTX treatment in RA.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Morgan C, Lunt M, Brightwell H, et al. Contribution of patient related differences to multidrug resistance in rheumatoid arthritis. Ann Rheum Dis. 2003;62(1):15–9.PubMedCrossRef Morgan C, Lunt M, Brightwell H, et al. Contribution of patient related differences to multidrug resistance in rheumatoid arthritis. Ann Rheum Dis. 2003;62(1):15–9.PubMedCrossRef
2.
Zurück zum Zitat Angelis-Stoforidis P, Vajda F, Christophidis N. Methotrexate polyglutamate levels in circulating erythrocytes and polymorphs correlate with clinical efficacy in rheumatoid arthritis. Clin Exp Rheumatol. 1999;17(3):313–20.PubMed Angelis-Stoforidis P, Vajda F, Christophidis N. Methotrexate polyglutamate levels in circulating erythrocytes and polymorphs correlate with clinical efficacy in rheumatoid arthritis. Clin Exp Rheumatol. 1999;17(3):313–20.PubMed
3.
Zurück zum Zitat Dervieux T, Furst D, Lein D, et al. Polyglutamation of methotrexate with common polymorphisms in reduced folate carrier, aminoimidazole carboxamide ribonucleotide transformylase, and thymidylate synthase are associated with methotrexate effects in rheumatoid arthritis. Arthritis Rheum. 2004;50(9):2766–74.PubMedCrossRef Dervieux T, Furst D, Lein D, et al. Polyglutamation of methotrexate with common polymorphisms in reduced folate carrier, aminoimidazole carboxamide ribonucleotide transformylase, and thymidylate synthase are associated with methotrexate effects in rheumatoid arthritis. Arthritis Rheum. 2004;50(9):2766–74.PubMedCrossRef
4.
Zurück zum Zitat Volk EL, Schneider E. Wild-type breast cancer resistance protein (BCRP/ABCG2) is a methotrexate polyglutamate transporter. Cancer Res. 2003;63(17):5538–43.PubMed Volk EL, Schneider E. Wild-type breast cancer resistance protein (BCRP/ABCG2) is a methotrexate polyglutamate transporter. Cancer Res. 2003;63(17):5538–43.PubMed
5.
Zurück zum Zitat Zeng H, Chen Z, Belinsky M, et al. Transport of methotrexate (MTX) and folates by multidrug resistance protein (MRP) 3 and MRP1. Cancer Res. 2001;61(19):7225–32.PubMed Zeng H, Chen Z, Belinsky M, et al. Transport of methotrexate (MTX) and folates by multidrug resistance protein (MRP) 3 and MRP1. Cancer Res. 2001;61(19):7225–32.PubMed
6.
Zurück zum Zitat Allegra C, Chabner B, Drake J, et al. Enhanced inhibition of thymidylate synthase by methotrexate polyglutamates. J Biol Chem. 1985;260(17):9720–6.PubMed Allegra C, Chabner B, Drake J, et al. Enhanced inhibition of thymidylate synthase by methotrexate polyglutamates. J Biol Chem. 1985;260(17):9720–6.PubMed
7.
Zurück zum Zitat Chabner B, Allegra C, Curt G, et al. Polyglutamation of methotrexate. Is methotrexate a prodrug? J Clin Investig. 1985;76(3):907–12.PubMedCrossRef Chabner B, Allegra C, Curt G, et al. Polyglutamation of methotrexate. Is methotrexate a prodrug? J Clin Investig. 1985;76(3):907–12.PubMedCrossRef
8.
Zurück zum Zitat Dervieux T, Furst D, Lein D, et al. Pharmacogenetic and metabolite measurements are associated with clinical status in patients with rheumatoid arthritis treated with methotrexate: results of a multicentered cross sectional observational study. Ann Rheum Dis. 2005;64(8):1180–5.PubMedCrossRef Dervieux T, Furst D, Lein D, et al. Pharmacogenetic and metabolite measurements are associated with clinical status in patients with rheumatoid arthritis treated with methotrexate: results of a multicentered cross sectional observational study. Ann Rheum Dis. 2005;64(8):1180–5.PubMedCrossRef
9.
Zurück zum Zitat Stamp L, O’Donnell J, Chapman P, et al. Methotrexate polyglutamate concentrations are not associated with disease control in rheumatoid arthritis patients receiving long-term methotrexate therapy. Arthritis Rheum. 2010;62(2):359–68.PubMedCrossRef Stamp L, O’Donnell J, Chapman P, et al. Methotrexate polyglutamate concentrations are not associated with disease control in rheumatoid arthritis patients receiving long-term methotrexate therapy. Arthritis Rheum. 2010;62(2):359–68.PubMedCrossRef
10.
Zurück zum Zitat Dalrymple J, Stamp L, O’Donnell J, et al. Pharmacokinetics of oral methotrexate in patients with rheumatoid arthritis. Arthritis Rheum. 2008;58(11):3299–308.PubMedCrossRef Dalrymple J, Stamp L, O’Donnell J, et al. Pharmacokinetics of oral methotrexate in patients with rheumatoid arthritis. Arthritis Rheum. 2008;58(11):3299–308.PubMedCrossRef
11.
Zurück zum Zitat Stamp L, Barclay M, O’Donnell J, et al. Effects of changing from oral to subcutaneous methotrexate on red blood cell methotrexate polyglutamate concentrations and disease activity in patients with rheumatoid arthritis. J Rheumatol. 2011;38(12):2540–7.PubMedCrossRef Stamp L, Barclay M, O’Donnell J, et al. Effects of changing from oral to subcutaneous methotrexate on red blood cell methotrexate polyglutamate concentrations and disease activity in patients with rheumatoid arthritis. J Rheumatol. 2011;38(12):2540–7.PubMedCrossRef
12.
Zurück zum Zitat Beal S. Ways to fit a PK model with some data below the quantification limit. J Pharmacokinet Pharmacodyn. 2001;28(5):481–504.PubMedCrossRef Beal S. Ways to fit a PK model with some data below the quantification limit. J Pharmacokinet Pharmacodyn. 2001;28(5):481–504.PubMedCrossRef
13.
Zurück zum Zitat Hoekstra M, Haagsma C, Neef C, et al. Bioavailability of higher dose methotrexate comparing oral and subcutaneous administration in patients with rheumatoid arthritis. J Rheumatol. 2004;31(4):645–8.PubMed Hoekstra M, Haagsma C, Neef C, et al. Bioavailability of higher dose methotrexate comparing oral and subcutaneous administration in patients with rheumatoid arthritis. J Rheumatol. 2004;31(4):645–8.PubMed
14.
Zurück zum Zitat Herman R, Veng Pedersen P, Hoffman J, et al. Pharmacokinetics of low dose methotrexate in rheumatoid arthritis patients. J Pharm Sci. 1989;78(2):165–71.PubMedCrossRef Herman R, Veng Pedersen P, Hoffman J, et al. Pharmacokinetics of low dose methotrexate in rheumatoid arthritis patients. J Pharm Sci. 1989;78(2):165–71.PubMedCrossRef
15.
Zurück zum Zitat Rhee M, Lindau-Shepard B, Chave K, et al. Characterization of human cellular gamma-glutamyl hydrolase. Mol Pharmacol. 1998;53(6):1040–6.PubMed Rhee M, Lindau-Shepard B, Chave K, et al. Characterization of human cellular gamma-glutamyl hydrolase. Mol Pharmacol. 1998;53(6):1040–6.PubMed
16.
Zurück zum Zitat Janmahasatian S, Duffull S, Ash S, et al. Quantification of lean bodyweight. Clin Pharmacokinet. 2005;44(10):1051–65.PubMedCrossRef Janmahasatian S, Duffull S, Ash S, et al. Quantification of lean bodyweight. Clin Pharmacokinet. 2005;44(10):1051–65.PubMedCrossRef
17.
Zurück zum Zitat Hardman J, Limbird L, editors. Goodman and Gilman’s: the pharmacological basis of therapeutics. 10th ed. New York: McGraw–Hill; 2001. Hardman J, Limbird L, editors. Goodman and Gilman’s: the pharmacological basis of therapeutics. 10th ed. New York: McGraw–Hill; 2001.
18.
Zurück zum Zitat Bergstrand M, Hooker A, Wallin J, et al. Prediction-corrected visual predictive checks for diagnosing nonlinear mixed-effects models. AAPS J. 2011;13(2):143–51.PubMedCrossRef Bergstrand M, Hooker A, Wallin J, et al. Prediction-corrected visual predictive checks for diagnosing nonlinear mixed-effects models. AAPS J. 2011;13(2):143–51.PubMedCrossRef
19.
Zurück zum Zitat Morrison P, Allegra C. The kinetics of methotrexate polyglutamation in human breast cancer cells. Arch Biochem Biophys. 1987;254(2):597–610.PubMedCrossRef Morrison P, Allegra C. The kinetics of methotrexate polyglutamation in human breast cancer cells. Arch Biochem Biophys. 1987;254(2):597–610.PubMedCrossRef
20.
21.
Zurück zum Zitat Stamp L, O’Donnell J, Chapman P, et al. Determinants of red blood cell methotrexate polyglutamate concentrations in rheumatoid arthritis patients receiving long term methotrexate treatment. Arthritis Rheum. 2009;60(8):2248–56.PubMedCrossRef Stamp L, O’Donnell J, Chapman P, et al. Determinants of red blood cell methotrexate polyglutamate concentrations in rheumatoid arthritis patients receiving long term methotrexate treatment. Arthritis Rheum. 2009;60(8):2248–56.PubMedCrossRef
22.
Zurück zum Zitat Savic R, Karlsson M. Importance of shrinkage in empirical Bayes estimates for diagnostics: problems and solutions. AAPS J. 2009;11(3):558–69.PubMedCrossRef Savic R, Karlsson M. Importance of shrinkage in empirical Bayes estimates for diagnostics: problems and solutions. AAPS J. 2009;11(3):558–69.PubMedCrossRef
23.
Zurück zum Zitat Sirotnak F, Tolner B. Carrier-mediated membrane transport of folates in mammalian cells. Annu Rev Nutr. 1999;19(1):91–122.PubMedCrossRef Sirotnak F, Tolner B. Carrier-mediated membrane transport of folates in mammalian cells. Annu Rev Nutr. 1999;19(1):91–122.PubMedCrossRef
Metadaten
Titel
A Population Pharmacokinetic Model for Low-Dose Methotrexate and its Polyglutamated Metabolites in Red Blood Cells
verfasst von
Julia Korell
Lisa K. Stamp
Murray L. Barclay
Judith M. Dalrymple
Jill Drake
Mei Zhang
Stephen B. Duffull
Publikationsdatum
01.06.2013
Verlag
Springer International Publishing AG
Erschienen in
Clinical Pharmacokinetics / Ausgabe 6/2013
Print ISSN: 0312-5963
Elektronische ISSN: 1179-1926
DOI
https://doi.org/10.1007/s40262-013-0052-y

Weitere Artikel der Ausgabe 6/2013

Clinical Pharmacokinetics 6/2013 Zur Ausgabe