Skip to main content
Erschienen in: Diabetologia 3/2006

01.03.2006 | Article

Intracellular sodium increase and susceptibility to ischaemia in hearts from type 2 diabetic db/db mice

verfasst von: R. Anzawa, M. Bernard, S. Tamareille, D. Baetz, S. Confort-Gouny, J. P. Gascard, P. Cozzone, D. Feuvray

Erschienen in: Diabetologia | Ausgabe 3/2006

Einloggen, um Zugang zu erhalten

Abstract

Aims/hypothesis

An important determinant of sensitivity to ischaemia is altered ion homeostasis, especially disturbances in intracellular Na+ \({\left( {Na^{ + }_{i} } \right)}\) handling. As no study has so far investigated this in type 2 diabetes, we examined susceptibility to ischaemia–reperfusion in isolated hearts from diabetic db/db and control db/+ mice and determined whether and to what extent the amount of\(Na^{ + }_{i} \) increase during a transient period of ischaemia could contribute to functional alterations upon reperfusion.

Methods

Isovolumic hearts were exposed to 30-min global ischaemia and then reperfused. 23Na nuclear magnetic resonance (NMR) spectroscopy was used to monitor\(Na^{ + }_{i} \) and 31P NMR spectroscopy to monitor intracellular pH (pHi).

Results

A higher duration of ventricular tachycardia and the degeneration of ventricular tachycardia into ventricular fibrillation were observed upon reperfusion in db/db hearts. The recovery of left ventricular developed pressure was reduced. The increase in\( Na^{ + }_{i} \) induced by ischaemia was higher in db/db hearts than in control hearts, and the rate of pHi recovery was increased during reperfusion. The inhibition of Na+/H+ exchange by cariporide significantly reduced \(Na^{ + }_{i} \) gain at the end of ischaemia. This was associated with a lower incidence of ventricular tachycardia in both heart groups, and with an inhibition of the degeneration of ventricular tachycardia into ventricular fibrillation in db/db hearts.

Conclusions/interpretation

These findings strongly support the hypothesis that increased \(Na^{ + }_{i} \) plays a causative role in the enhanced sensitivity to ischaemia observed in db/db diabetic hearts.
Literatur
1.
Zurück zum Zitat Devereux RB, Roman MJ, Paranicas M et al (2000) Impact of diabetes on cardiac structure and function. The Strong Heart Study. Circulation 101:2271–2276 Devereux RB, Roman MJ, Paranicas M et al (2000) Impact of diabetes on cardiac structure and function. The Strong Heart Study. Circulation 101:2271–2276
2.
Zurück zum Zitat Shehadeh A, Regan TJ (1995) Cardiac consequences of diabetes mellitus. Clin Cardiol 18:301–305PubMed Shehadeh A, Regan TJ (1995) Cardiac consequences of diabetes mellitus. Clin Cardiol 18:301–305PubMed
3.
Zurück zum Zitat Frustaci A, Kajstura J, Chimenti C et al (2000) Myocardial cell death in human diabetes. Circ Res 87:1123–1132PubMed Frustaci A, Kajstura J, Chimenti C et al (2000) Myocardial cell death in human diabetes. Circ Res 87:1123–1132PubMed
4.
Zurück zum Zitat Maddaford TG, Russell JC, Pierce GN (1997) Postischemic cardiac performance in the insulin-resistant JCR:LA-cp rat. Am J Physiol Heart Circ Physiol 42:H1187–H1192 Maddaford TG, Russell JC, Pierce GN (1997) Postischemic cardiac performance in the insulin-resistant JCR:LA-cp rat. Am J Physiol Heart Circ Physiol 42:H1187–H1192
5.
Zurück zum Zitat Belke DD, Larsen TJ, Gibbs EM, Severson DL (2000) Altered metabolism causes cardiac dysfunction in perfused hearts from diabetic (db/db) mice. Am J Physiol Endocrin Metab 279:E1104–E1113 Belke DD, Larsen TJ, Gibbs EM, Severson DL (2000) Altered metabolism causes cardiac dysfunction in perfused hearts from diabetic (db/db) mice. Am J Physiol Endocrin Metab 279:E1104–E1113
6.
Zurück zum Zitat Aasum E, Hafstad AD, Severson DL, Larsen TS (2003) Age-dependent changes in metabolism, contractile function, and ischemic sensitivity in hearts from db/db mice. Diabetes 52:434–441PubMedCrossRef Aasum E, Hafstad AD, Severson DL, Larsen TS (2003) Age-dependent changes in metabolism, contractile function, and ischemic sensitivity in hearts from db/db mice. Diabetes 52:434–441PubMedCrossRef
7.
Zurück zum Zitat Leibel RL, Chung WK, Chua SR Jr (1997) The molecular genetics of rodent single gene obesities. J Biol Chem 272:31937–31940CrossRefPubMed Leibel RL, Chung WK, Chua SR Jr (1997) The molecular genetics of rodent single gene obesities. J Biol Chem 272:31937–31940CrossRefPubMed
8.
Zurück zum Zitat Wyse BM, Dulin WE (1970) The influence of age and dietary conditions on diabetes in the db mouse. Diabetologia 6:268–273CrossRefPubMed Wyse BM, Dulin WE (1970) The influence of age and dietary conditions on diabetes in the db mouse. Diabetologia 6:268–273CrossRefPubMed
9.
Zurück zum Zitat Cavaghan MK, Ehrmann DA, Polonsky KS (2000) Interactions between insulin resistance and insulin secretion in the development of glucose intolerance. J Clin Invest 106:329–333PubMedCrossRef Cavaghan MK, Ehrmann DA, Polonsky KS (2000) Interactions between insulin resistance and insulin secretion in the development of glucose intolerance. J Clin Invest 106:329–333PubMedCrossRef
10.
Zurück zum Zitat Semeniuk LM, Kryski AJ, Severson DL (2002) Echocardiographic assessment of cardiac function in diabetic db/db and transgenic db/db-hGLUT4 mice. Am J Physiol Heart Circ Physiol 283:H976–H982PubMed Semeniuk LM, Kryski AJ, Severson DL (2002) Echocardiographic assessment of cardiac function in diabetic db/db and transgenic db/db-hGLUT4 mice. Am J Physiol Heart Circ Physiol 283:H976–H982PubMed
11.
Zurück zum Zitat El Banani H, Bernard M, Baetz D et al (2000) Changes in intracellular sodium and pH during ischaemia–reperfusion are attenuated by trimetazidine. Comparison between low- and zero-flow ischaemia. Cardiovasc Res 47:688–696CrossRefPubMed El Banani H, Bernard M, Baetz D et al (2000) Changes in intracellular sodium and pH during ischaemia–reperfusion are attenuated by trimetazidine. Comparison between low- and zero-flow ischaemia. Cardiovasc Res 47:688–696CrossRefPubMed
12.
Zurück zum Zitat Imahashi K, Kusuoka H, Hashimoto K, Yoshioka J, Yamaguchi H, Nishimura T (1999) Intracellular sodium accumulation during ischemia as the substrate for reperfusion injury. Circ Res 84:1401–1406PubMed Imahashi K, Kusuoka H, Hashimoto K, Yoshioka J, Yamaguchi H, Nishimura T (1999) Intracellular sodium accumulation during ischemia as the substrate for reperfusion injury. Circ Res 84:1401–1406PubMed
13.
Zurück zum Zitat Pogwizd SM, Sipido KR, Verdonck F, Bers DM (2003) Intracellular Na in animal models of hypertrophy and heart failure: contractile function and arrhythmogenesis. Cardiovasc Res 57:887–896CrossRefPubMed Pogwizd SM, Sipido KR, Verdonck F, Bers DM (2003) Intracellular Na in animal models of hypertrophy and heart failure: contractile function and arrhythmogenesis. Cardiovasc Res 57:887–896CrossRefPubMed
14.
Zurück zum Zitat Khandoudi N, Bernard M, Cozzone P, Feuvray D (1990) Intracellular pH and role of Na+/H+ exchange during ischaemia and reperfusion of normal and diabetic rat hearts. Cardiovasc Res 24:873–878PubMedCrossRef Khandoudi N, Bernard M, Cozzone P, Feuvray D (1990) Intracellular pH and role of Na+/H+ exchange during ischaemia and reperfusion of normal and diabetic rat hearts. Cardiovasc Res 24:873–878PubMedCrossRef
15.
Zurück zum Zitat Feuvray D (1997) The regulation of intracellular pH in the diabetic myocardium. Cardiovasc Res 34:48–54CrossRefPubMed Feuvray D (1997) The regulation of intracellular pH in the diabetic myocardium. Cardiovasc Res 34:48–54CrossRefPubMed
16.
Zurück zum Zitat Hartmann M, Decking UKM (1999) Blocking Na+–H+ exchange by cariporide reduces Na+ overload in ischemia and is cardioprotective. J Mol Cell Cardiol 31:1985–1995CrossRefPubMed Hartmann M, Decking UKM (1999) Blocking Na+–H+ exchange by cariporide reduces Na+ overload in ischemia and is cardioprotective. J Mol Cell Cardiol 31:1985–1995CrossRefPubMed
17.
Zurück zum Zitat Baetz D, Bernard M, Pinet C et al (2003) Different pathways for sodium entry in cardiac cells during ischemia and early reperfusion. Mol Cell Biochem 242:115–120CrossRefPubMed Baetz D, Bernard M, Pinet C et al (2003) Different pathways for sodium entry in cardiac cells during ischemia and early reperfusion. Mol Cell Biochem 242:115–120CrossRefPubMed
18.
Zurück zum Zitat Anzawa R, Bernard M, Baetz D, Confort-Gouny S, Gascard JP, Feuvray D (2003) Increased susceptibility to ischaemia–reperfusion of hearts from diabetic (db/db) mice: a functional and 23Na NMR spectroscopy study. Eur J Heart Fail 2:17 (Abstract) Anzawa R, Bernard M, Baetz D, Confort-Gouny S, Gascard JP, Feuvray D (2003) Increased susceptibility to ischaemia–reperfusion of hearts from diabetic (db/db) mice: a functional and 23Na NMR spectroscopy study. Eur J Heart Fail 2:17 (Abstract)
19.
Zurück zum Zitat Pijnappel WWF, Van den Boogart, De Beer R, Van Ormondt D (1992) SVD-based quantification of magnetic resonance signals. J Magn Reson 97:122–134 Pijnappel WWF, Van den Boogart, De Beer R, Van Ormondt D (1992) SVD-based quantification of magnetic resonance signals. J Magn Reson 97:122–134
20.
Zurück zum Zitat Vanhamme L, Van den Boogart A, Van Huffel S (1997) Improved method for accurate and efficient quantification of MRS data with use of prior knowledge. J Magn Reson 129:35–43CrossRefPubMed Vanhamme L, Van den Boogart A, Van Huffel S (1997) Improved method for accurate and efficient quantification of MRS data with use of prior knowledge. J Magn Reson 129:35–43CrossRefPubMed
21.
Zurück zum Zitat Van Emous JG, Nederhoff MGJ, Ruigrok TJC, Van Echteld CJA (1997) The role of the Na+ channel in the accumulation of intracellular Na+ during myocardial ischemia: consequences for post-ischemic recovery. J Mol Cell Cardiol 29:85–96CrossRefPubMed Van Emous JG, Nederhoff MGJ, Ruigrok TJC, Van Echteld CJA (1997) The role of the Na+ channel in the accumulation of intracellular Na+ during myocardial ischemia: consequences for post-ischemic recovery. J Mol Cell Cardiol 29:85–96CrossRefPubMed
22.
Zurück zum Zitat Scholz W, Albus U, Counillon L et al (1995) Protective effect of HOE 642, a selective sodium–hydrogen exchange subtype 1 inhibitor, on cardiac ischaemia and reperfusion. Cardiovasc Res 29:260–268CrossRefPubMed Scholz W, Albus U, Counillon L et al (1995) Protective effect of HOE 642, a selective sodium–hydrogen exchange subtype 1 inhibitor, on cardiac ischaemia and reperfusion. Cardiovasc Res 29:260–268CrossRefPubMed
23.
Zurück zum Zitat Avkiran M, Ibuki C (1992) Reperfusion-induced arrhythmias. A role for washout of extracellular protons? Circ Res 71:1429–1440PubMed Avkiran M, Ibuki C (1992) Reperfusion-induced arrhythmias. A role for washout of extracellular protons? Circ Res 71:1429–1440PubMed
24.
Zurück zum Zitat Walker MJA, Curtis MJ, Hearse DJ et al (1988) The Lambeth Conventions: guidelines for the study of arrhythmias in ischemia, infarction, and reperfusion. Cardiovasc Res 22:447–455PubMed Walker MJA, Curtis MJ, Hearse DJ et al (1988) The Lambeth Conventions: guidelines for the study of arrhythmias in ischemia, infarction, and reperfusion. Cardiovasc Res 22:447–455PubMed
25.
Zurück zum Zitat Brooks WW, Conrad CH (1999) Differences between mouse and rat myocardial contractile responsiveness to calcium. Comp Biochem Physiol A Mol Integr Physiol 124:139–147CrossRefPubMed Brooks WW, Conrad CH (1999) Differences between mouse and rat myocardial contractile responsiveness to calcium. Comp Biochem Physiol A Mol Integr Physiol 124:139–147CrossRefPubMed
26.
Zurück zum Zitat Headrick JP, Peart J, Hack B, Garnham B, Matherne GP (2001) 5′-adenosine monophosphate and adenosine metabolism, and adenosine responses in mouse, rat and guinea-pig heart. Comp Biochem Physiol A Mol Integr Physiol 130:615–631CrossRefPubMed Headrick JP, Peart J, Hack B, Garnham B, Matherne GP (2001) 5′-adenosine monophosphate and adenosine metabolism, and adenosine responses in mouse, rat and guinea-pig heart. Comp Biochem Physiol A Mol Integr Physiol 130:615–631CrossRefPubMed
27.
Zurück zum Zitat Lagadic-Gossmann D, Feuvray D (1991) Intracellular sodium activity in papillary muscle from diabetic rat hearts. Exp Physiol 76:147–149PubMed Lagadic-Gossmann D, Feuvray D (1991) Intracellular sodium activity in papillary muscle from diabetic rat hearts. Exp Physiol 76:147–149PubMed
28.
Zurück zum Zitat Le Prigent K, Lagadic-Gossmann D, Feuvray D (1997) Modulation by pHo and intracellular Ca2+ of Na+–H+ exchange in diabetic rat isolated ventricular myocytes. Circ Res 80:253–260PubMed Le Prigent K, Lagadic-Gossmann D, Feuvray D (1997) Modulation by pHo and intracellular Ca2+ of Na+–H+ exchange in diabetic rat isolated ventricular myocytes. Circ Res 80:253–260PubMed
29.
Zurück zum Zitat Ten Hove M, Nederhoff MG, Van Echteld CJ (2005) Relative contributions of Na+/H+ exchange and Na+/HCO3 − cotransport to ischemic \({\left( {Na^{ + }_{i} } \right)}\) overload in isolated rat hearts. Am J Physiol Heart Circ Physiol 288:H287–H292CrossRefPubMed Ten Hove M, Nederhoff MG, Van Echteld CJ (2005) Relative contributions of Na+/H+ exchange and Na+/HCO3 cotransport to ischemic \({\left( {Na^{ + }_{i} } \right)}\) overload in isolated rat hearts. Am J Physiol Heart Circ Physiol 288:H287–H292CrossRefPubMed
30.
Zurück zum Zitat Chattou S, Coulombe A, Diacono J, Le Grand B, John G, Feuvray D (2000) Slowly inactivating component of sodium current in ventricular myocytes is decreased by diabetes and partially inhibited by known Na+–H+ exchange blockers. J Mol Cell Cardiol 32:1181–1192CrossRefPubMed Chattou S, Coulombe A, Diacono J, Le Grand B, John G, Feuvray D (2000) Slowly inactivating component of sodium current in ventricular myocytes is decreased by diabetes and partially inhibited by known Na+–H+ exchange blockers. J Mol Cell Cardiol 32:1181–1192CrossRefPubMed
31.
Zurück zum Zitat Pinet C, Le Grand B, John GW, Coulombe A (2002) Thrombin facilitation of voltage-gated sodium channel activation in human cardiomyocytes. Implications for ischemic sodium loading. Circulation 106:2098–2103CrossRefPubMed Pinet C, Le Grand B, John GW, Coulombe A (2002) Thrombin facilitation of voltage-gated sodium channel activation in human cardiomyocytes. Implications for ischemic sodium loading. Circulation 106:2098–2103CrossRefPubMed
32.
Zurück zum Zitat Neubauer S, Newell JB, Ingwall JS (1992) Metabolic consequences and predictability of ventricular fibrillation in hypoxia. A 31P- and 23Na-nuclear magnetic resonance study of the isolated rat heart. Circulation 86:302–310PubMed Neubauer S, Newell JB, Ingwall JS (1992) Metabolic consequences and predictability of ventricular fibrillation in hypoxia. A 31P- and 23Na-nuclear magnetic resonance study of the isolated rat heart. Circulation 86:302–310PubMed
33.
Zurück zum Zitat Tani M, Neely JR (1989) Role of intracellular Na+ in Ca2+ overload and depressed recovery of ventricular function of reperfused ischemic rat hearts. Circ Res 65:1045–1056PubMed Tani M, Neely JR (1989) Role of intracellular Na+ in Ca2+ overload and depressed recovery of ventricular function of reperfused ischemic rat hearts. Circ Res 65:1045–1056PubMed
34.
Zurück zum Zitat Pogwizd SM, Schlotthauer K, Li L, Yuan W, Bers DM (2001) Arrhythmogenesis and contractile dysfunction in heart failure: roles of sodium–calcium exchange, inward rectifier potassium current, and residual beta-adrenergic responsiveness. Circ Res 88:1159–1167PubMedCrossRef Pogwizd SM, Schlotthauer K, Li L, Yuan W, Bers DM (2001) Arrhythmogenesis and contractile dysfunction in heart failure: roles of sodium–calcium exchange, inward rectifier potassium current, and residual beta-adrenergic responsiveness. Circ Res 88:1159–1167PubMedCrossRef
35.
Zurück zum Zitat Belke DD, Swanson EA, Dillmann WH (2004) Decreased sarcoplasmic reticulum activity and contractility in diabetic db/db mouse heart. Diabetes 53:3201–3208PubMedCrossRef Belke DD, Swanson EA, Dillmann WH (2004) Decreased sarcoplasmic reticulum activity and contractility in diabetic db/db mouse heart. Diabetes 53:3201–3208PubMedCrossRef
36.
Zurück zum Zitat Wehrens XHT, Lehnart SE, Huang F et al (2003) FKBP12.6 deficiency and defective calcium release channel (ryanodine receptor) function linked to exercise-induced sudden cardiac death. Cell 113:829–840CrossRefPubMed Wehrens XHT, Lehnart SE, Huang F et al (2003) FKBP12.6 deficiency and defective calcium release channel (ryanodine receptor) function linked to exercise-induced sudden cardiac death. Cell 113:829–840CrossRefPubMed
37.
Zurück zum Zitat Vaughan-Jones RD, Wu M-L (1990) Extracellular H+ inactivation of Na+–H+ exchange in the sheep cardiac Purkinje fibre. J Physiol (Lond) 428:441–466 Vaughan-Jones RD, Wu M-L (1990) Extracellular H+ inactivation of Na+–H+ exchange in the sheep cardiac Purkinje fibre. J Physiol (Lond) 428:441–466
38.
Zurück zum Zitat Vandenberg JI, Metcalfe JC, Grace AA (1993) Mechanisms of pHi recovery after global ischemia in the perfused heart. Circ Res 72:993–1003PubMed Vandenberg JI, Metcalfe JC, Grace AA (1993) Mechanisms of pHi recovery after global ischemia in the perfused heart. Circ Res 72:993–1003PubMed
39.
Zurück zum Zitat Khandoudi N, Bernard M, Cozzone PJ, Feuvray D (1995) Mechanisms of intracellular pH regulation during postischemic reperfusion of diabetic rat hearts. Diabetes 44:196–202PubMedCrossRef Khandoudi N, Bernard M, Cozzone PJ, Feuvray D (1995) Mechanisms of intracellular pH regulation during postischemic reperfusion of diabetic rat hearts. Diabetes 44:196–202PubMedCrossRef
40.
Zurück zum Zitat Baetz D, Haworth RS, Avkiran M, Feuvray D (2002) The ERK pathway regulates Na+–HCO3 − cotransport activity in adult rat cardiomyocytes. Am J Physiol Heart Circ Physiol 283:H2102–H2109PubMed Baetz D, Haworth RS, Avkiran M, Feuvray D (2002) The ERK pathway regulates Na+–HCO3 cotransport activity in adult rat cardiomyocytes. Am J Physiol Heart Circ Physiol 283:H2102–H2109PubMed
41.
Zurück zum Zitat Purdham DM, Zou MX, Rajapurohitam V, Karmazyn M (2004) Rat heart is a site of leptin production and action. Am J Physiol Heart Circ Physiol 287:H2877–H2884CrossRefPubMed Purdham DM, Zou MX, Rajapurohitam V, Karmazyn M (2004) Rat heart is a site of leptin production and action. Am J Physiol Heart Circ Physiol 287:H2877–H2884CrossRefPubMed
Metadaten
Titel
Intracellular sodium increase and susceptibility to ischaemia in hearts from type 2 diabetic db/db mice
verfasst von
R. Anzawa
M. Bernard
S. Tamareille
D. Baetz
S. Confort-Gouny
J. P. Gascard
P. Cozzone
D. Feuvray
Publikationsdatum
01.03.2006
Verlag
Springer-Verlag
Erschienen in
Diabetologia / Ausgabe 3/2006
Print ISSN: 0012-186X
Elektronische ISSN: 1432-0428
DOI
https://doi.org/10.1007/s00125-005-0091-5

Weitere Artikel der Ausgabe 3/2006

Diabetologia 3/2006 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.