Skip to main content
Erschienen in: Diabetologia 8/2014

01.08.2014 | Article

Type 2 diabetes-related genetic risk scores associated with variations in fasting plasma glucose and development of impaired glucose homeostasis in the prospective DESIR study

verfasst von: Martine Vaxillaire, Loïc Yengo, Stéphane Lobbens, Ghislain Rocheleau, Elodie Eury, Olivier Lantieri, Michel Marre, Beverley Balkau, Amélie Bonnefond, Philippe Froguel

Erschienen in: Diabetologia | Ausgabe 8/2014

Einloggen, um Zugang zu erhalten

Abstract

Aims/hypothesis

Genome-wide association studies have firmly established 65 independent European-derived loci associated with type 2 diabetes and 36 loci contributing to variations in fasting plasma glucose (FPG). Using individual data from the Data from an Epidemiological Study on the Insulin Resistance Syndrome (DESIR) prospective study, we evaluated the contribution of three genetic risk scores (GRS) to variations in metabolic traits, and to the incidence and prevalence of impaired fasting glycaemia (IFG) and type 2 diabetes.

Methods

Three GRS (GRS-1, 65 type 2 diabetes-associated single nucleotide polymorphisms [SNPs]; GRS-2, GRS-1 combined with 24 FPG-raising SNPs; and GRS-3, FPG-raising SNPs alone) were analysed in 4,075 DESIR study participants. GRS-mediated effects on longitudinal variations in quantitative traits were assessed in 3,927 nondiabetic individuals using multivariate linear mixed models, and on the incidence and prevalence of hyperglycaemia at 9 years using Cox and logistic regression models. The contribution of each GRS to risk prediction was evaluated using the C-statistic and net reclassification improvement (NRI) analysis.

Results

The two most inclusive GRS were significantly associated with increased FPG (β = 0.0011 mmol/l per year per risk allele, p GRS-1  = 8.2 × 10−5 and p GRS-2  = 6.0 × 10−6), increased incidence of IFG and type 2 diabetes (per allele: HR GRS-1 1.03, p = 4.3 × 10−9 and HR GRS-2 1.04, p = 1.0 × 10−16), and the 9 year prevalence (OR GRS-1 1.13 [95% CI 1.10, 1.17], p = 1.9 × 10−14 for type 2 diabetes only; OR GRS-2 1.07 [95% CI 1.05, 1.08], p = 7.8 × 10−25, for IFG and type 2 diabetes). No significant interaction was found between GRS-1 or GRS-2 and potential confounding factors. Each GRS yielded a modest, but significant, improvement in overall reclassification rates (NRI GRS-1 17.3%, p = 6.6 × 10−7; NRI GRS-2 17.6%, p = 4.2 × 10−7; NRI GRS-3 13.1%, p = 1.7 × 10−4).

Conclusions/interpretation

Polygenic scores based on combined genetic information from type 2 diabetes risk and FPG variation contribute to discriminating middle-aged individuals at risk of developing type 2 diabetes in a general population.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Voight BF, Scott LJ, Steinthorsdottir V et al (2010) Twelve type 2 diabetes susceptibility loci identified through large-scale association analysis. Nat Genet 42:579–589PubMedCentralPubMedCrossRef Voight BF, Scott LJ, Steinthorsdottir V et al (2010) Twelve type 2 diabetes susceptibility loci identified through large-scale association analysis. Nat Genet 42:579–589PubMedCentralPubMedCrossRef
2.
Zurück zum Zitat Dupuis J, Langenberg C, Prokopenko I et al (2010) New genetic loci implicated in fasting glucose homeostasis and their impact on type 2 diabetes risk. Nat Genet 42:105–116PubMedCentralPubMedCrossRef Dupuis J, Langenberg C, Prokopenko I et al (2010) New genetic loci implicated in fasting glucose homeostasis and their impact on type 2 diabetes risk. Nat Genet 42:105–116PubMedCentralPubMedCrossRef
3.
Zurück zum Zitat Bonnefond A, Froguel P, Vaxillaire M (2010) The emerging genetics of type 2 diabetes. Trends Mol Med 16:407–416PubMedCrossRef Bonnefond A, Froguel P, Vaxillaire M (2010) The emerging genetics of type 2 diabetes. Trends Mol Med 16:407–416PubMedCrossRef
4.
Zurück zum Zitat Pal A, McCarthy MI (2013) The genetics of type 2 diabetes and its clinical relevance. Clin Genet 83:297–306PubMedCrossRef Pal A, McCarthy MI (2013) The genetics of type 2 diabetes and its clinical relevance. Clin Genet 83:297–306PubMedCrossRef
5.
Zurück zum Zitat Morris AP, Voight BF, Teslovich TM et al (2012) Large-scale association analysis provides insights into the genetic architecture and pathophysiology of type 2 diabetes. Nat Genet 44:981–990PubMedCentralPubMedCrossRef Morris AP, Voight BF, Teslovich TM et al (2012) Large-scale association analysis provides insights into the genetic architecture and pathophysiology of type 2 diabetes. Nat Genet 44:981–990PubMedCentralPubMedCrossRef
6.
Zurück zum Zitat Scott RA, Lagou V, Welch RP et al (2012) Large-scale association analyses identify new loci influencing glycemic traits and provide insight into the underlying biological pathways. Nat Genet 44:991–1005PubMedCentralPubMedCrossRef Scott RA, Lagou V, Welch RP et al (2012) Large-scale association analyses identify new loci influencing glycemic traits and provide insight into the underlying biological pathways. Nat Genet 44:991–1005PubMedCentralPubMedCrossRef
7.
Zurück zum Zitat Wilson PWF, Meigs JB, Sullivan L et al (2007) Prediction of incident diabetes mellitus in middle-aged adults: the Framingham Offspring Study. Arch Intern Med 167:1068–1074PubMedCrossRef Wilson PWF, Meigs JB, Sullivan L et al (2007) Prediction of incident diabetes mellitus in middle-aged adults: the Framingham Offspring Study. Arch Intern Med 167:1068–1074PubMedCrossRef
8.
Zurück zum Zitat Lyssenko V, Jonsson A, Almgren P et al (2008) Clinical risk factors, DNA variants, and the development of type 2 diabetes. N Engl J Med 359:2220–2232PubMedCrossRef Lyssenko V, Jonsson A, Almgren P et al (2008) Clinical risk factors, DNA variants, and the development of type 2 diabetes. N Engl J Med 359:2220–2232PubMedCrossRef
9.
Zurück zum Zitat Meigs JB, Shrader P, Sullivan LM et al (2008) Genotype score in addition to common risk factors for prediction of type 2 diabetes. N Engl J Med 359:2208–2219PubMedCentralPubMedCrossRef Meigs JB, Shrader P, Sullivan LM et al (2008) Genotype score in addition to common risk factors for prediction of type 2 diabetes. N Engl J Med 359:2208–2219PubMedCentralPubMedCrossRef
10.
Zurück zum Zitat Cauchi S, Proença C, Choquet H et al (2008) Analysis of novel risk loci for type 2 diabetes in a general French population: the DESIR. study. J Mol Med (Berl) 86:341–348CrossRef Cauchi S, Proença C, Choquet H et al (2008) Analysis of novel risk loci for type 2 diabetes in a general French population: the DESIR. study. J Mol Med (Berl) 86:341–348CrossRef
11.
Zurück zum Zitat Hivert M-F, Jablonski KA, Perreault L et al (2011) Updated genetic score based on 34 confirmed type 2 diabetes Loci is associated with diabetes incidence and regression to normoglycemia in the diabetes prevention program. Diabetes 60:1340–1348PubMedCentralPubMedCrossRef Hivert M-F, Jablonski KA, Perreault L et al (2011) Updated genetic score based on 34 confirmed type 2 diabetes Loci is associated with diabetes incidence and regression to normoglycemia in the diabetes prevention program. Diabetes 60:1340–1348PubMedCentralPubMedCrossRef
12.
Zurück zum Zitat Talmud PJ, Hingorani AD, Cooper JA et al (2010) Utility of genetic and non-genetic risk factors in prediction of type 2 diabetes: Whitehall II prospective cohort study. BMJ 340:b4838PubMedCentralPubMedCrossRef Talmud PJ, Hingorani AD, Cooper JA et al (2010) Utility of genetic and non-genetic risk factors in prediction of type 2 diabetes: Whitehall II prospective cohort study. BMJ 340:b4838PubMedCentralPubMedCrossRef
14.
Zurück zum Zitat Balkau B, Lange C, Fezeu L et al (2008) Predicting diabetes: clinical, biological, and genetic approaches: data from the Epidemiological Study on the Insulin Resistance Syndrome (DESIR). Diabetes Care 31:2056–2061PubMedCentralPubMedCrossRef Balkau B, Lange C, Fezeu L et al (2008) Predicting diabetes: clinical, biological, and genetic approaches: data from the Epidemiological Study on the Insulin Resistance Syndrome (DESIR). Diabetes Care 31:2056–2061PubMedCentralPubMedCrossRef
15.
Zurück zum Zitat de Miguel-Yanes JM, Shrader P, Pencina MJ et al (2011) Genetic risk reclassification for type 2 diabetes by age below or above 50 years using 40 type 2 diabetes risk single nucleotide polymorphisms. Diabetes Care 34:121–125PubMedCentralPubMedCrossRef de Miguel-Yanes JM, Shrader P, Pencina MJ et al (2011) Genetic risk reclassification for type 2 diabetes by age below or above 50 years using 40 type 2 diabetes risk single nucleotide polymorphisms. Diabetes Care 34:121–125PubMedCentralPubMedCrossRef
16.
Zurück zum Zitat Vassy JL, Shrader P, Jonsson A et al (2011) Association between parental history of diabetes and type 2 diabetes genetic risk scores in the PPP-Botnia and Framingham Offspring Studies. Diabetes Res Clin Pract 93:e76–e79PubMedCentralPubMedCrossRef Vassy JL, Shrader P, Jonsson A et al (2011) Association between parental history of diabetes and type 2 diabetes genetic risk scores in the PPP-Botnia and Framingham Offspring Studies. Diabetes Res Clin Pract 93:e76–e79PubMedCentralPubMedCrossRef
17.
Zurück zum Zitat Mühlenbruch K, Jeppesen C, Joost H-G et al (2013) The value of genetic information for diabetes risk prediction—differences according to sex, age, family history and obesity. PLoS One 8:e64307PubMedCentralPubMedCrossRef Mühlenbruch K, Jeppesen C, Joost H-G et al (2013) The value of genetic information for diabetes risk prediction—differences according to sex, age, family history and obesity. PLoS One 8:e64307PubMedCentralPubMedCrossRef
18.
Zurück zum Zitat Andersson EA, Allin KH, Sandholt CH et al (2013) Genetic risk score of 46 type 2 diabetes risk variants associates with changes in plasma glucose and estimates of pancreatic β-cell function over 5 years of follow-up. Diabetes 62:3610–3617PubMedCrossRef Andersson EA, Allin KH, Sandholt CH et al (2013) Genetic risk score of 46 type 2 diabetes risk variants associates with changes in plasma glucose and estimates of pancreatic β-cell function over 5 years of follow-up. Diabetes 62:3610–3617PubMedCrossRef
19.
Zurück zum Zitat Renström F, Shungin D, Johansson I et al (2011) Genetic predisposition to long-term nondiabetic deteriorations in glucose homeostasis: ten-year follow-up of the GLACIER study. Diabetes 60:345–354PubMedCentralPubMedCrossRef Renström F, Shungin D, Johansson I et al (2011) Genetic predisposition to long-term nondiabetic deteriorations in glucose homeostasis: ten-year follow-up of the GLACIER study. Diabetes 60:345–354PubMedCentralPubMedCrossRef
20.
Zurück zum Zitat Walford GA, Green T, Neale B et al (2011) Common genetic variants differentially influence the transition from clinically defined states of fasting glucose metabolism. Diabetologia 55:331–339PubMedCentralPubMedCrossRef Walford GA, Green T, Neale B et al (2011) Common genetic variants differentially influence the transition from clinically defined states of fasting glucose metabolism. Diabetologia 55:331–339PubMedCentralPubMedCrossRef
21.
Zurück zum Zitat Shaye K, Amir T, Shlomo S, Yechezkel S (2012) Fasting glucose levels within the high normal range predict cardiovascular outcome. Am Heart J 164:111–116PubMedCrossRef Shaye K, Amir T, Shlomo S, Yechezkel S (2012) Fasting glucose levels within the high normal range predict cardiovascular outcome. Am Heart J 164:111–116PubMedCrossRef
22.
Zurück zum Zitat Vaxillaire M, Veslot J, Dina C et al (2008) Impact of common type 2 diabetes risk polymorphisms in the DESIR prospective study. Diabetes 57:244–254PubMedCrossRef Vaxillaire M, Veslot J, Dina C et al (2008) Impact of common type 2 diabetes risk polymorphisms in the DESIR prospective study. Diabetes 57:244–254PubMedCrossRef
23.
Zurück zum Zitat Balkau B, Eschwege E, Tichet J, Marre M (1997) Proposed criteria for the diagnosis of diabetes: evidence from a French epidemiological study (D.E.S.I.R.). Diabetes Metab 23:428–434PubMed Balkau B, Eschwege E, Tichet J, Marre M (1997) Proposed criteria for the diagnosis of diabetes: evidence from a French epidemiological study (D.E.S.I.R.). Diabetes Metab 23:428–434PubMed
24.
Zurück zum Zitat Genuth S, Alberti KGMM, Bennett P et al (2003) Follow-up report on the diagnosis of diabetes mellitus. Diabetes Care 26:3160–3167PubMedCrossRef Genuth S, Alberti KGMM, Bennett P et al (2003) Follow-up report on the diagnosis of diabetes mellitus. Diabetes Care 26:3160–3167PubMedCrossRef
25.
Zurück zum Zitat Voight BF, Kang HM, Ding J et al (2012) The metabochip, a custom genotyping array for genetic studies of metabolic, cardiovascular, and anthropometric traits. PLoS Genet 8:e1002793PubMedCentralPubMedCrossRef Voight BF, Kang HM, Ding J et al (2012) The metabochip, a custom genotyping array for genetic studies of metabolic, cardiovascular, and anthropometric traits. PLoS Genet 8:e1002793PubMedCentralPubMedCrossRef
26.
Zurück zum Zitat Tam CH, Ho JS, Wang Y et al (2013) Use of Net Reclassification Improvement (NRI) method confirms the utility of combined genetic risk score to predict type 2 diabetes. PLoS One 8(12):e83093PubMedCentralPubMedCrossRef Tam CH, Ho JS, Wang Y et al (2013) Use of Net Reclassification Improvement (NRI) method confirms the utility of combined genetic risk score to predict type 2 diabetes. PLoS One 8(12):e83093PubMedCentralPubMedCrossRef
27.
Zurück zum Zitat Grambsch PM, Therneau TM (1994) Proportional hazards tests and diagnostics based on weighted residuals. Biometrika 81:515–526CrossRef Grambsch PM, Therneau TM (1994) Proportional hazards tests and diagnostics based on weighted residuals. Biometrika 81:515–526CrossRef
28.
Zurück zum Zitat Pencina MJ, D’Agostino RB Sr, D’Agostino RB Jr, Vasan RS (2008) Evaluating the added predictive ability of a new marker: from area under the ROC curve to reclassification and beyond. Stat Med 27:157–172PubMedCrossRef Pencina MJ, D’Agostino RB Sr, D’Agostino RB Jr, Vasan RS (2008) Evaluating the added predictive ability of a new marker: from area under the ROC curve to reclassification and beyond. Stat Med 27:157–172PubMedCrossRef
29.
Zurück zum Zitat Pencina MJ, D’Agostino RB Sr, Demler OV (2012) Novel metrics for evaluating improvement in discrimination: net reclassification and integrated discrimination improvement for normal variables and nested models. Stat Med 31:101–113PubMedCentralPubMedCrossRef Pencina MJ, D’Agostino RB Sr, Demler OV (2012) Novel metrics for evaluating improvement in discrimination: net reclassification and integrated discrimination improvement for normal variables and nested models. Stat Med 31:101–113PubMedCentralPubMedCrossRef
30.
Zurück zum Zitat Jensen AC, Barker A, Kumari M et al (2011) Associations of common genetic variants with age-related changes in fasting and postload glucose: evidence from 18 years of follow-up of the Whitehall II cohort. Diabetes 60:1617–1623PubMedCentralPubMedCrossRef Jensen AC, Barker A, Kumari M et al (2011) Associations of common genetic variants with age-related changes in fasting and postload glucose: evidence from 18 years of follow-up of the Whitehall II cohort. Diabetes 60:1617–1623PubMedCentralPubMedCrossRef
31.
Zurück zum Zitat Katoh S, Lehtovirta M, Kaprio J et al (2005) Genetic and environmental effects on fasting and postchallenge plasma glucose and serum insulin values in Finnish twins. J Clin Endocrinol Metab 90:2642–2647PubMedCrossRef Katoh S, Lehtovirta M, Kaprio J et al (2005) Genetic and environmental effects on fasting and postchallenge plasma glucose and serum insulin values in Finnish twins. J Clin Endocrinol Metab 90:2642–2647PubMedCrossRef
32.
Zurück zum Zitat Kelliny C, Ekelund U, Andersen LB et al (2009) Common genetic determinants of glucose homeostasis in healthy children: the European Youth Heart Study. Diabetes 58:2939–2945PubMedCentralPubMedCrossRef Kelliny C, Ekelund U, Andersen LB et al (2009) Common genetic determinants of glucose homeostasis in healthy children: the European Youth Heart Study. Diabetes 58:2939–2945PubMedCentralPubMedCrossRef
33.
Zurück zum Zitat Tabak AG, Jokela M, Akbaraly TN, Brunner EJ, Kivimäki M, Witte DR (2009) Trajectories of glycaemia, insulin sensitivity, and insulin secretion before diagnosis of type 2 diabetes: an analysis from the Whitehall II study. Lancet 373:2215–2221PubMedCentralPubMedCrossRef Tabak AG, Jokela M, Akbaraly TN, Brunner EJ, Kivimäki M, Witte DR (2009) Trajectories of glycaemia, insulin sensitivity, and insulin secretion before diagnosis of type 2 diabetes: an analysis from the Whitehall II study. Lancet 373:2215–2221PubMedCentralPubMedCrossRef
34.
Zurück zum Zitat Gautier A, Roussel R, Lange C et al (2011) Effects of genetic susceptibility for type 2 diabetes on the evolution of glucose homeostasis traits before and after diabetes diagnosis: data from the D.E.S.I.R. Study. Diabetes 60:2654–2663PubMedCentralPubMedCrossRef Gautier A, Roussel R, Lange C et al (2011) Effects of genetic susceptibility for type 2 diabetes on the evolution of glucose homeostasis traits before and after diabetes diagnosis: data from the D.E.S.I.R. Study. Diabetes 60:2654–2663PubMedCentralPubMedCrossRef
35.
Zurück zum Zitat Meigs JB, Cupples LA, Wilson PW (2000) Parental transmission of type 2 diabetes: the Framingham Offspring Study. Diabetes 49:2201–2207PubMedCrossRef Meigs JB, Cupples LA, Wilson PW (2000) Parental transmission of type 2 diabetes: the Framingham Offspring Study. Diabetes 49:2201–2207PubMedCrossRef
36.
Zurück zum Zitat Van’t Riet E, Dekker JM, Sun Q et al (2010) Role of adiposity and lifestyle in the relationship between family history of diabetes and 20 year incidence of type 2 diabetes in U.S. women. Diabetes Care 33:763–767CrossRef Van’t Riet E, Dekker JM, Sun Q et al (2010) Role of adiposity and lifestyle in the relationship between family history of diabetes and 20 year incidence of type 2 diabetes in U.S. women. Diabetes Care 33:763–767CrossRef
37.
Zurück zum Zitat InterAct Consortium (2013) The link between family history and risk of type 2 diabetes is not explained by anthropometric, lifestyle or genetic risk factors: the EPIC-InterAct study. Diabetologia 56:60–69CrossRef InterAct Consortium (2013) The link between family history and risk of type 2 diabetes is not explained by anthropometric, lifestyle or genetic risk factors: the EPIC-InterAct study. Diabetologia 56:60–69CrossRef
38.
Zurück zum Zitat Eichler EE, Flint J, Gibson G et al (2010) Missing heritability and strategies for finding the underlying causes of complex disease. Nat Rev Genet 11:446–450PubMedCentralPubMedCrossRef Eichler EE, Flint J, Gibson G et al (2010) Missing heritability and strategies for finding the underlying causes of complex disease. Nat Rev Genet 11:446–450PubMedCentralPubMedCrossRef
39.
Zurück zum Zitat Bonnefond A, Clément N, Fawcett K et al (2012) Rare MTNR1B variants impairing melatonin receptor 1B function contribute to type 2 diabetes. Nat Genet 44:297–301PubMedCentralPubMedCrossRef Bonnefond A, Clément N, Fawcett K et al (2012) Rare MTNR1B variants impairing melatonin receptor 1B function contribute to type 2 diabetes. Nat Genet 44:297–301PubMedCentralPubMedCrossRef
40.
Zurück zum Zitat Agarwala V, Flannick J, Sunyaev S, GoT2D Consortium, Altshuler D (2013) Evaluating empirical bounds on complex disease genetic architecture. Nat Genet 45:1418–1427PubMedCrossRef Agarwala V, Flannick J, Sunyaev S, GoT2D Consortium, Altshuler D (2013) Evaluating empirical bounds on complex disease genetic architecture. Nat Genet 45:1418–1427PubMedCrossRef
41.
Zurück zum Zitat Levy JC, Matthews DR, Hermans MP (1998) Correct homeostasis model assessment (HOMA) evaluation uses the computer program. Diabetes Care 21:2191–2192PubMedCrossRef Levy JC, Matthews DR, Hermans MP (1998) Correct homeostasis model assessment (HOMA) evaluation uses the computer program. Diabetes Care 21:2191–2192PubMedCrossRef
Metadaten
Titel
Type 2 diabetes-related genetic risk scores associated with variations in fasting plasma glucose and development of impaired glucose homeostasis in the prospective DESIR study
verfasst von
Martine Vaxillaire
Loïc Yengo
Stéphane Lobbens
Ghislain Rocheleau
Elodie Eury
Olivier Lantieri
Michel Marre
Beverley Balkau
Amélie Bonnefond
Philippe Froguel
Publikationsdatum
01.08.2014
Verlag
Springer Berlin Heidelberg
Erschienen in
Diabetologia / Ausgabe 8/2014
Print ISSN: 0012-186X
Elektronische ISSN: 1432-0428
DOI
https://doi.org/10.1007/s00125-014-3277-x

Weitere Artikel der Ausgabe 8/2014

Diabetologia 8/2014 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Notfall-TEP der Hüfte ist auch bei 90-Jährigen machbar

26.04.2024 Hüft-TEP Nachrichten

Ob bei einer Notfalloperation nach Schenkelhalsfraktur eine Hemiarthroplastik oder eine totale Endoprothese (TEP) eingebaut wird, sollte nicht allein vom Alter der Patientinnen und Patienten abhängen. Auch über 90-Jährige können von der TEP profitieren.

Niedriger diastolischer Blutdruck erhöht Risiko für schwere kardiovaskuläre Komplikationen

25.04.2024 Hypotonie Nachrichten

Wenn unter einer medikamentösen Hochdrucktherapie der diastolische Blutdruck in den Keller geht, steigt das Risiko für schwere kardiovaskuläre Ereignisse: Darauf deutet eine Sekundäranalyse der SPRINT-Studie hin.

Bei schweren Reaktionen auf Insektenstiche empfiehlt sich eine spezifische Immuntherapie

Insektenstiche sind bei Erwachsenen die häufigsten Auslöser einer Anaphylaxie. Einen wirksamen Schutz vor schweren anaphylaktischen Reaktionen bietet die allergenspezifische Immuntherapie. Jedoch kommt sie noch viel zu selten zum Einsatz.

Therapiestart mit Blutdrucksenkern erhöht Frakturrisiko

25.04.2024 Hypertonie Nachrichten

Beginnen ältere Männer im Pflegeheim eine Antihypertensiva-Therapie, dann ist die Frakturrate in den folgenden 30 Tagen mehr als verdoppelt. Besonders häufig stürzen Demenzkranke und Männer, die erstmals Blutdrucksenker nehmen. Dafür spricht eine Analyse unter US-Veteranen.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.