Skip to main content
Erschienen in: Diabetologia 2/2020

Open Access 11.11.2019 | Review

Non-alcoholic fatty liver disease and cardiovascular disease: assessing the evidence for causality

verfasst von: Martijn C. G. J. Brouwers, Nynke Simons, Coen D. A. Stehouwer, Aaron Isaacs

Erschienen in: Diabetologia | Ausgabe 2/2020

Abstract

Non-alcoholic fatty liver disease (NAFLD) is highly prevalent among individuals with type 2 diabetes. Although epidemiological studies have shown that NAFLD is associated with cardiovascular disease (CVD), it remains unknown whether NAFLD is an active contributor or an innocent bystander. Plasma lipids, low-grade inflammation, impaired fibrinolysis and hepatokines are potential mediators of the relationship between NAFLD and CVD. The Mendelian randomisation approach can help to make causal inferences. Studies that used common variants in PNPLA3, TM6SF2 and GCKR as instruments to investigate the relationship between NAFLD and coronary artery disease (CAD) have reported contrasting results. Variants in PNPLA3 and TM6SF2 were found to protect against CAD, whereas variants in GCKR were positively associated with CAD. Since all three genes have been associated with non-alcoholic steatohepatitis, the second stage of NAFLD, the question of whether low-grade inflammation is an important mediator of the relationship between NAFLD and CAD arises. In contrast, the differential effects of these genes on plasma lipids (i.e. lipid-lowering for PNPLA3 and TM6SF2, and lipid-raising for GCKR) strongly suggest that plasma lipids account for their differential effects on CAD risk. This concept has recently been confirmed in an extended set of 12 NAFLD susceptibility genes. From these studies it appears that plasma lipids are an important mediator between NAFLD and CVD risk. These findings have important clinical implications, particularly for the design of anti-NAFLD drugs that also affect lipid metabolism.
Hinweise

Electronic supplementary material

The online version of this article (https://​doi.​org/​10.​1007/​s00125-019-05024-3) contains a slideset of the figures for download, which is available to authorised users.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Abkürzungen
CAD
Coronary artery disease
CETP
Cholesteryl ester transfer protein
CRP
C-reactive protein
CVD
Cardiovascular disease
GKRP
Glucokinase regulatory protein
MR
Mendelian randomisation
NAFLD
Non-alcoholic fatty liver disease
NASH
Non-alcoholic steatohepatitis
PAI-1
Plasminogen activator inhibitor type 1
PNPLA3
Patatin-like phospholipase domain-containing protein 3
TM6SF2
Transmembrane 6 superfamily 2

Introduction

Non-alcoholic fatty liver disease (NAFLD) is a frequently encountered phenomenon in type 2 diabetes. It is a histological spectrum consisting of hepatic fat accumulation (‘simple steatosis’), non-alcoholic steatohepatitis (NASH), fibrosis and cirrhosis, occurring in the absence of excessive alcohol intake. It has been estimated that the global prevalence of NAFLD is 25% and that 23% of affected individuals have type 2 diabetes [1].
The pathogenesis of NAFLD involves a complex interaction between genetic and environmental factors. The accumulation of hepatic fat is the consequence of an imbalance between the influx of fat (i.e. fatty acids from adipose tissue or diet and de novo lipogenesis from glucose) and the efflux of fat (i.e. β-oxidation and synthesis of VLDL). Stable isotope studies have demonstrated that an increased fatty acid flux and de novo lipogenesis are the two principal processes contributing to hepatic fat accumulation in individuals with NAFLD [2]. Although hepatic fat accumulation is a prerequisite for the development of NASH, not all individuals with simple steatosis proceed to this stage. Lipotoxicity, the key driver behind the development of NASH, is determined by the following factors: (1) both the quantity and type of lipids that accumulate; and (2) the ability of the liver to defend against lipotoxicity [3].
Although NAFLD is a risk factor for end-stage liver disease and hepatocellular carcinoma (it is projected to be the principal cause of liver transplantation by 2025 [4]), individuals with NAFLD mostly die from cardiovascular disease (CVD) [5]. A previous meta-analysis demonstrated that the risk of developing a fatal and/or non-fatal CVD event is 64% higher in individuals with vs without NAFLD [6]. Of note, in the majority of the studies that were included in this meta-analysis, the diagnosis of NAFLD was established by either ultrasound or computed tomography [6], which are only capable of diagnosing simple steatosis, not advanced stages of NAFLD. In contrast, one of the few studies that included histologically confirmed NAFLD, and showed that advanced liver fibrosis specifically accounted for the greater CVD risk, was limited by a relatively small sample size and a selected population that underwent a liver biopsy [7].
There is an ongoing discussion on whether NAFLD is truly an active contributor or an innocent bystander in the development of CVD, as recently reviewed [8]. It is often presumed that the association between NAFLD and CVD is confounded by NAFLD-related factors (i.e. the association of NAFLD with other factors related to the metabolic syndrome, such as dyslipidaemia, hypertension and type 2 diabetes) and this could theoretically explain the association between NAFLD and CVD [810]. Of interest, NAFLD was found to be the strongest determinant of increased intima–media thickness, independent of the potential confounding effects of age, sex, visceral fat mass, state of hyperglycaemia, insulin resistance and insulin secretion, in individuals with impaired fasting glucose and/or impaired glucose tolerance [11]. It should, however, be noted that some of these factors are not necessarily confounders but instead could act as mediators of the relationship between NAFLD and CVD (Fig. 1). Since NAFLD and CVD are biologically distant traits, they must be linked through mediating factors. We will argue that plasma lipids act as an important mediator between NAFLD and CVD.
Therefore, the present review has several aims: (1) to elaborate on potential mediators of the relationship between NAFLD and CVD; (2) to provide experimental evidence for a causal relationship between NAFLD and CVD; and (3) to discuss clinical implications.

Potential mediators of the association between NAFLD and CVD

The pathogenesis of an atherosclerotic plaque, the pathological lesion that is responsible for a cardiovascular event, consists of several stages (Fig. 2), as reviewed in detail elsewhere [12]. NAFLD could theoretically contribute to all of these stages.
NAFLD and dyslipidaemia
Individuals with NAFLD have a typical plasma lipid pattern characterised by elevated plasma triacylglycerols, low HDL-cholesterol and a high number of circulating small-dense LDL particles [13]. Stable isotope studies have shown that NAFLD is associated with (insulin-resistant) overproduction of triacylglycerol-rich VLDL particles [14]. In plasma, triacylglycerols from VLDL particles are exchanged for cholesteryl esters from LDL and HDL particles, a process mediated by cholesteryl ester transfer protein (CETP). Once these triacylglycerols have been hydrolysed by hepatic lipase, both LDL and HDL particles become small and cholesterol-depleted [15].
The Mendelian randomisation (MR) approach can help to make causal inferences, as summarised in Text box 1 and comprehensively described elsewhere [16, 17]. Previous MR studies have demonstrated that plasma triacylglycerols are causal in the pathogenesis of coronary artery disease (CAD) [18], whereas low plasma HDL-cholesterol levels do not necessarily play an active role in the pathogenesis of CVD [19]. Experimental studies have shown that small-dense LDL particles are highly atherogenic [20].
NAFLD and low-grade inflammation
NASH could theoretically create a systemic, low-grade inflammatory environment that promotes the pathogenesis of atherosclerosis by secreting cytokines and acute-phase proteins [8, 9]. Although C-reactive protein (CRP) is a liver-specific protein that has been associated with both NASH and CVD [21, 22], MR studies have revealed that CRP is merely a biomarker, not a mediator, of CVD risk [22].
The clinical relevance of low-grade inflammation in the pathogenesis of CVD has recently been demonstrated unequivocally by the Canakinumab Anti-inflammatory Thrombosis Outcome Study (CANTOS), in which treatment with canakinumab, a monoclonal antibody targeting IL-1β, reduced recurrent CVD events independent of lipid lowering [23]. Of interest, IL-1β also plays an active role in the pathogenesis of NASH in different animal models [24]. It is not known, however, whether IL-1β mediates the association between NASH and CVD.
NAFLD and thrombosis
The rupture of a vulnerable atherosclerotic lesion and subsequent thrombosis is clinically manifested as an acute ischaemic event. Plasminogen activator inhibitor type 1 (PAI-1) is an important inhibitor of the fibrinolytic system and, hence, the resolution of a thrombus. Previous studies have shown that PAI-1 levels are elevated in individuals with NAFLD and that the liver is a principal determinant of plasma PAI-1 levels [25]. MR studies have demonstrated that elevated PAI-1 levels have a causal effect on CAD [26].
Other mediators
NAFLD has been associated with insulin-resistant, endogenous glucose production and, consequently, incident type 2 diabetes [27, 28]. MR studies have shown that plasma glucose is causally related to CAD [29], possibly by promoting monocyte/macrophage adhesion to the endothelium, chemokine secretion by vascular smooth muscle cells, and expression of an inflammatory phenotype in macrophages [30]. More recently, the so-called hepatokines have emerged as potential mediators of cardiometabolic complications in NAFLD [31]. Of these, fetuin A has been associated with CVD [32]. Causality was inferred by one MR study [33] but this was not replicated in an MR analysis that included prospective studies [34]. Experimental studies have shown that fetuin A induces low-grade inflammation in concert with fatty acids [35].

Assessing the evidence for a causal relationship between NAFLD and CVD

Intervention studies
Currently, there are two drugs that have been shown to affect both NAFLD and CVD (i.e. pioglitazone and liraglutide). Pioglitazone is highly effective in the treatment of biopsy-proven NASH (number needed to treat to resolve NASH after 18 months’ treatment: ~3) [36]. The Prospective Pioglitazone Clinical Trial in Macrovascular events (PROactive) study showed a benefit for pioglitazone with respect to the secondary outcome (a composite of all-cause mortality, non-fatal myocardial infarction and stroke) [37]. More recently, pioglitazone treatment in insulin-resistant patients with recent ischaemic stroke or transient ischaemic attack (but without type 2 diabetes) resulted in a significant reduction in the occurrence of cardiovascular events [38].
Liraglutide has a similar effect on NASH (number needed to treat to resolve NASH after 48 weeks’ treatment: ~3) [39] and the Liraglutide Effect and Action in Diabetes: Evaluation of Cardiovascular Outcome Results (LEADER) trial showed that liraglutide was superior to standard care in reducing major adverse cardiovascular events in type 2 diabetes [40].
These interventions, however, do not specifically target NAFLD. It cannot, therefore, be concluded from these studies that NAFLD is causal in explaining CVD risk reduction.
MR studies
More than 10 years ago, we were the first to show that the heritability of NAFLD, assessed by ultrasound, is 25–35% in dyslipidaemic pedigrees [41]. Subsequent linkage analyses revealed three quantitative trait loci on chromosome 1q42.3, 7p12-21 and 22p13-q11 that were associated with the fatty liver trait [41]. Of note, Romeo and colleagues later identified the gene encoding patatin-like phospholipase domain-containing protein 3 (PNPLA3), located on chromosome 22q13.31, as the first NAFLD susceptibility gene [42], which has been associated with all stages of NAFLD [43].
The common variant in PNPLA3 (rs738409) was also used as an instrument in the first and at present only MR study to investigate the causal relationship between NAFLD and CAD. That study did not find any association [44]. In fact, we observed that the rs738409 G allele that predisposes to NAFLD conferred a modest protection from CAD in the CARDIoGRAMplusC4D dataset (www.​cardiogramplusc4​d.​org; accessed 23 August 2019), consisting of 60,801 CAD cases and 123,504 controls [45]. This observation was confirmed in the Myocardial Infarction Genetics and CARDIoGRAM Exome Consortia study [46], which only partly overlaps with the CARDIoGRAMplusC4D dataset.
A similar protective effect has been found for the rs58542926 T allele (TM6SF2) a more-recently discovered NAFLD susceptibility gene encoding transmembrane 6 superfamily 2 (TM6SF2) [45, 47]. These apparently paradoxical observations may be explained by considering the functions of these two gene products. Although the true function of PNPLA3 remains to be elucidated, it has been suggested that it is involved in lipid droplet remodelling and VLDL production [48]. TM6SF2 is also involved in VLDL production (Fig. 3a) [49]. Indeed, variants in both PNPLA3 and TM6SF2 have also been associated with lower plasma lipid levels, both triacylglycerols and LDL-cholesterol [46], which might explain the negative relationship of these SNPs with CAD (Fig. 3b,c). The simultaneous effects of PNPLA3 and TM6SF2 on both NAFLD and plasma lipids (through impaired VLDL production) are an example of horizontal pleiotropy. They are, therefore, not perfectly suited as instruments for MR studies, particularly when used in monogenic analyses (Text box 1). Furthermore, more recent studies have shown that the same variants in both PNPLA3 and TM6SF2 are also positively associated with type 2 diabetes [46, 50].
The third robust NAFLD susceptibility gene, GCKR (encoding liver-specific glucokinase regulatory protein [GKRP]), is involved in de novo lipogenesis (Fig. 3a) [51], one of the principal pathways in the development of NAFLD [2]. In a recent meta-analysis, we showed that common variants in this gene (rs1260326, rs780094 and rs780093, which are all in strong linkage disequilibrium) are modestly associated with CAD (OR per risk allele 1.02 [95% CI 1.00, 1.04]) [52]. Of interest, these genetic variants have also been associated with higher serum triacylglycerols, lower serum HDL-cholesterol and the presence of small-dense LDL particles [51], the lipid phenotype that characterises NAFLD [13]. Since it is believed that this lipid phenotype is a consequence of NAFLD (Fig. 3a) [51], it is an example of vertical pleiotropy (or mediation); the gene effect on lipids is through the liver, which does not invalidate the MR assumptions (Text box 1). It cannot, however, be ruled out that the common variants in GCKR also have horizontal pleiotropic effects. Previous studies have shown that these variants also protect against chronic kidney disease and type 2 diabetes [50, 52].
Finally, variants in the membrane-bound O-acyltransferase domain-containing 7 gene (MBOAT7), which is involved in acyl-chain remodelling of phosphatidylinositols, have consistently been associated with NAFLD [53, 54]. Of interest, the rs641738 T allele was not associated with CAD, nor with plasma lipids or type 2 diabetes [45, 50, 55].
These studies suggest that plasma lipids play an important role in explaining the association between NAFLD and CAD (Fig. 3b,c). Moreover, given the opposing effects these NAFLD susceptibility genes have on type 2 diabetes risk (Fig. 3d), they also suggest that that plasma lipids have a greater impact on CAD risk than type 2 diabetes. Indeed, we recently expanded our genetic analyses to 12 NAFLD susceptibility genes (identified by either genome-wide association studies for NAFLD or NAFLD-related traits, or meta-analyses) and showed that the effects of these variants on CAD risk are largely accounted for by plasma lipids [55]. We observed a strong relationship between plasma lipids and CAD risk conferred by these NAFLD susceptibility genes [55]. Moreover, since many of these genes, including PNPLA3 and TM6SF2, have also been associated with NASH, it is questionable whether low-grade inflammation plays a major role in the connection between NAFLD and CVD. It should, however, be noted that PNPLA3 and TM6SF2 have not been associated with systemic low-grade inflammation [56, 57].

Clinical implications

The high global prevalence of NAFLD has resulted in an exponential increase in the number and variety of drugs targeting steatosis, NASH and/or fibrosis that have entered Phase II and Phase III clinical trials [58]. Since these agents are aimed primarily at preventing progression to end-stage liver disease and hepatocellular carcinoma, it is important to underscore that the principal cause of death in individuals with NAFLD is CVD [5]. It is therefore essential that any anti-NAFLD drug not only targets NAFLD but also has at least a neutral and preferably a protective effect on CVD events [58]. Given the intertwined relationship between NAFLD and plasma lipid levels (as indicated by the differential effects of NAFLD susceptibility genes on plasma lipids that determine CAD risk [55]), it is strongly recommended that plasma lipid levels are included as an important safety outcome measure in Phase II and Phase III clinical trials.
Another issue of concern is the development of drugs that may have NAFLD as a potential side effect. For instance, glucose-lowering drugs that act on hepatic glucokinase to increase hepatic glucose uptake (e.g. liver-specific glucokinase activators and disruptors of the GKRP–glucokinase complex [59, 60]) could theoretically lead to an increased accumulation of hepatic fat via an increased de novo lipogenesis [61]. By using the common variant in GCKR as a model of life-long exposure to a modest increase in hepatic glucokinase activity (Fig. 3a), it can be predicted that it will indeed result in increased de novo lipogenesis and NAFLD, as well as dyslipidaemia and CVD [51, 52]. Of interest, we and others have shown that the effects of this common GCKR variant on hepatic fat accumulation and plasma triacylglycerols are more pronounced in conditions of obesity and hyperglycaemia [62, 63]. This would imply that obese individuals and those with poorly controlled type 2 diabetes are more prone to the undesired side effects of liver-specific glucokinase activators. Future studies are warranted to gain more insight into these potential side effects.

Conclusions and future directions

The MR approach can help to make causal inferences. Although this approach has its specific limitations (e.g. horizontal pleiotropy and statistical power), they can be overcome by combining large datasets using multiple SNPs. The first genetic studies in which NAFLD susceptibility genes were associated with CVD suggest that plasma lipids are an important mediator between both entities; this has important therapeutic consequences. A beneficial effect of a new drug for treating NAFLD may be offset by a greater CVD risk if the drug also increases plasma lipid levels. As hepatic fat accumulation drives the overproduction of lipoproteins, the histological stage ‘simple steatosis’ is not as simple (or benign) as the term suggests. Future studies should be aimed at unravelling the role of other NAFLD-mediated pathways, such as hepatic inflammation, in the pathogenesis of atherosclerosis.

Duality of interest

The authors declare that there is no duality of interest associated with this manuscript.
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Unsere Produktempfehlungen

e.Med Interdisziplinär

Kombi-Abonnement

Für Ihren Erfolg in Klinik und Praxis - Die beste Hilfe in Ihrem Arbeitsalltag

Mit e.Med Interdisziplinär erhalten Sie Zugang zu allen CME-Fortbildungen und Fachzeitschriften auf SpringerMedizin.de.

e.Med Innere Medizin

Kombi-Abonnement

Mit e.Med Innere Medizin erhalten Sie Zugang zu CME-Fortbildungen des Fachgebietes Innere Medizin, den Premium-Inhalten der internistischen Fachzeitschriften, inklusive einer gedruckten internistischen Zeitschrift Ihrer Wahl.

e.Med Allgemeinmedizin

Kombi-Abonnement

Mit e.Med Allgemeinmedizin erhalten Sie Zugang zu allen CME-Fortbildungen und Premium-Inhalten der allgemeinmedizinischen Zeitschriften, inklusive einer gedruckten Allgemeinmedizin-Zeitschrift Ihrer Wahl.

Anhänge

Electronic supplementary material

Literatur
1.
Zurück zum Zitat Younossi ZM, Koenig AB, Abdelatif D, Fazel Y, Henry L, Wymer M (2016) Global epidemiology of nonalcoholic fatty liver disease: meta-analytic assessment of prevalence, incidence, and outcomes. Hepatology 64:73–84PubMedCrossRef Younossi ZM, Koenig AB, Abdelatif D, Fazel Y, Henry L, Wymer M (2016) Global epidemiology of nonalcoholic fatty liver disease: meta-analytic assessment of prevalence, incidence, and outcomes. Hepatology 64:73–84PubMedCrossRef
2.
Zurück zum Zitat Donnelly KL, Smith CI, Schwarzenberg SJ, Jessurun J, Boldt MD, Parks EJ (2005) Sources of fatty acids stored in liver and secreted via lipoproteins in patients with nonalcoholic fatty liver disease. J Clin Invest 115:1343–1351PubMedPubMedCentralCrossRef Donnelly KL, Smith CI, Schwarzenberg SJ, Jessurun J, Boldt MD, Parks EJ (2005) Sources of fatty acids stored in liver and secreted via lipoproteins in patients with nonalcoholic fatty liver disease. J Clin Invest 115:1343–1351PubMedPubMedCentralCrossRef
3.
Zurück zum Zitat Machado MV, Diehl AM (2016) Pathogenesis of nonalcoholic steatohepatitis. Gastroenterology 150:1769–1777PubMedCrossRef Machado MV, Diehl AM (2016) Pathogenesis of nonalcoholic steatohepatitis. Gastroenterology 150:1769–1777PubMedCrossRef
4.
Zurück zum Zitat Charlton MR, Burns JM, Pedersen RA, Watt KD, Heimbach JK, Dierkhising RA (2011) Frequency and outcomes of liver transplantation for nonalcoholic steatohepatitis in the United States. Gastroenterology 141:1249–1253PubMedCrossRef Charlton MR, Burns JM, Pedersen RA, Watt KD, Heimbach JK, Dierkhising RA (2011) Frequency and outcomes of liver transplantation for nonalcoholic steatohepatitis in the United States. Gastroenterology 141:1249–1253PubMedCrossRef
5.
Zurück zum Zitat Ong JP, Pitts A, Younossi ZM (2008) Increased overall mortality and liver-related mortality in non-alcoholic fatty liver disease. J Hepatol 49:608–612PubMedCrossRef Ong JP, Pitts A, Younossi ZM (2008) Increased overall mortality and liver-related mortality in non-alcoholic fatty liver disease. J Hepatol 49:608–612PubMedCrossRef
6.
Zurück zum Zitat Targher G, Byrne CD, Lonardo A, Zoppini G, Barbui C (2016) Non-alcoholic fatty liver disease and risk of incident cardiovascular disease: a meta-analysis. J Hepatol 65:589–600PubMedCrossRef Targher G, Byrne CD, Lonardo A, Zoppini G, Barbui C (2016) Non-alcoholic fatty liver disease and risk of incident cardiovascular disease: a meta-analysis. J Hepatol 65:589–600PubMedCrossRef
7.
Zurück zum Zitat Ekstedt M, Hagstrom H, Nasr P et al (2015) Fibrosis stage is the strongest predictor for disease-specific mortality in NAFLD after up to 33 years of follow-up. Hepatology 61:1547–1554PubMedCrossRef Ekstedt M, Hagstrom H, Nasr P et al (2015) Fibrosis stage is the strongest predictor for disease-specific mortality in NAFLD after up to 33 years of follow-up. Hepatology 61:1547–1554PubMedCrossRef
8.
Zurück zum Zitat Santos RD, Valenti L, Romeo S (2019) Does nonalcoholic fatty liver disease cause cardiovascular disease? Current knowledge and gaps. Atherosclerosis 282:110–120PubMedCrossRef Santos RD, Valenti L, Romeo S (2019) Does nonalcoholic fatty liver disease cause cardiovascular disease? Current knowledge and gaps. Atherosclerosis 282:110–120PubMedCrossRef
9.
Zurück zum Zitat Targher G, Day CP, Bonora E (2010) Risk of cardiovascular disease in patients with nonalcoholic fatty liver disease. N Engl J Med 363:1341–1350PubMedCrossRef Targher G, Day CP, Bonora E (2010) Risk of cardiovascular disease in patients with nonalcoholic fatty liver disease. N Engl J Med 363:1341–1350PubMedCrossRef
10.
Zurück zum Zitat Stefan N, Haring HU, Cusi K (2019) Non-alcoholic fatty liver disease: causes, diagnosis, cardiometabolic consequences, and treatment strategies. Lancet Diabetes Endocrinol 7:313–324PubMedCrossRef Stefan N, Haring HU, Cusi K (2019) Non-alcoholic fatty liver disease: causes, diagnosis, cardiometabolic consequences, and treatment strategies. Lancet Diabetes Endocrinol 7:313–324PubMedCrossRef
11.
Zurück zum Zitat Stefan N, Fritsche A, Schick F, Haring HU (2016) Phenotypes of prediabetes and stratification of cardiometabolic risk. Lancet Diabetes Endocrinol 4:789–798PubMedCrossRef Stefan N, Fritsche A, Schick F, Haring HU (2016) Phenotypes of prediabetes and stratification of cardiometabolic risk. Lancet Diabetes Endocrinol 4:789–798PubMedCrossRef
12.
13.
Zurück zum Zitat DeFilippis AP, Blaha MJ, Martin SS, et al. (2013) Nonalcoholic fatty liver disease and serum lipoproteins: the Multi-Ethnic Study of Atherosclerosis. Atherosclerosis 227: 429-436PubMedPubMedCentralCrossRef DeFilippis AP, Blaha MJ, Martin SS, et al. (2013) Nonalcoholic fatty liver disease and serum lipoproteins: the Multi-Ethnic Study of Atherosclerosis. Atherosclerosis 227: 429-436PubMedPubMedCentralCrossRef
14.
Zurück zum Zitat Adiels M, Taskinen MR, Packard C et al (2006) Overproduction of large VLDL particles is driven by increased liver fat content in man. Diabetologia 49:755–765PubMedCrossRef Adiels M, Taskinen MR, Packard C et al (2006) Overproduction of large VLDL particles is driven by increased liver fat content in man. Diabetologia 49:755–765PubMedCrossRef
15.
Zurück zum Zitat Adiels M, Olofsson SO, Taskinen MR, Boren J (2008) Overproduction of very low-density lipoproteins is the hallmark of the dyslipidemia in the metabolic syndrome. Arterioscler Thromb Vasc Biol 28:1225–1236PubMedCrossRef Adiels M, Olofsson SO, Taskinen MR, Boren J (2008) Overproduction of very low-density lipoproteins is the hallmark of the dyslipidemia in the metabolic syndrome. Arterioscler Thromb Vasc Biol 28:1225–1236PubMedCrossRef
16.
Zurück zum Zitat Holmes MV, Ala-Korpela M, Smith GD (2017) Mendelian randomization in cardiometabolic disease: challenges in evaluating causality. Nat Rev Cardiol 14:577–590PubMedPubMedCentralCrossRef Holmes MV, Ala-Korpela M, Smith GD (2017) Mendelian randomization in cardiometabolic disease: challenges in evaluating causality. Nat Rev Cardiol 14:577–590PubMedPubMedCentralCrossRef
17.
Zurück zum Zitat Burgess S, Foley CN, Zuber V (2018) Inferring causal relationships between risk factors and outcomes from genome-wide association study data. Annu Rev Genomics Hum Genet 19:303–327PubMedPubMedCentralCrossRef Burgess S, Foley CN, Zuber V (2018) Inferring causal relationships between risk factors and outcomes from genome-wide association study data. Annu Rev Genomics Hum Genet 19:303–327PubMedPubMedCentralCrossRef
18.
Zurück zum Zitat Do R, Willer CJ, Schmidt EM et al (2013) Common variants associated with plasma triglycerides and risk for coronary artery disease. Nat Genet 45:1345–1352PubMedPubMedCentralCrossRef Do R, Willer CJ, Schmidt EM et al (2013) Common variants associated with plasma triglycerides and risk for coronary artery disease. Nat Genet 45:1345–1352PubMedPubMedCentralCrossRef
19.
Zurück zum Zitat Voight BF, Peloso GM, Orho-Melander M et al (2012) Plasma HDL cholesterol and risk of myocardial infarction: a mendelian randomisation study. Lancet 380:572–580PubMedPubMedCentralCrossRef Voight BF, Peloso GM, Orho-Melander M et al (2012) Plasma HDL cholesterol and risk of myocardial infarction: a mendelian randomisation study. Lancet 380:572–580PubMedPubMedCentralCrossRef
20.
Zurück zum Zitat Chapman MJ, Guerin M, Bruckert E (1998) Atherogenic, dense low-density lipoproteins. Pathophysiology and new therapeutic approaches. Eur Heart J 19(Suppl A):A24–A30PubMed Chapman MJ, Guerin M, Bruckert E (1998) Atherogenic, dense low-density lipoproteins. Pathophysiology and new therapeutic approaches. Eur Heart J 19(Suppl A):A24–A30PubMed
21.
Zurück zum Zitat Targher G (2006) Relationship between high-sensitivity C-reactive protein levels and liver histology in subjects with non-alcoholic fatty liver disease. J Hepatol 45:879–881 author reply 881-872PubMedCrossRef Targher G (2006) Relationship between high-sensitivity C-reactive protein levels and liver histology in subjects with non-alcoholic fatty liver disease. J Hepatol 45:879–881 author reply 881-872PubMedCrossRef
22.
Zurück zum Zitat Zacho J, Tybjaerg-Hansen A, Jensen JS, Grande P, Sillesen H, Nordestgaard BG (2008) Genetically elevated C-reactive protein and ischemic vascular disease. N Engl J Med 359:1897–1908PubMedCrossRef Zacho J, Tybjaerg-Hansen A, Jensen JS, Grande P, Sillesen H, Nordestgaard BG (2008) Genetically elevated C-reactive protein and ischemic vascular disease. N Engl J Med 359:1897–1908PubMedCrossRef
23.
Zurück zum Zitat Ridker PM, Everett BM, Thuren T et al (2017) Antiinflammatory therapy with canakinumab for atherosclerotic disease. N Engl J Med 377:1119–1131PubMedCrossRef Ridker PM, Everett BM, Thuren T et al (2017) Antiinflammatory therapy with canakinumab for atherosclerotic disease. N Engl J Med 377:1119–1131PubMedCrossRef
24.
Zurück zum Zitat Mirea AM, Tack CJ, Chavakis T, Joosten LAB, Toonen EJM (2018) IL-1 family cytokine pathways underlying NAFLD: towards new treatment strategies. Trends Mol Med 24:458–471PubMedPubMedCentralCrossRef Mirea AM, Tack CJ, Chavakis T, Joosten LAB, Toonen EJM (2018) IL-1 family cytokine pathways underlying NAFLD: towards new treatment strategies. Trends Mol Med 24:458–471PubMedPubMedCentralCrossRef
25.
Zurück zum Zitat Alessi MC, Bastelica D, Mavri A et al (2003) Plasma PAI-1 levels are more strongly related to liver steatosis than to adipose tissue accumulation. Arterioscler Thromb Vasc Biol 23:1262–1268PubMedCrossRef Alessi MC, Bastelica D, Mavri A et al (2003) Plasma PAI-1 levels are more strongly related to liver steatosis than to adipose tissue accumulation. Arterioscler Thromb Vasc Biol 23:1262–1268PubMedCrossRef
26.
Zurück zum Zitat Song C, Burgess S, Eicher JD, OʼDonnell CJ, Johnson AD (2017) Causal effect of plasminogen activator inhibitor type 1 on coronary heart disease. J Am Heart Assoc 6:e004918 Song C, Burgess S, Eicher JD, OʼDonnell CJ, Johnson AD (2017) Causal effect of plasminogen activator inhibitor type 1 on coronary heart disease. J Am Heart Assoc 6:e004918
27.
Zurück zum Zitat Mantovani A, Byrne CD, Bonora E, Targher G (2018) Nonalcoholic fatty liver disease and risk of incident type 2 diabetes: a meta-analysis. Diabetes Care 41:372–382PubMedCrossRef Mantovani A, Byrne CD, Bonora E, Targher G (2018) Nonalcoholic fatty liver disease and risk of incident type 2 diabetes: a meta-analysis. Diabetes Care 41:372–382PubMedCrossRef
28.
Zurück zum Zitat Korenblat KM, Fabbrini E, Mohammed BS, Klein S (2008) Liver, muscle, and adipose tissue insulin action is directly related to intrahepatic triglyceride content in obese subjects. Gastroenterology 134:1369–1375PubMedCrossRef Korenblat KM, Fabbrini E, Mohammed BS, Klein S (2008) Liver, muscle, and adipose tissue insulin action is directly related to intrahepatic triglyceride content in obese subjects. Gastroenterology 134:1369–1375PubMedCrossRef
29.
Zurück zum Zitat Merino J, Leong A, Posner DC et al (2017) Genetically driven hyperglycemia increases risk of coronary artery disease separately from type 2 diabetes. Diabetes Care 40:687–693PubMedPubMedCentralCrossRef Merino J, Leong A, Posner DC et al (2017) Genetically driven hyperglycemia increases risk of coronary artery disease separately from type 2 diabetes. Diabetes Care 40:687–693PubMedPubMedCentralCrossRef
30.
Zurück zum Zitat Bornfeldt KE, Tabas I (2011) Insulin resistance, hyperglycemia. and atherosclerosis. Cell Metab 14:575–585PubMedCrossRef Bornfeldt KE, Tabas I (2011) Insulin resistance, hyperglycemia. and atherosclerosis. Cell Metab 14:575–585PubMedCrossRef
31.
Zurück zum Zitat Stefan N, Haring HU (2013) The role of hepatokines in metabolism. Nat Rev Endocrinol 9:144–152PubMedCrossRef Stefan N, Haring HU (2013) The role of hepatokines in metabolism. Nat Rev Endocrinol 9:144–152PubMedCrossRef
32.
Zurück zum Zitat Weikert C, Stefan N, Schulze MB et al (2008) Plasma fetuin-a levels and the risk of myocardial infarction and ischemic stroke. Circulation 118:2555–2562PubMedCrossRef Weikert C, Stefan N, Schulze MB et al (2008) Plasma fetuin-a levels and the risk of myocardial infarction and ischemic stroke. Circulation 118:2555–2562PubMedCrossRef
33.
Zurück zum Zitat Fisher E, Stefan N, Saar K et al (2009) Association of AHSG gene polymorphisms with fetuin-A plasma levels and cardiovascular diseases in the EPIC-Potsdam study. Circ Cardiovasc Genet 2:607–613PubMedCrossRef Fisher E, Stefan N, Saar K et al (2009) Association of AHSG gene polymorphisms with fetuin-A plasma levels and cardiovascular diseases in the EPIC-Potsdam study. Circ Cardiovasc Genet 2:607–613PubMedCrossRef
34.
Zurück zum Zitat Laugsand LE, Ix JH, Bartz TM et al (2015) Fetuin-A and risk of coronary heart disease: a Mendelian randomization analysis and a pooled analysis of AHSG genetic variants in 7 prospective studies. Atherosclerosis 243:44–52PubMedPubMedCentralCrossRef Laugsand LE, Ix JH, Bartz TM et al (2015) Fetuin-A and risk of coronary heart disease: a Mendelian randomization analysis and a pooled analysis of AHSG genetic variants in 7 prospective studies. Atherosclerosis 243:44–52PubMedPubMedCentralCrossRef
35.
Zurück zum Zitat Pal D, Dasgupta S, Kundu R et al (2012) Fetuin-A acts as an endogenous ligand of TLR4 to promote lipid-induced insulin resistance. Nat Med 18:1279–1285PubMedCrossRef Pal D, Dasgupta S, Kundu R et al (2012) Fetuin-A acts as an endogenous ligand of TLR4 to promote lipid-induced insulin resistance. Nat Med 18:1279–1285PubMedCrossRef
36.
Zurück zum Zitat Cusi K, Orsak B, Bril F et al (2016) Long-Term pioglitazone treatment for patients with nonalcoholic steatohepatitis and prediabetes or type 2 diabetes mellitus: a randomized trial. Ann Intern Med 165:305–315PubMedCrossRef Cusi K, Orsak B, Bril F et al (2016) Long-Term pioglitazone treatment for patients with nonalcoholic steatohepatitis and prediabetes or type 2 diabetes mellitus: a randomized trial. Ann Intern Med 165:305–315PubMedCrossRef
37.
Zurück zum Zitat Dormandy JA, Charbonnel B, Eckland DJ et al (2005) Secondary prevention of macrovascular events in patients with type 2 diabetes in the PROactive Study (PROspective pioglitAzone Clinical Trial In macroVascular Events): a randomised controlled trial. Lancet 366:1279–1289PubMedCrossRef Dormandy JA, Charbonnel B, Eckland DJ et al (2005) Secondary prevention of macrovascular events in patients with type 2 diabetes in the PROactive Study (PROspective pioglitAzone Clinical Trial In macroVascular Events): a randomised controlled trial. Lancet 366:1279–1289PubMedCrossRef
38.
39.
Zurück zum Zitat Armstrong MJ, Gaunt P, Aithal GP et al (2016) Liraglutide safety and efficacy in patients with non-alcoholic steatohepatitis (LEAN): a multicentre, double-blind, randomised, placebo-controlled phase 2 study. Lancet 387:679–690PubMedCrossRef Armstrong MJ, Gaunt P, Aithal GP et al (2016) Liraglutide safety and efficacy in patients with non-alcoholic steatohepatitis (LEAN): a multicentre, double-blind, randomised, placebo-controlled phase 2 study. Lancet 387:679–690PubMedCrossRef
40.
41.
Zurück zum Zitat Brouwers MC, Cantor RM, Kono N et al (2006) Heritability and genetic loci of fatty liver in familial combined hyperlipidemia. J Lipid Res 47:2799–2807PubMedCrossRef Brouwers MC, Cantor RM, Kono N et al (2006) Heritability and genetic loci of fatty liver in familial combined hyperlipidemia. J Lipid Res 47:2799–2807PubMedCrossRef
42.
Zurück zum Zitat Romeo S, Kozlitina J, Xing C et al (2008) Genetic variation in PNPLA3 confers susceptibility to nonalcoholic fatty liver disease. Nat Genet 40:1461–1465PubMedPubMedCentralCrossRef Romeo S, Kozlitina J, Xing C et al (2008) Genetic variation in PNPLA3 confers susceptibility to nonalcoholic fatty liver disease. Nat Genet 40:1461–1465PubMedPubMedCentralCrossRef
43.
Zurück zum Zitat Sookoian S, Pirola CJ (2011) Meta-analysis of the influence of I148M variant of patatin-like phospholipase domain containing 3 gene (PNPLA3) on the susceptibility and histological severity of nonalcoholic fatty liver disease. Hepatology 53:1883–1894PubMedCrossRef Sookoian S, Pirola CJ (2011) Meta-analysis of the influence of I148M variant of patatin-like phospholipase domain containing 3 gene (PNPLA3) on the susceptibility and histological severity of nonalcoholic fatty liver disease. Hepatology 53:1883–1894PubMedCrossRef
44.
Zurück zum Zitat Lauridsen BK, Stender S, Kristensen TS et al (2018) Liver fat content, non-alcoholic fatty liver disease, and ischaemic heart disease: Mendelian randomization and meta-analysis of 279 013 individuals. Eur Heart J 39:385–393PubMedCrossRef Lauridsen BK, Stender S, Kristensen TS et al (2018) Liver fat content, non-alcoholic fatty liver disease, and ischaemic heart disease: Mendelian randomization and meta-analysis of 279 013 individuals. Eur Heart J 39:385–393PubMedCrossRef
45.
Zurück zum Zitat Simons N, Isaacs A, Koek GH, Kuc S, Schaper NC, Brouwers MC (2017) PNPLA3, TM6SF2, and MBOAT7 genotypes and coronary artery disease. Gastroenterology 152:912–913PubMedCrossRef Simons N, Isaacs A, Koek GH, Kuc S, Schaper NC, Brouwers MC (2017) PNPLA3, TM6SF2, and MBOAT7 genotypes and coronary artery disease. Gastroenterology 152:912–913PubMedCrossRef
47.
Zurück zum Zitat Dongiovanni P, Petta S, Maglio C et al (2015) Transmembrane 6 superfamily member 2 gene variant disentangles nonalcoholic steatohepatitis from cardiovascular disease. Hepatology 61:506–514PubMedCrossRef Dongiovanni P, Petta S, Maglio C et al (2015) Transmembrane 6 superfamily member 2 gene variant disentangles nonalcoholic steatohepatitis from cardiovascular disease. Hepatology 61:506–514PubMedCrossRef
48.
Zurück zum Zitat Trepo E, Romeo S, Zucman-Rossi J, Nahon P (2016) PNPLA3 gene in liver diseases. J Hepatol 65:399–412PubMedCrossRef Trepo E, Romeo S, Zucman-Rossi J, Nahon P (2016) PNPLA3 gene in liver diseases. J Hepatol 65:399–412PubMedCrossRef
49.
Zurück zum Zitat Kozlitina J, Smagris E, Stender S et al (2014) Exome-wide association study identifies a TM6SF2 variant that confers susceptibility to nonalcoholic fatty liver disease. Nat Genet 46:352–356PubMedPubMedCentralCrossRef Kozlitina J, Smagris E, Stender S et al (2014) Exome-wide association study identifies a TM6SF2 variant that confers susceptibility to nonalcoholic fatty liver disease. Nat Genet 46:352–356PubMedPubMedCentralCrossRef
50.
Zurück zum Zitat Dongiovanni P, Stender S, Pietrelli A et al (2018) Causal relationship of hepatic fat with liver damage and insulin resistance in nonalcoholic fatty liver. J Intern Med 283:356–370PubMedCrossRef Dongiovanni P, Stender S, Pietrelli A et al (2018) Causal relationship of hepatic fat with liver damage and insulin resistance in nonalcoholic fatty liver. J Intern Med 283:356–370PubMedCrossRef
51.
Zurück zum Zitat Brouwers MC, Jacobs C, Bast A, Stehouwer CD, Schaper NC (2015) Modulation of glucokinase regulatory protein: a double-edged sword? Trends Mol Med 21:583–594PubMedCrossRef Brouwers MC, Jacobs C, Bast A, Stehouwer CD, Schaper NC (2015) Modulation of glucokinase regulatory protein: a double-edged sword? Trends Mol Med 21:583–594PubMedCrossRef
52.
Zurück zum Zitat Simons P, Simons N, Stehouwer CDA, Schalkwijk CG, Schaper NC, Brouwers M (2018) Association of common gene variants in glucokinase regulatory protein with cardiorenal disease: a systematic review and meta-analysis. PLoS One 13:e0206174PubMedPubMedCentralCrossRef Simons P, Simons N, Stehouwer CDA, Schalkwijk CG, Schaper NC, Brouwers M (2018) Association of common gene variants in glucokinase regulatory protein with cardiorenal disease: a systematic review and meta-analysis. PLoS One 13:e0206174PubMedPubMedCentralCrossRef
53.
Zurück zum Zitat Mancina RM, Dongiovanni P, Petta S et al (2016) The MBOAT7-TMC4 variant rs641738 increases risk of nonalcoholic fatty liver disease in individuals of European descent. Gastroenterology 150 e1216:1219–1230CrossRef Mancina RM, Dongiovanni P, Petta S et al (2016) The MBOAT7-TMC4 variant rs641738 increases risk of nonalcoholic fatty liver disease in individuals of European descent. Gastroenterology 150 e1216:1219–1230CrossRef
54.
Zurück zum Zitat Luukkonen PK, Zhou Y, Hyotylainen T et al (2016) The MBOAT7 variant rs641738 alters hepatic phosphatidylinositols and increases severity of non-alcoholic fatty liver disease in humans. J Hepatol 65:1263–1265PubMedCrossRef Luukkonen PK, Zhou Y, Hyotylainen T et al (2016) The MBOAT7 variant rs641738 alters hepatic phosphatidylinositols and increases severity of non-alcoholic fatty liver disease in humans. J Hepatol 65:1263–1265PubMedCrossRef
55.
Zurück zum Zitat Brouwers MC, Simons N, Stehouwer CD, Koek GH, Schaper N, Isaacs A (2019) Relationship between nonalcoholic fatty liver disease susceptibility genes and coronary artery disease. Hepatol Commun 3:587–596PubMedPubMedCentralCrossRef Brouwers MC, Simons N, Stehouwer CD, Koek GH, Schaper N, Isaacs A (2019) Relationship between nonalcoholic fatty liver disease susceptibility genes and coronary artery disease. Hepatol Commun 3:587–596PubMedPubMedCentralCrossRef
56.
Zurück zum Zitat Kantartzis K, Peter A, Machicao F et al (2009) Dissociation between fatty liver and insulin resistance in humans carrying a variant of the patatin-like phospholipase 3 gene. Diabetes 58:2616–2623PubMedPubMedCentralCrossRef Kantartzis K, Peter A, Machicao F et al (2009) Dissociation between fatty liver and insulin resistance in humans carrying a variant of the patatin-like phospholipase 3 gene. Diabetes 58:2616–2623PubMedPubMedCentralCrossRef
57.
Zurück zum Zitat Sookoian S, Castano GO, Scian R et al (2015) Genetic variation in transmembrane 6 superfamily member 2 and the risk of nonalcoholic fatty liver disease and histological disease severity. Hepatology 61:515–525PubMedCrossRef Sookoian S, Castano GO, Scian R et al (2015) Genetic variation in transmembrane 6 superfamily member 2 and the risk of nonalcoholic fatty liver disease and histological disease severity. Hepatology 61:515–525PubMedCrossRef
59.
Zurück zum Zitat Lloyd DJ, St Jean DJ Jr, Kurzeja RJ et al (2013) Antidiabetic effects of glucokinase regulatory protein small-molecule disruptors. Nature 504:437–440PubMedCrossRef Lloyd DJ, St Jean DJ Jr, Kurzeja RJ et al (2013) Antidiabetic effects of glucokinase regulatory protein small-molecule disruptors. Nature 504:437–440PubMedCrossRef
60.
Zurück zum Zitat Zhu D, Gan S, Liu Y et al (2018) Dorzagliatin monotherapy in Chinese patients with type 2 diabetes: a dose-ranging, randomised, double-blind, placebo-controlled, phase 2 study. Lancet Diabetes Endocrinol 6:627–636PubMedCrossRef Zhu D, Gan S, Liu Y et al (2018) Dorzagliatin monotherapy in Chinese patients with type 2 diabetes: a dose-ranging, randomised, double-blind, placebo-controlled, phase 2 study. Lancet Diabetes Endocrinol 6:627–636PubMedCrossRef
61.
Zurück zum Zitat Hodson L, Brouwers M (2018) Non-alcoholic fatty liver disease concerns with glucokinase activators. Lancet Diabetes Endocrinol 6:684–685PubMedCrossRef Hodson L, Brouwers M (2018) Non-alcoholic fatty liver disease concerns with glucokinase activators. Lancet Diabetes Endocrinol 6:684–685PubMedCrossRef
62.
Zurück zum Zitat Simons N, Dekker JM, van Greevenbroek MM et al (2016) A common gene variant in glucokinase regulatory protein interacts with glucose metabolism on diabetic dyslipidemia: the combined CODAM and Hoorn Studies. Diabetes Care 39:1811–1817PubMedCrossRef Simons N, Dekker JM, van Greevenbroek MM et al (2016) A common gene variant in glucokinase regulatory protein interacts with glucose metabolism on diabetic dyslipidemia: the combined CODAM and Hoorn Studies. Diabetes Care 39:1811–1817PubMedCrossRef
63.
Zurück zum Zitat Stender S, Kozlitina J, Nordestgaard BG, Tybjaerg-Hansen A, Hobbs HH, Cohen JC (2017) Adiposity amplifies the genetic risk of fatty liver disease conferred by multiple loci. Nat Genet 49:842–847PubMedPubMedCentralCrossRef Stender S, Kozlitina J, Nordestgaard BG, Tybjaerg-Hansen A, Hobbs HH, Cohen JC (2017) Adiposity amplifies the genetic risk of fatty liver disease conferred by multiple loci. Nat Genet 49:842–847PubMedPubMedCentralCrossRef
Metadaten
Titel
Non-alcoholic fatty liver disease and cardiovascular disease: assessing the evidence for causality
verfasst von
Martijn C. G. J. Brouwers
Nynke Simons
Coen D. A. Stehouwer
Aaron Isaacs
Publikationsdatum
11.11.2019
Verlag
Springer Berlin Heidelberg
Erschienen in
Diabetologia / Ausgabe 2/2020
Print ISSN: 0012-186X
Elektronische ISSN: 1432-0428
DOI
https://doi.org/10.1007/s00125-019-05024-3

Weitere Artikel der Ausgabe 2/2020

Diabetologia 2/2020 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Notfall-TEP der Hüfte ist auch bei 90-Jährigen machbar

26.04.2024 Hüft-TEP Nachrichten

Ob bei einer Notfalloperation nach Schenkelhalsfraktur eine Hemiarthroplastik oder eine totale Endoprothese (TEP) eingebaut wird, sollte nicht allein vom Alter der Patientinnen und Patienten abhängen. Auch über 90-Jährige können von der TEP profitieren.

Niedriger diastolischer Blutdruck erhöht Risiko für schwere kardiovaskuläre Komplikationen

25.04.2024 Hypotonie Nachrichten

Wenn unter einer medikamentösen Hochdrucktherapie der diastolische Blutdruck in den Keller geht, steigt das Risiko für schwere kardiovaskuläre Ereignisse: Darauf deutet eine Sekundäranalyse der SPRINT-Studie hin.

Bei schweren Reaktionen auf Insektenstiche empfiehlt sich eine spezifische Immuntherapie

Insektenstiche sind bei Erwachsenen die häufigsten Auslöser einer Anaphylaxie. Einen wirksamen Schutz vor schweren anaphylaktischen Reaktionen bietet die allergenspezifische Immuntherapie. Jedoch kommt sie noch viel zu selten zum Einsatz.

Therapiestart mit Blutdrucksenkern erhöht Frakturrisiko

25.04.2024 Hypertonie Nachrichten

Beginnen ältere Männer im Pflegeheim eine Antihypertensiva-Therapie, dann ist die Frakturrate in den folgenden 30 Tagen mehr als verdoppelt. Besonders häufig stürzen Demenzkranke und Männer, die erstmals Blutdrucksenker nehmen. Dafür spricht eine Analyse unter US-Veteranen.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.