Skip to main content
Erschienen in: Experimental Brain Research 1/2003

01.09.2003 | Research Article

Brain areas activated in fMRI during self-regulation of slow cortical potentials (SCPs)

verfasst von: Thilo Hinterberger, Ralf Veit, Ute Strehl, Tracy Trevorrow, Michael Erb, Boris Kotchoubey, Herta Flor, Niels Birbaumer

Erschienen in: Experimental Brain Research | Ausgabe 1/2003

Einloggen, um Zugang zu erhalten

Abstract

In humans, surface-negative slow cortical potentials (SCPs) originating in the apical dendritic layers of the neocortex reflect synchronized depolarization of large groups of neuronal assemblies. They are recorded during states of behavioural or cognitive preparation and during motivational states of apprehension and fear. Surface positive SCPs are thought to indicate reduction of cortical excitation of the underlying neural networks and appear during behavioural inhibition and motivational inertia (e.g. satiety). SCPs at the cortical surface constitute summated population activity of local field potentials (LFPs). SCPs and LFPs may share identical neural substrates. In this study the relationship between negative and positive SCPs and changes in the BOLD signal of the fMRI were examined in ten subjects who were trained to successfully self-regulate their SCPs. FMRI revealed that the generation of negativity (increased cortical excitation) was accompanied by widespread activation in central, pre-frontal, and parietal brain regions as well as the basal ganglia. Positivity (decreased cortical excitation) was associated with widespread deactivations in several cortical sites as well as some activation, primarily in frontal and parietal structures as well as insula and putamen. Regression analyses revealed that cortical positivity was predicted with high accuracy by pallidum and putamen activation and supplementary motor area (SMA) and motor cortex deactivation, while differentiation between cortical negativity and positivity was revealed primarily in parahippocampal regions. These data suggest that negative and positive electrocortical potential shifts in the EEG are related to distinct differences in cerebral activation detected by fMRI and support animal studies showing parallel activations in fMRI and neuroelectric recordings.
Literatur
Zurück zum Zitat Allen PJ, Polizzi G, Krakow K, Fish DR, Lemieux L (1998) Identification of EEG events in the MR scanner: the problem of pulse artifact and a method for its subtraction. Neuroimage 8:229–39CrossRefPubMed Allen PJ, Polizzi G, Krakow K, Fish DR, Lemieux L (1998) Identification of EEG events in the MR scanner: the problem of pulse artifact and a method for its subtraction. Neuroimage 8:229–39CrossRefPubMed
Zurück zum Zitat Arthurs OJ, Williams EJ, Carpenter TA, Pickard JD, Boniface, SJ (2000) Linear coupling between functional magnetic resonance imaging and evoked potential amplitude in human somatosensory cortex. Neuroscience 101:803–806CrossRefPubMed Arthurs OJ, Williams EJ, Carpenter TA, Pickard JD, Boniface, SJ (2000) Linear coupling between functional magnetic resonance imaging and evoked potential amplitude in human somatosensory cortex. Neuroscience 101:803–806CrossRefPubMed
Zurück zum Zitat Arthurs OJ, Boniface, SJ (2002) How well do we understand the neural origins of the fMRI BOLD signal? Trends Neurosci 25:27–31 Arthurs OJ, Boniface, SJ (2002) How well do we understand the neural origins of the fMRI BOLD signal? Trends Neurosci 25:27–31
Zurück zum Zitat Birbaumer N, Elbert T, Canavan A, Rockstroh B (1990) Slow cortical potentials of the brain. Physiol Rev 70:1–41PubMed Birbaumer N, Elbert T, Canavan A, Rockstroh B (1990) Slow cortical potentials of the brain. Physiol Rev 70:1–41PubMed
Zurück zum Zitat Birbaumer N, Ghanayim N, Hinterberger T, Iversen I, Kotchoubey B, Kübler A, Perelmouter J, Taub E, Flor H (1999) A brain-controlled spelling device for the completely paralyzed. Nature 398:297–298CrossRefPubMed Birbaumer N, Ghanayim N, Hinterberger T, Iversen I, Kotchoubey B, Kübler A, Perelmouter J, Taub E, Flor H (1999) A brain-controlled spelling device for the completely paralyzed. Nature 398:297–298CrossRefPubMed
Zurück zum Zitat Birbaumer N (1999) Slow cortical potentials: plasticity, operant control, and behavioral effects. The Neuroscientist 5:74–78 Birbaumer N (1999) Slow cortical potentials: plasticity, operant control, and behavioral effects. The Neuroscientist 5:74–78
Zurück zum Zitat Bonmassar G, Anami K, Ives J, Belliveau JW (1999) Visual evoked potential (VEP) measured by simultaneous 64-channel EEG, 3T fMRI. Neuroreport 10:1893–1897PubMed Bonmassar G, Anami K, Ives J, Belliveau JW (1999) Visual evoked potential (VEP) measured by simultaneous 64-channel EEG, 3T fMRI. Neuroreport 10:1893–1897PubMed
Zurück zum Zitat Bonmassar G, Schwartz DP, Liu AK, Kwong KK, Dale AM, Belliveau JW (2001) Spatiotemporal brain imaging of visual-evoked activity using interleaved EEG, fMRI recordings. Neuroimage 13:1035–1043CrossRefPubMed Bonmassar G, Schwartz DP, Liu AK, Kwong KK, Dale AM, Belliveau JW (2001) Spatiotemporal brain imaging of visual-evoked activity using interleaved EEG, fMRI recordings. Neuroimage 13:1035–1043CrossRefPubMed
Zurück zum Zitat Braitenberg V, Schütz A (1991) Anatomy of the cortex: Statistics, Geometry. Springer, Berlin Braitenberg V, Schütz A (1991) Anatomy of the cortex: Statistics, Geometry. Springer, Berlin
Zurück zum Zitat Brunia CHM (1999) Neural aspects of anticipatory behavior. Acta Psychologica 101:213–242PubMed Brunia CHM (1999) Neural aspects of anticipatory behavior. Acta Psychologica 101:213–242PubMed
Zurück zum Zitat Caspers H (1974) DC potentials recorded directly from the cortex. Handbook of Electroenc. Clin. Neurophysiol. vol 10A. Elsevier, Amsterdam. Caspers H (1974) DC potentials recorded directly from the cortex. Handbook of Electroenc. Clin. Neurophysiol. vol 10A. Elsevier, Amsterdam.
Zurück zum Zitat Critchley HD, Melmed RN, Featherstone E, Mathias CJ, Dolan RJ (2001) Brain activity during biofeedback relaxation: a functional neuroimaging investigation. Brain 124:1003–12CrossRefPubMed Critchley HD, Melmed RN, Featherstone E, Mathias CJ, Dolan RJ (2001) Brain activity during biofeedback relaxation: a functional neuroimaging investigation. Brain 124:1003–12CrossRefPubMed
Zurück zum Zitat Decety J (1996) Do imagined, executed actions share the same neural substrate? Cogn Brain Res 3:87–93 Decety J (1996) Do imagined, executed actions share the same neural substrate? Cogn Brain Res 3:87–93
Zurück zum Zitat Elbert T, Rockstroh B, Canavan A, Birbaumer N, Lutzenberger W, von Bülow I, Linden A (1991) Self-regulation of slow cortical potentials and its role in epileptogenesis. In: Carlson J, Birbaumer N, Seifert R, (eds) International perspectives on self-regulation and health. Plenum Press, New York pp 65–94 Elbert T, Rockstroh B, Canavan A, Birbaumer N, Lutzenberger W, von Bülow I, Linden A (1991) Self-regulation of slow cortical potentials and its role in epileptogenesis. In: Carlson J, Birbaumer N, Seifert R, (eds) International perspectives on self-regulation and health. Plenum Press, New York pp 65–94
Zurück zum Zitat Heeger DJ, Ress D (2002) What does fMRI tell us about neuronal activity? Nature 3:142–151 Heeger DJ, Ress D (2002) What does fMRI tell us about neuronal activity? Nature 3:142–151
Zurück zum Zitat Horwitz B, Poeppel D (2002) How can EEG/MEG, fMRI/PET data be combined? Hum Brain Mapp 17:1–3 Horwitz B, Poeppel D (2002) How can EEG/MEG, fMRI/PET data be combined? Hum Brain Mapp 17:1–3
Zurück zum Zitat Klose U, Erb M, Wildgruber D, Müller E, Grodd W (1999) Improvement of the acquisition of large amounts of MR-images on a conventional whole body system. Magn Reson Imaging 17:471–474CrossRefPubMed Klose U, Erb M, Wildgruber D, Müller E, Grodd W (1999) Improvement of the acquisition of large amounts of MR-images on a conventional whole body system. Magn Reson Imaging 17:471–474CrossRefPubMed
Zurück zum Zitat Kotchoubey B, Schneider D, Schleichert H, Strehl U, Uhlmann C, Blankenhorn V, Froscher W, Birbaumer N (1996) Self-regulation of slow cortical potentials in epilepsy: a retrial with analysis of influencing factors. Epilepsy Res 25:269–276CrossRefPubMed Kotchoubey B, Schneider D, Schleichert H, Strehl U, Uhlmann C, Blankenhorn V, Froscher W, Birbaumer N (1996) Self-regulation of slow cortical potentials in epilepsy: a retrial with analysis of influencing factors. Epilepsy Res 25:269–276CrossRefPubMed
Zurück zum Zitat Kotchoubey B, Schneider D, Schleichert H, Strehl U, Uhlmann C, Blankenhorn V, Fröscher W, Birbaumer N (1997) Stability of cortical self-regulation in epilepsy patients. Neuroreport 8:1867–1870PubMed Kotchoubey B, Schneider D, Schleichert H, Strehl U, Uhlmann C, Blankenhorn V, Fröscher W, Birbaumer N (1997) Stability of cortical self-regulation in epilepsy patients. Neuroreport 8:1867–1870PubMed
Zurück zum Zitat Kotchoubey B, Strehl U, Uhlmann C, Holzapfel S, König M, Fröscher W, Blankenhorn V, Birbaumer N (2001) Modification of slow cortical potentials in patients with refractory epilepsy: A controlled outcome study. Epilepsia 42:406–416CrossRefPubMed Kotchoubey B, Strehl U, Uhlmann C, Holzapfel S, König M, Fröscher W, Blankenhorn V, Birbaumer N (2001) Modification of slow cortical potentials in patients with refractory epilepsy: A controlled outcome study. Epilepsia 42:406–416CrossRefPubMed
Zurück zum Zitat Krakow K, Allen PJ, Symms MR, Lemieux L, Josephs O, Fish DR (2000A) EEG recording during fMRI experiments: image quality. Hum Brain Mapp 10:10–15CrossRefPubMed Krakow K, Allen PJ, Symms MR, Lemieux L, Josephs O, Fish DR (2000A) EEG recording during fMRI experiments: image quality. Hum Brain Mapp 10:10–15CrossRefPubMed
Zurück zum Zitat Krakow K, Allen PJ, Lemieux L, Symms MR, Fish DR (2000B) Methodology: EEG-correlated fMRI. Adv Neurology 83:187–201 Krakow K, Allen PJ, Lemieux L, Symms MR, Fish DR (2000B) Methodology: EEG-correlated fMRI. Adv Neurology 83:187–201
Zurück zum Zitat Logothetis N, Pauls J, Augath M, Trinath T, Oelterman A (2001) Neurophysiological investigation of the basis of the fMRI signal. Nature 412:150–157CrossRefPubMed Logothetis N, Pauls J, Augath M, Trinath T, Oelterman A (2001) Neurophysiological investigation of the basis of the fMRI signal. Nature 412:150–157CrossRefPubMed
Zurück zum Zitat Lutzenberger W, Elbert T, Rockstroh, Birbaumer N (1979) The effects of self-regulation of slow cortical potentials on performance in a signal detection task. Int J Neurosci 9:175–183 Lutzenberger W, Elbert T, Rockstroh, Birbaumer N (1979) The effects of self-regulation of slow cortical potentials on performance in a signal detection task. Int J Neurosci 9:175–183
Zurück zum Zitat Menon V, Ford JM, Lim KO, Glover GH, Pfefferbaum A (1997) Combined event-related fMRI, EEG evidence for temporal-parietal cortex activation during target detection. Neuroreport 8:3029–3037PubMed Menon V, Ford JM, Lim KO, Glover GH, Pfefferbaum A (1997) Combined event-related fMRI, EEG evidence for temporal-parietal cortex activation during target detection. Neuroreport 8:3029–3037PubMed
Zurück zum Zitat Mitzdorf U (1985) Current source-density method, application in cat cerebral cortex: investigation of evoked potentials and EEG phenomena. Physiol Rev 65:37–100PubMed Mitzdorf U (1985) Current source-density method, application in cat cerebral cortex: investigation of evoked potentials and EEG phenomena. Physiol Rev 65:37–100PubMed
Zurück zum Zitat Ogiso T, Kobayashi K, Sugishita M (2000) The precuneus in motor imagery: a magnetoencephalographic study. Neuroreport 11:1345–1349PubMed Ogiso T, Kobayashi K, Sugishita M (2000) The precuneus in motor imagery: a magnetoencephalographic study. Neuroreport 11:1345–1349PubMed
Zurück zum Zitat Porro CA, Cettolo V, Francesato MP, Baraldi P (2000) Ipsilateral involvement of primary motor cortex during motor imagery. Eur J Neurosci 12:3059–3063CrossRefPubMed Porro CA, Cettolo V, Francesato MP, Baraldi P (2000) Ipsilateral involvement of primary motor cortex during motor imagery. Eur J Neurosci 12:3059–3063CrossRefPubMed
Zurück zum Zitat Rebert CS (1973) Slow potential correlates of neural population responses in the cat's lateral geniculate nucleus. Electroencephalogr Clin Neurophysiol 35:511–515CrossRefPubMed Rebert CS (1973) Slow potential correlates of neural population responses in the cat's lateral geniculate nucleus. Electroencephalogr Clin Neurophysiol 35:511–515CrossRefPubMed
Zurück zum Zitat Requin J, Lecas JC, Bonnet M (1984) Some experimental evidence for a three step model of motor preparation. In: Kornblum S, Requin J (eds) Preparatory states, processes. Erlbaum, Hillsdale, NY, pp 259–284 Requin J, Lecas JC, Bonnet M (1984) Some experimental evidence for a three step model of motor preparation. In: Kornblum S, Requin J (eds) Preparatory states, processes. Erlbaum, Hillsdale, NY, pp 259–284
Zurück zum Zitat Raichle ME, MacLeod AM, Snyder AZ, Powers WJ, Gusnard DA, Shulman GL (2000) A default mode of brain function. Proc Natl Acad Sci 98:676–682CrossRef Raichle ME, MacLeod AM, Snyder AZ, Powers WJ, Gusnard DA, Shulman GL (2000) A default mode of brain function. Proc Natl Acad Sci 98:676–682CrossRef
Zurück zum Zitat Roberts LE, Birbaumer N, Rockstroh B, Lutzenberger W, Elbert T (1989) Self-report during feedback regulation of slow cortical potentials. Psychophysiology 24:397–403 Roberts LE, Birbaumer N, Rockstroh B, Lutzenberger W, Elbert T (1989) Self-report during feedback regulation of slow cortical potentials. Psychophysiology 24:397–403
Zurück zum Zitat Rockstroh B, Elbert T, Canavan A, Lutzenberger W, Birbaumer N (1989) Slow cortical potentials and behavior. Urban and Schwarzenberg, Baltimore Rockstroh B, Elbert T, Canavan A, Lutzenberger W, Birbaumer N (1989) Slow cortical potentials and behavior. Urban and Schwarzenberg, Baltimore
Zurück zum Zitat Rockstroh B, Elbert T, Birbaumer N, Wolf P, Düchting-Röth A, Reker M, Daum I, Lutzenberger W, Dichgans J (1993) Cortical self-regulation in patients with epilepsies. Epilepsy Res 14:63–72CrossRefPubMed Rockstroh B, Elbert T, Birbaumer N, Wolf P, Düchting-Röth A, Reker M, Daum I, Lutzenberger W, Dichgans J (1993) Cortical self-regulation in patients with epilepsies. Epilepsy Res 14:63–72CrossRefPubMed
Zurück zum Zitat Samuel M, Ceballos-Baumann AO, Boecker H, Brooks DJ (2001) Motor imagery in normal subjects and Parkinson's disease patients: an H215O PET study. Neuroreport 12:821–828PubMed Samuel M, Ceballos-Baumann AO, Boecker H, Brooks DJ (2001) Motor imagery in normal subjects and Parkinson's disease patients: an H215O PET study. Neuroreport 12:821–828PubMed
Zurück zum Zitat Shulman GL, Fiez JA, Corbetta M, Buckner RL, Miezin FM, Raichle ME, Petersen SE (1997) Common blood flow changes across visual tasks: II Decreases in cerebral cortex. J Cogn Neurosci 9:648–663 Shulman GL, Fiez JA, Corbetta M, Buckner RL, Miezin FM, Raichle ME, Petersen SE (1997) Common blood flow changes across visual tasks: II Decreases in cerebral cortex. J Cogn Neurosci 9:648–663
Zurück zum Zitat Speckmann EJ, Elger CE (1999) Introduction to the neurophysiological basis of the EEG, DC potentials. In: Niedermeyer E, da Silva FL, (eds), Electroencephalography: basic principles and clinical application and related fields. 4th edn. Williams and Wilkins, Baltimore, pp 15–27 Speckmann EJ, Elger CE (1999) Introduction to the neurophysiological basis of the EEG, DC potentials. In: Niedermeyer E, da Silva FL, (eds), Electroencephalography: basic principles and clinical application and related fields. 4th edn. Williams and Wilkins, Baltimore, pp 15–27
Zurück zum Zitat Stamm JS, Gadotti A, Rosen SC (1975) Interhemispheric functional differences in prefrontal cortex of monkeys. J Neurobiol 6:39–49PubMed Stamm JS, Gadotti A, Rosen SC (1975) Interhemispheric functional differences in prefrontal cortex of monkeys. J Neurobiol 6:39–49PubMed
Zurück zum Zitat Stamm JS, Rosen SC (1972) Cortical steady potential shifts and anodal polarization during delayed response performance. Acta Neurobiol Exp (Warsz) 32:193–209 Stamm JS, Rosen SC (1972) Cortical steady potential shifts and anodal polarization during delayed response performance. Acta Neurobiol Exp (Warsz) 32:193–209
Zurück zum Zitat Stephan KM, Fink GR, Passingham RE, Silbersweig D, Ceballos-Baumann AO, Frith CD, Frackowiak RS (1995) Functional anatomy of mental representation of upper extremity movements in healthy subjects. J Neurophysiol 73:373–386PubMed Stephan KM, Fink GR, Passingham RE, Silbersweig D, Ceballos-Baumann AO, Frith CD, Frackowiak RS (1995) Functional anatomy of mental representation of upper extremity movements in healthy subjects. J Neurophysiol 73:373–386PubMed
Zurück zum Zitat Steriade M (2001) Impact of network activity on neuronal populations in corticothalamic systems. J Neurophysiol 86:1–39PubMed Steriade M (2001) Impact of network activity on neuronal populations in corticothalamic systems. J Neurophysiol 86:1–39PubMed
Zurück zum Zitat Talairach J, Tournoux P (1988) Co-planar stereotaxic atlas of the human brain. Thieme, Stuttgart, New York Talairach J, Tournoux P (1988) Co-planar stereotaxic atlas of the human brain. Thieme, Stuttgart, New York
Zurück zum Zitat Tamminga CA, Holcomb HH (2001) Images in neuroscience neural systems VI: basal ganglia. Am J Psychiat 158:185CrossRefPubMed Tamminga CA, Holcomb HH (2001) Images in neuroscience neural systems VI: basal ganglia. Am J Psychiat 158:185CrossRefPubMed
Zurück zum Zitat Tzourio-Mazoyer N, Landeau B, Papathanassiou D, Crivello F, Etard O, Delcroix N, Mazoyer B, Joliot M (2002) Automated anatomical labelling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage 15:273–289CrossRefPubMed Tzourio-Mazoyer N, Landeau B, Papathanassiou D, Crivello F, Etard O, Delcroix N, Mazoyer B, Joliot M (2002) Automated anatomical labelling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage 15:273–289CrossRefPubMed
Zurück zum Zitat Vitacco D, Brandeis D, Pascual-Marqui R, Martin E (2002) Correspondence of event-related potential tomography and functional magnetic resonance imaging during language processing. Human Brain Mapp 17:4–12CrossRefPubMed Vitacco D, Brandeis D, Pascual-Marqui R, Martin E (2002) Correspondence of event-related potential tomography and functional magnetic resonance imaging during language processing. Human Brain Mapp 17:4–12CrossRefPubMed
Metadaten
Titel
Brain areas activated in fMRI during self-regulation of slow cortical potentials (SCPs)
verfasst von
Thilo Hinterberger
Ralf Veit
Ute Strehl
Tracy Trevorrow
Michael Erb
Boris Kotchoubey
Herta Flor
Niels Birbaumer
Publikationsdatum
01.09.2003
Verlag
Springer-Verlag
Erschienen in
Experimental Brain Research / Ausgabe 1/2003
Print ISSN: 0014-4819
Elektronische ISSN: 1432-1106
DOI
https://doi.org/10.1007/s00221-003-1515-4

Weitere Artikel der Ausgabe 1/2003

Experimental Brain Research 1/2003 Zur Ausgabe

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.