Skip to main content
Erschienen in: Experimental Brain Research 2/2005

01.01.2005 | Research Article

Relationship between plantar-flexor torque generation and the magnitude of the movement-related potentials

verfasst von: Omar Feix do Nascimento, Kim Dremstrup Nielsen, Michael Voigt

Erschienen in: Experimental Brain Research | Ausgabe 2/2005

Einloggen, um Zugang zu erhalten

Abstract

This study investigates whether rate of torque development (RTD) and/or torque amplitude are reflected in the movement-related potentials (MRPs) preceding and accompanying isometric activation of plantar flexor muscles. Subjects were asked to perform six different tasks involving the left ankle joint. The tasks consisted of voluntary isometric plantar flexions at three different RTDs (two fixed rates and a ‘ballistic’ task) ending at two different torque amplitudes. The main observations from the analysis of the MRPs were: 1) the readiness potentials (RP) demonstrated a statistically significant discrimination between low and high torque amplitudes; 2) the RP, the motor potentials (MP) and the movement-monitoring potentials (MMP) could be statistically differentiated among the different RTDs; and 3) in general the MRPs demonstrated an ipsilateral tendency in relation to the involved limb. The results indicate that RP is a suitable parameter for differentiation between levels of isometric plantar flexion torque and MP and MMP are sensitive to a differentiation between RTDs. The correlation between MRPs and motor tasks involving different rates of torque development and levels of torque suggests that MRPs may comprise a potential solution for programming of intended movements to be executed by systems based on neural rehabilitation technology.
Literatur
Zurück zum Zitat American Electroencephalographic Society (1994) Guideline thirteen: guidelines for standard electrode position nomenclature. J Clin Neurophysiol 11:111–113PubMed American Electroencephalographic Society (1994) Guideline thirteen: guidelines for standard electrode position nomenclature. J Clin Neurophysiol 11:111–113PubMed
Zurück zum Zitat Böcker KB, Brunia CH, Cluitmans PJ (1994) A spatio-temporal dipole model of the readiness potential in humans. II. Foot movement. Electroencephalogr Clin Neurophysiol 91:286–294CrossRefPubMed Böcker KB, Brunia CH, Cluitmans PJ (1994) A spatio-temporal dipole model of the readiness potential in humans. II. Foot movement. Electroencephalogr Clin Neurophysiol 91:286–294CrossRefPubMed
Zurück zum Zitat Boschert J, Deecke L (1986) Handedness, footedness and finger and toe movement-related cerebral potentials. Hum Neurobiol 5:235–243PubMed Boschert J, Deecke L (1986) Handedness, footedness and finger and toe movement-related cerebral potentials. Hum Neurobiol 5:235–243PubMed
Zurück zum Zitat Boschert J, Hink RF, Deecke L (1983) Finger movement versus toe movement-related potentials: further evidence for supplementary motor area (SMA) participation prior to voluntary action. Exp Brain Res 52:73–80PubMed Boschert J, Hink RF, Deecke L (1983) Finger movement versus toe movement-related potentials: further evidence for supplementary motor area (SMA) participation prior to voluntary action. Exp Brain Res 52:73–80PubMed
Zurück zum Zitat Brouwer B, Ashby P (1992) Corticospinal projections to lower limb motoneurons in man. Exp Brain Res 89:649–654PubMed Brouwer B, Ashby P (1992) Corticospinal projections to lower limb motoneurons in man. Exp Brain Res 89:649–654PubMed
Zurück zum Zitat Brunia CH (1980) What is wrong with legs in motor preparation? Prog Brain Res 54:232–236PubMed Brunia CH (1980) What is wrong with legs in motor preparation? Prog Brain Res 54:232–236PubMed
Zurück zum Zitat Brunia CH, Dautzenberg JE (1986) Cortical potentials in man preceding a plantar flexion and dorsiflexion of the foot. Electroencephalogr Clin Neurophysiol Suppl 38:238–241PubMed Brunia CH, Dautzenberg JE (1986) Cortical potentials in man preceding a plantar flexion and dorsiflexion of the foot. Electroencephalogr Clin Neurophysiol Suppl 38:238–241PubMed
Zurück zum Zitat Brunia CH, Van den Bosch WE (1984) Movement-related slow potentials. I. A contrast between finger and foot movements in right-handed subjects. Electroencephalogr Clin Neurophysiol 57:515–527CrossRefPubMed Brunia CH, Van den Bosch WE (1984) Movement-related slow potentials. I. A contrast between finger and foot movements in right-handed subjects. Electroencephalogr Clin Neurophysiol 57:515–527CrossRefPubMed
Zurück zum Zitat Brunia CH, Vingerhoets AJ (1980) CNV and EMG preceding a plantar flexion of the foot. Biol Psychol 11:181–191CrossRefPubMed Brunia CH, Vingerhoets AJ (1980) CNV and EMG preceding a plantar flexion of the foot. Biol Psychol 11:181–191CrossRefPubMed
Zurück zum Zitat Brunia CH, Vingerhoets AJ (1981) Opposite hemisphere differences in movement related potentials preceding foot and finger flexions. Biol Psychol 13:261–269CrossRefPubMed Brunia CH, Vingerhoets AJ (1981) Opposite hemisphere differences in movement related potentials preceding foot and finger flexions. Biol Psychol 13:261–269CrossRefPubMed
Zurück zum Zitat Brunia CH, Voorn FJ, Berger MP (1985) Movement related slow potentials. II. A contrast between finger and foot movements in left-handed subjects. Electroencephalogr Clin Neurophysiol 60:135–145CrossRefPubMed Brunia CH, Voorn FJ, Berger MP (1985) Movement related slow potentials. II. A contrast between finger and foot movements in left-handed subjects. Electroencephalogr Clin Neurophysiol 60:135–145CrossRefPubMed
Zurück zum Zitat Capaday C, Lavoie BA, Barbeau H, Schneider C, Bonnard M (1999) Studies on the corticospinal control of human walking. I. Responses to focal transcranial magnetic stimulation of the motor cortex. J Neurophysiol 81:129–139PubMed Capaday C, Lavoie BA, Barbeau H, Schneider C, Bonnard M (1999) Studies on the corticospinal control of human walking. I. Responses to focal transcranial magnetic stimulation of the motor cortex. J Neurophysiol 81:129–139PubMed
Zurück zum Zitat Cunnington R, Iansek R, Bradshaw JL, Phillips JG (1996) Movement-related potentials associated with movement preparation and motor imagery. Exp Brain Res 111:429–436PubMed Cunnington R, Iansek R, Bradshaw JL, Phillips JG (1996) Movement-related potentials associated with movement preparation and motor imagery. Exp Brain Res 111:429–436PubMed
Zurück zum Zitat Deecke L (1987) Bereitschaftspotential as an indicator of movement preparation in supplementary motor area and motor cortex. Ciba Found Symp 132:231–250PubMed Deecke L (1987) Bereitschaftspotential as an indicator of movement preparation in supplementary motor area and motor cortex. Ciba Found Symp 132:231–250PubMed
Zurück zum Zitat Deecke L, Grozinger B, Kornhuber HH (1976) Voluntary finger movement in man: cerebral potentials and theory. Biol Cybern 23:99–119PubMed Deecke L, Grozinger B, Kornhuber HH (1976) Voluntary finger movement in man: cerebral potentials and theory. Biol Cybern 23:99–119PubMed
Zurück zum Zitat Deecke L, Bashore T, Brunia CH, Grunewald-Zuberbier E, Grunewald G, Kristeva R (1984) Movement-associated potentials and motor control. Report of the EPIC VI Motor Panel. Ann N Y Acad Sci 425:398–428PubMed Deecke L, Bashore T, Brunia CH, Grunewald-Zuberbier E, Grunewald G, Kristeva R (1984) Movement-associated potentials and motor control. Report of the EPIC VI Motor Panel. Ann N Y Acad Sci 425:398–428PubMed
Zurück zum Zitat Deiber MP, Ibanez V, Sadato N, Hallett M (1996) Cerebral structures participating in motor preparation in humans: a positron emission tomography study. J Neurophysiol 75:233–247PubMed Deiber MP, Ibanez V, Sadato N, Hallett M (1996) Cerebral structures participating in motor preparation in humans: a positron emission tomography study. J Neurophysiol 75:233–247PubMed
Zurück zum Zitat Ehrsson HH, Naito E, Geyer S, Amunts K, Zilles K, Forssberg H, Roland PE (2000) Simultaneous movements of upper and lower limbs are coordinated by motor representations that are shared by both limbs: a PET study. Eur J Neurosci 12:3385–3398CrossRefPubMed Ehrsson HH, Naito E, Geyer S, Amunts K, Zilles K, Forssberg H, Roland PE (2000) Simultaneous movements of upper and lower limbs are coordinated by motor representations that are shared by both limbs: a PET study. Eur J Neurosci 12:3385–3398CrossRefPubMed
Zurück zum Zitat Ikeda A, Shibasaki H (1992) Invasive recording of movement-related cortical potentials in humans. J Clin Neurophysiol 9:509–520PubMed Ikeda A, Shibasaki H (1992) Invasive recording of movement-related cortical potentials in humans. J Clin Neurophysiol 9:509–520PubMed
Zurück zum Zitat Ikeda A, Luders HO, Burgess RC, Shibasaki H (1992) Movement-related potentials recorded from supplementary motor area and primary motor area. Role of supplementary motor area in voluntary movements. Brain 115 (Pt 4): 1017–1043PubMed Ikeda A, Luders HO, Burgess RC, Shibasaki H (1992) Movement-related potentials recorded from supplementary motor area and primary motor area. Role of supplementary motor area in voluntary movements. Brain 115 (Pt 4): 1017–1043PubMed
Zurück zum Zitat Ikeda A, Luders HO, Burgess RC, Sakamoto A, Klem GH, Morris III HH, Shibasaki H (1995) Generator locations of movement-related potentials with tongue protrusions and vocalizations: subdural recording in human. Electroencephalogr Clin Neurophysiol 96:310–328CrossRefPubMed Ikeda A, Luders HO, Burgess RC, Sakamoto A, Klem GH, Morris III HH, Shibasaki H (1995) Generator locations of movement-related potentials with tongue protrusions and vocalizations: subdural recording in human. Electroencephalogr Clin Neurophysiol 96:310–328CrossRefPubMed
Zurück zum Zitat Jentzsch I, Leuthold H (2002) Advance movement preparation of eye, foot, and hand: a comparative study using movement-related brain potentials. Brain Res Cogn Brain Res 14:201–217CrossRefPubMed Jentzsch I, Leuthold H (2002) Advance movement preparation of eye, foot, and hand: a comparative study using movement-related brain potentials. Brain Res Cogn Brain Res 14:201–217CrossRefPubMed
Zurück zum Zitat Juul PR, Ladouceur M, Nielsen KD (2000) Coding of lower limb muscle force generation in associated EEG movement related potentials: preliminary studies toward a feed-forward control of FES-assisted walking. Sinkjaer T, Popovic D, Struijk JJ (ed) Aalborg University, Denmark. Conference Proceeding, pp 335–337 Juul PR, Ladouceur M, Nielsen KD (2000) Coding of lower limb muscle force generation in associated EEG movement related potentials: preliminary studies toward a feed-forward control of FES-assisted walking. Sinkjaer T, Popovic D, Struijk JJ (ed) Aalborg University, Denmark. Conference Proceeding, pp 335–337
Zurück zum Zitat Klem, GH, Lüders, HO, Jasper, HH, Elger, C (1999) The ten-twenty electrode system of the International Federation. Electroencephalogr Clin Neurophysiol Suppl 52:3-6.PubMed Klem, GH, Lüders, HO, Jasper, HH, Elger, C (1999) The ten-twenty electrode system of the International Federation. Electroencephalogr Clin Neurophysiol Suppl 52:3-6.PubMed
Zurück zum Zitat Kornhuber HH, Deecke L (1965) Hirnpotentialanderungen bei willkurbewegungen und passiven bewegungen des menschen. Bereitschaftspotential und eafferente potential. Pflugers Arch 284:1–17 Kornhuber HH, Deecke L (1965) Hirnpotentialanderungen bei willkurbewegungen und passiven bewegungen des menschen. Bereitschaftspotential und eafferente potential. Pflugers Arch 284:1–17
Zurück zum Zitat Kristeva R, Cheyne D, Lang W, Lindinger G, Deecke L (1990) Movement-related potentials accompanying unilateral and bilateral finger movements with different inertial loads. Electroencephalogr Clin Neurophysiol 75:410–418CrossRefPubMed Kristeva R, Cheyne D, Lang W, Lindinger G, Deecke L (1990) Movement-related potentials accompanying unilateral and bilateral finger movements with different inertial loads. Electroencephalogr Clin Neurophysiol 75:410–418CrossRefPubMed
Zurück zum Zitat Kristeva R, Cheyne D, Deecke L (1991) Neuromagnetic fields accompanying unilateral and bilateral voluntary movements: topography and analysis of cortical sources. Electroencephalogr Clin Neurophysiol 81:284–298CrossRefPubMed Kristeva R, Cheyne D, Deecke L (1991) Neuromagnetic fields accompanying unilateral and bilateral voluntary movements: topography and analysis of cortical sources. Electroencephalogr Clin Neurophysiol 81:284–298CrossRefPubMed
Zurück zum Zitat Lee KM, Chang KH, Roh JK (1999) Subregions within the supplementary motor area activated at different stages of movement preparation and execution. Neuroimage 9:117–123CrossRefPubMed Lee KM, Chang KH, Roh JK (1999) Subregions within the supplementary motor area activated at different stages of movement preparation and execution. Neuroimage 9:117–123CrossRefPubMed
Zurück zum Zitat Mayer M, Botzel K, Paulus W, Plendl H, Prockl D, Danek A (1995) Movement-related cortical potentials in persistent mirror movements. Electroencephalogr Clin Neurophysiol 95:350–358CrossRefPubMed Mayer M, Botzel K, Paulus W, Plendl H, Prockl D, Danek A (1995) Movement-related cortical potentials in persistent mirror movements. Electroencephalogr Clin Neurophysiol 95:350–358CrossRefPubMed
Zurück zum Zitat Nakajima I, Tanaka Y, Uchida A, Sakai T, Akasaka M, Mori A, Sumino R (1991) Cortical potentials associated with voluntary biting movement in humans. Neurosci Res 10:285–289CrossRefPubMed Nakajima I, Tanaka Y, Uchida A, Sakai T, Akasaka M, Mori A, Sumino R (1991) Cortical potentials associated with voluntary biting movement in humans. Neurosci Res 10:285–289CrossRefPubMed
Zurück zum Zitat Popovic DB, Sinkjaer T (2000) Control of movement for the physically disabled. Springer, London, p 481 Popovic DB, Sinkjaer T (2000) Control of movement for the physically disabled. Springer, London, p 481
Zurück zum Zitat Ray WJ, Slobounov S, Mordkoff JT, Johnston J, Simon RF (2000) Rate of force development and the lateralized readiness potential. Psychophysiology 37:757–765CrossRefPubMed Ray WJ, Slobounov S, Mordkoff JT, Johnston J, Simon RF (2000) Rate of force development and the lateralized readiness potential. Psychophysiology 37:757–765CrossRefPubMed
Zurück zum Zitat Rearick MP, Slobounov SM (2000) Negative cortical d.c. shifts associated with coordination and control in a prehensile force task. Exp Brain Res 132:195–202CrossRefPubMed Rearick MP, Slobounov SM (2000) Negative cortical d.c. shifts associated with coordination and control in a prehensile force task. Exp Brain Res 132:195–202CrossRefPubMed
Zurück zum Zitat Rijntjes M, Dettmers C, Buchel C, Kiebel S, Frackowiak RS, Weiller C (1999) A blueprint for movement: functional and anatomical representations in the human motor system. J Neurosci 19:8043–8048PubMed Rijntjes M, Dettmers C, Buchel C, Kiebel S, Frackowiak RS, Weiller C (1999) A blueprint for movement: functional and anatomical representations in the human motor system. J Neurosci 19:8043–8048PubMed
Zurück zum Zitat Rohrbaugh JW, Syndulko K, Lindsley DB (1976) Brain wave components of the contingent negative variation in humans. Science 191:1055–1057PubMed Rohrbaugh JW, Syndulko K, Lindsley DB (1976) Brain wave components of the contingent negative variation in humans. Science 191:1055–1057PubMed
Zurück zum Zitat Shibasaki H, Barrett G, Halliday E, Halliday AM (1980) Components of the movement-related cortical potential and their scalp topography. Electroencephalogr Clin Neurophysiol 49:213–226CrossRefPubMed Shibasaki H, Barrett G, Halliday E, Halliday AM (1980) Components of the movement-related cortical potential and their scalp topography. Electroencephalogr Clin Neurophysiol 49:213–226CrossRefPubMed
Zurück zum Zitat Shibasaki H, Barrett G, Halliday E, Halliday AM (1981) Cortical potentials associated with voluntary foot movement in man. Electroencephalogr Clin Neurophysiol 52:507–516CrossRefPubMed Shibasaki H, Barrett G, Halliday E, Halliday AM (1981) Cortical potentials associated with voluntary foot movement in man. Electroencephalogr Clin Neurophysiol 52:507–516CrossRefPubMed
Zurück zum Zitat Slobounov SM, Ray WJ (1998) Movement-related potentials with reference to isometric force output in discrete and repetitive tasks. Exp Brain Res 123:461–473CrossRefPubMed Slobounov SM, Ray WJ (1998) Movement-related potentials with reference to isometric force output in discrete and repetitive tasks. Exp Brain Res 123:461–473CrossRefPubMed
Zurück zum Zitat Slobounov S, Tutwiler R, Rearick M, Challis JH (1999) EEG correlates of finger movements with different inertial load conditions as revealed by averaging techniques. Clin Neurophysiol 110:1764–1773CrossRefPubMed Slobounov S, Tutwiler R, Rearick M, Challis JH (1999) EEG correlates of finger movements with different inertial load conditions as revealed by averaging techniques. Clin Neurophysiol 110:1764–1773CrossRefPubMed
Zurück zum Zitat Slobounov S, Rearick M, Chiang H (2000a) EEG correlates of finger movements as a function of range of motion and pre-loading conditions. Clin Neurophysiol 111:1997–2007CrossRefPubMed Slobounov S, Rearick M, Chiang H (2000a) EEG correlates of finger movements as a function of range of motion and pre-loading conditions. Clin Neurophysiol 111:1997–2007CrossRefPubMed
Zurück zum Zitat Slobounov SM, Rearick MP, Simon RF, Johnston JA (2000b) Movement-related potentials are task or end-effector dependent: evidence from a multifinger experiment. Exp Brain Res 135:106–116CrossRefPubMed Slobounov SM, Rearick MP, Simon RF, Johnston JA (2000b) Movement-related potentials are task or end-effector dependent: evidence from a multifinger experiment. Exp Brain Res 135:106–116CrossRefPubMed
Zurück zum Zitat Slobounov S, Johnston J, Chiang H, Ray W (2002) Movement-related EEG potentials are force or end-effector dependent: evidence from a multi-finger experiment. Clin Neurophysiol 113:1125–1135CrossRefPubMed Slobounov S, Johnston J, Chiang H, Ray W (2002) Movement-related EEG potentials are force or end-effector dependent: evidence from a multi-finger experiment. Clin Neurophysiol 113:1125–1135CrossRefPubMed
Zurück zum Zitat Tamas LB, Shibasaki H (1985) Cortical potentials associated with movement: a review. J Clin Neurophysiol 2:157–171PubMed Tamas LB, Shibasaki H (1985) Cortical potentials associated with movement: a review. J Clin Neurophysiol 2:157–171PubMed
Zurück zum Zitat Terada K, Ikeda A, Yazawa S, Nagamine T, Shibasaki H (1999) Movement-related cortical potentials associated with voluntary relaxation of foot muscles. Clin Neurophysiol 110:397–403CrossRefPubMed Terada K, Ikeda A, Yazawa S, Nagamine T, Shibasaki H (1999) Movement-related cortical potentials associated with voluntary relaxation of foot muscles. Clin Neurophysiol 110:397–403CrossRefPubMed
Zurück zum Zitat Vidailhet M, Atchison PR, Stocchi F, Thompson PD, Rothwell JC, Marsden CD (1995) The bereitschaftspotential preceding stepping in patients with isolated gait ignition failure. Mov Disord 10:18–21PubMed Vidailhet M, Atchison PR, Stocchi F, Thompson PD, Rothwell JC, Marsden CD (1995) The bereitschaftspotential preceding stepping in patients with isolated gait ignition failure. Mov Disord 10:18–21PubMed
Zurück zum Zitat Wild-Wall N, Sangals J, Sommer W, Leuthold H (2003) Are fingers special? Evidence about movement preparation from event- related brain potentials. Psychophysiology 40:7–16CrossRefPubMed Wild-Wall N, Sangals J, Sommer W, Leuthold H (2003) Are fingers special? Evidence about movement preparation from event- related brain potentials. Psychophysiology 40:7–16CrossRefPubMed
Zurück zum Zitat Wohlert AB (1993) Event-related brain potentials preceding speech and nonspeech oral movements of varying complexity. J Speech Lang Hear Res 36:897–905 Wohlert AB (1993) Event-related brain potentials preceding speech and nonspeech oral movements of varying complexity. J Speech Lang Hear Res 36:897–905
Zurück zum Zitat Yoshida K, Kaji R, Hamano T, Kohara N, Kimura J, Iizuka T (1999) Cortical distribution of Bereitschaftspotential and negative slope potential preceding mouth-opening movements in humans. Arch Oral Biol 44:183–190CrossRefPubMed Yoshida K, Kaji R, Hamano T, Kohara N, Kimura J, Iizuka T (1999) Cortical distribution of Bereitschaftspotential and negative slope potential preceding mouth-opening movements in humans. Arch Oral Biol 44:183–190CrossRefPubMed
Metadaten
Titel
Relationship between plantar-flexor torque generation and the magnitude of the movement-related potentials
verfasst von
Omar Feix do Nascimento
Kim Dremstrup Nielsen
Michael Voigt
Publikationsdatum
01.01.2005
Erschienen in
Experimental Brain Research / Ausgabe 2/2005
Print ISSN: 0014-4819
Elektronische ISSN: 1432-1106
DOI
https://doi.org/10.1007/s00221-004-1996-9

Weitere Artikel der Ausgabe 2/2005

Experimental Brain Research 2/2005 Zur Ausgabe

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.