Skip to main content
Erschienen in: Calcified Tissue International 3/2016

01.03.2016 | Original Research

PTH-Induced Osteoblast Proliferation Requires Upregulation of the Ubiquitin-Specific Peptidase 2 (Usp2) Expression

verfasst von: Jumpei Shirakawa, Hiroyuki Harada, Masaki Noda, Yoichi Ezura

Erschienen in: Calcified Tissue International | Ausgabe 3/2016

Einloggen, um Zugang zu erhalten

Abstract

Osteoporosis is a common disease that increases individual’s fragility fracture risk. PTH is the only therapeutic agent for severe osteoporosis that requires anabolic action of bone formation. Although a part of the PTH actions is explained by increased proliferation of osteoblastic precursor cells, the mechanisms involved in the proliferation of osteoblastic cells by PTH have not been clarified yet. Therefore, in this study, we investigated the effects of PTH on gene expression in the cultured osteoblastic MC3T3-E1 cells, and found that the ubiquitin-specific peptidase 2 (Usp2) may be one of the direct target genes of PTHR signaling. Usp2 is a deubiquitination enzyme targeting various factors including CyclinD1 in cancer cells and PTH receptor 1 in osteoblasts. We confirmed that consistent induction of Usp2 expression peaked at 1 h by PTH1-34 (teriparatide) in MC3T3-E1 cells and primary calvarial osteoblasts. Among the three known splicing variants of the Usp2, we found the isoforms 1 and 2 are predominantly expressed in osteoblasts. Live-imaging analysis of the Fucci-transgenic mouse-derived primary osteoblasts indeed demonstrated that Usp2 is required for the PTH1-34-induced osteoblast proliferation. Western blotting analysis of the CyclinD1 indicated that Usp2 knock-down influences the paradoxical changes of CyclinD1 protein levels in this condition. Our data indicate that Usp2 is required for the PTH1-34-induced proliferation of osteoblasts.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Armas LA, Recker RR (2012) Pathophysiology of osteoporosis: new mechanistic insights. Endocrinol Metab Clin North Am 41(3):475–486CrossRefPubMed Armas LA, Recker RR (2012) Pathophysiology of osteoporosis: new mechanistic insights. Endocrinol Metab Clin North Am 41(3):475–486CrossRefPubMed
2.
Zurück zum Zitat Gerdhem P (2013) Osteoporosis and fragility fractures: vertebral fractures. Best Pract Res Clin Rheumatol 27(6):743–755CrossRefPubMed Gerdhem P (2013) Osteoporosis and fragility fractures: vertebral fractures. Best Pract Res Clin Rheumatol 27(6):743–755CrossRefPubMed
3.
Zurück zum Zitat Lim SY, Bolster MB (2015) Current approaches to osteoporosis treatment. Curr Opin Rheumatol 27(3):216–224CrossRefPubMed Lim SY, Bolster MB (2015) Current approaches to osteoporosis treatment. Curr Opin Rheumatol 27(3):216–224CrossRefPubMed
4.
Zurück zum Zitat Silva BC, Bilezikian JP (2015) Parathyroid hormone: anabolic and catabolic actions on the skeleton. Curr Opin Pharmacol 22:41–50CrossRefPubMed Silva BC, Bilezikian JP (2015) Parathyroid hormone: anabolic and catabolic actions on the skeleton. Curr Opin Pharmacol 22:41–50CrossRefPubMed
6.
Zurück zum Zitat Saini V, Marengi DA, Barry KJ, Fulzele KS, Heiden E, Liu X, Dedic C, Maeda A, Lotinun S, Baron R, Pajevic PD (2013) Parathyroid hormone (PTH)/PTH-related peptide type 1 receptor (PPR) signaling in osteocytes regulates anabolic and catabolic skeletal responses to PTH. J Biol Chem 288(28):20122–20134PubMedCentralCrossRefPubMed Saini V, Marengi DA, Barry KJ, Fulzele KS, Heiden E, Liu X, Dedic C, Maeda A, Lotinun S, Baron R, Pajevic PD (2013) Parathyroid hormone (PTH)/PTH-related peptide type 1 receptor (PPR) signaling in osteocytes regulates anabolic and catabolic skeletal responses to PTH. J Biol Chem 288(28):20122–20134PubMedCentralCrossRefPubMed
8.
Zurück zum Zitat Moriya S, Hayata T, Notomi T, Aryal S, Nakamaoto T, Izu Y, Kawasaki M, Yamada T, Shirakawa J, Kaneko K, Ezura Y, Noda M (2015) PTH regulates β2-adrenergic receptor expression in osteoblast-like MC3T3-E1 cells. J Cell Biochem 116(1):142–148CrossRefPubMed Moriya S, Hayata T, Notomi T, Aryal S, Nakamaoto T, Izu Y, Kawasaki M, Yamada T, Shirakawa J, Kaneko K, Ezura Y, Noda M (2015) PTH regulates β2-adrenergic receptor expression in osteoblast-like MC3T3-E1 cells. J Cell Biochem 116(1):142–148CrossRefPubMed
9.
Zurück zum Zitat Silvestrini G, Ballanti P, Leopizzi M, Sebastiani M, Berni S, Di Vito M, Bonucci E (2007) Effects of intermittent parathyroid hormone (PTH) administration on SOST mRNA and protein in rat bone. J Mol Histol 38(4):261–269CrossRefPubMed Silvestrini G, Ballanti P, Leopizzi M, Sebastiani M, Berni S, Di Vito M, Bonucci E (2007) Effects of intermittent parathyroid hormone (PTH) administration on SOST mRNA and protein in rat bone. J Mol Histol 38(4):261–269CrossRefPubMed
10.
Zurück zum Zitat Linkhart TA, Mohan S (1989) Parathyroid hormone stimulates release of insulin-like growth factor-I (IGF-I) and IGF-II from neonatal mouse calvaria in organ culture. Endocrinology 125(3):1484–1491CrossRefPubMed Linkhart TA, Mohan S (1989) Parathyroid hormone stimulates release of insulin-like growth factor-I (IGF-I) and IGF-II from neonatal mouse calvaria in organ culture. Endocrinology 125(3):1484–1491CrossRefPubMed
11.
Zurück zum Zitat Miyakoshi N, Kasukawa Y, Linkhart TA, Baylink DJ, Mohan S (2001) Evidence that anabolic effects of PTH on bone require IGF-I in growing mice. Endocrinology 142(10):4349–4356CrossRefPubMed Miyakoshi N, Kasukawa Y, Linkhart TA, Baylink DJ, Mohan S (2001) Evidence that anabolic effects of PTH on bone require IGF-I in growing mice. Endocrinology 142(10):4349–4356CrossRefPubMed
12.
Zurück zum Zitat Bikle DD, Wang Y (2012) Insulin like growth factor-I: a critical mediator of the skeletal response to parathyroid hormone. Curr Mol Pharmacol 5(2):135–142PubMedCentralCrossRefPubMed Bikle DD, Wang Y (2012) Insulin like growth factor-I: a critical mediator of the skeletal response to parathyroid hormone. Curr Mol Pharmacol 5(2):135–142PubMedCentralCrossRefPubMed
13.
Zurück zum Zitat Tian Y, Xu Y, Fu Q, He M (2011) Parathyroid hormone regulates osteoblast differentiation in a Wnt/β-catenin-dependent manner. Mol Cell Biochem 355(1–2):211–216CrossRefPubMed Tian Y, Xu Y, Fu Q, He M (2011) Parathyroid hormone regulates osteoblast differentiation in a Wnt/β-catenin-dependent manner. Mol Cell Biochem 355(1–2):211–216CrossRefPubMed
14.
Zurück zum Zitat Matsumoto T, Kuriwaka-Kido R, Kondo T, Endo I, Kido S (2012) Regulation of osteoblast differentiation by interleukin-11 via AP-1 and Smad signaling. Endocr J 59(2):91–101CrossRefPubMed Matsumoto T, Kuriwaka-Kido R, Kondo T, Endo I, Kido S (2012) Regulation of osteoblast differentiation by interleukin-11 via AP-1 and Smad signaling. Endocr J 59(2):91–101CrossRefPubMed
15.
Zurück zum Zitat Kuriwaka-Kido R, Kido S, Miyatani Y, Ito Y, Kondo T, Omatsu T, Dong B, Endo I, Miyamoto K, Matsumoto T (2013) Parathyroid hormone (1-34) counteracts the suppression of interleukin-11 expression by glucocorticoid in murine osteoblasts: a possible mechanism for stimulating osteoblast differentiation against glucocorticoid excess. Endocrinology 154(3):1156–1167CrossRefPubMed Kuriwaka-Kido R, Kido S, Miyatani Y, Ito Y, Kondo T, Omatsu T, Dong B, Endo I, Miyamoto K, Matsumoto T (2013) Parathyroid hormone (1-34) counteracts the suppression of interleukin-11 expression by glucocorticoid in murine osteoblasts: a possible mechanism for stimulating osteoblast differentiation against glucocorticoid excess. Endocrinology 154(3):1156–1167CrossRefPubMed
16.
Zurück zum Zitat Datta NS, Pettway GJ, Chen C, Koh AJ, McCauley LK (2007) Cyclin D1 as a target for the proliferative effects of PTH and PTHrP in early osteoblastic cells. J Bone Miner Res 22(7):951–964CrossRefPubMed Datta NS, Pettway GJ, Chen C, Koh AJ, McCauley LK (2007) Cyclin D1 as a target for the proliferative effects of PTH and PTHrP in early osteoblastic cells. J Bone Miner Res 22(7):951–964CrossRefPubMed
17.
Zurück zum Zitat Shirakawa J, Ezura Y, Moriya S, Kawasaki M, Yamada T, Notomi T, Nakamoto T, Hayata T, Miyawaki A, Omura K, Noda M (2014) Migration linked to FUCCI-indicated cell cycle is controlled by PTH and mechanical stress. J Cell Physiol 229(10):1353–1358CrossRefPubMed Shirakawa J, Ezura Y, Moriya S, Kawasaki M, Yamada T, Notomi T, Nakamoto T, Hayata T, Miyawaki A, Omura K, Noda M (2014) Migration linked to FUCCI-indicated cell cycle is controlled by PTH and mechanical stress. J Cell Physiol 229(10):1353–1358CrossRefPubMed
18.
Zurück zum Zitat Wang YH, Liu Y, Rowe DW (2007) Effects of transient PTH on early proliferation, apoptosis, and subsequent differentiation of osteoblast in primary osteoblast cultures. Am J Physiol Endocrinol Metab 292(2):E594–E603CrossRefPubMed Wang YH, Liu Y, Rowe DW (2007) Effects of transient PTH on early proliferation, apoptosis, and subsequent differentiation of osteoblast in primary osteoblast cultures. Am J Physiol Endocrinol Metab 292(2):E594–E603CrossRefPubMed
19.
Zurück zum Zitat Charest-Morin X, Fortin JP, Lodge R, Allaeys I, Poubelle PE, Marceau F (2014) A tagged parathyroid hormone derivative as a carrier of antibody cargoes transported by the G protein coupled PTH1 receptor. Peptides 60:71–79CrossRefPubMed Charest-Morin X, Fortin JP, Lodge R, Allaeys I, Poubelle PE, Marceau F (2014) A tagged parathyroid hormone derivative as a carrier of antibody cargoes transported by the G protein coupled PTH1 receptor. Peptides 60:71–79CrossRefPubMed
20.
Zurück zum Zitat Lewinson D, Rachmiel A, Rihani-Bisharat S, Kraiem Z, Schenzer P, Korem S, Rabinovich Y (2003) Stimulation of Fos- and Jun-related genes during distraction osteogenesis. J Histochem Cytochem 51(9):1161–1168CrossRefPubMed Lewinson D, Rachmiel A, Rihani-Bisharat S, Kraiem Z, Schenzer P, Korem S, Rabinovich Y (2003) Stimulation of Fos- and Jun-related genes during distraction osteogenesis. J Histochem Cytochem 51(9):1161–1168CrossRefPubMed
21.
Zurück zum Zitat Matsuda N, Morita N, Matsuda K, Watanabe M (1998) Proliferation and differentiation of human osteoblastic cells associated with differential activation of MAP kinases in response to epidermal growth factor, hypoxia, and mechanical stress in vitro. Biochem Biophys Res Commun 249(2):350–354CrossRefPubMed Matsuda N, Morita N, Matsuda K, Watanabe M (1998) Proliferation and differentiation of human osteoblastic cells associated with differential activation of MAP kinases in response to epidermal growth factor, hypoxia, and mechanical stress in vitro. Biochem Biophys Res Commun 249(2):350–354CrossRefPubMed
22.
Zurück zum Zitat Miles RR, Sluka JP, Halladay DL, Santerre RF, Hale LV, Bloem L, Patanjali SR, Galvin RJ, Ma L, Hock JM, Onyia JE (2002) Parathyroid hormone (hPTH 1-38) stimulates the expression of UBP41, an ubiquitin-specific protease, in bone. J Cell Biochem 85(2):229–242CrossRefPubMed Miles RR, Sluka JP, Halladay DL, Santerre RF, Hale LV, Bloem L, Patanjali SR, Galvin RJ, Ma L, Hock JM, Onyia JE (2002) Parathyroid hormone (hPTH 1-38) stimulates the expression of UBP41, an ubiquitin-specific protease, in bone. J Cell Biochem 85(2):229–242CrossRefPubMed
23.
Zurück zum Zitat Pouly D, Debonneville A, Ruffieux-Daidié D, Maillard M, Abriel H, Loffing J, Staub O (2013) Mice carrying ubiquitin-specific protease 2 (Usp2) gene inactivation maintain normal sodium balance and blood pressure. Am J Physiol Renal Physiol 305(1):F21–F30CrossRefPubMed Pouly D, Debonneville A, Ruffieux-Daidié D, Maillard M, Abriel H, Loffing J, Staub O (2013) Mice carrying ubiquitin-specific protease 2 (Usp2) gene inactivation maintain normal sodium balance and blood pressure. Am J Physiol Renal Physiol 305(1):F21–F30CrossRefPubMed
24.
Zurück zum Zitat Bedard N, Yang Y, Gregory M, Cyr DG, Suzuki J, Yu X, Chian RC, Hermo L, O’Flaherty C, Smith CE, Clarke HJ, Wing SS (2011) Mice lacking the USP2 deubiquitinating enzyme have severe male subfertility associated with defects in fertilization and sperm motility. Biol Reprod 85(3):594–604PubMedCentralCrossRefPubMed Bedard N, Yang Y, Gregory M, Cyr DG, Suzuki J, Yu X, Chian RC, Hermo L, O’Flaherty C, Smith CE, Clarke HJ, Wing SS (2011) Mice lacking the USP2 deubiquitinating enzyme have severe male subfertility associated with defects in fertilization and sperm motility. Biol Reprod 85(3):594–604PubMedCentralCrossRefPubMed
25.
Zurück zum Zitat Alonso V, Magyar CE, Wang B, Bisello A, Friedman PA (2011) Ubiquitination-deubiquitination balance dictates ligand-stimulated PTHR sorting. J Bone Miner Res 26(12):2923–2934PubMedCentralCrossRefPubMed Alonso V, Magyar CE, Wang B, Bisello A, Friedman PA (2011) Ubiquitination-deubiquitination balance dictates ligand-stimulated PTHR sorting. J Bone Miner Res 26(12):2923–2934PubMedCentralCrossRefPubMed
27.
Zurück zum Zitat Stevenson LF, Sparks A, Allende-Vega N, Xirodimas DP, Lane DP, Saville MK (2007) The deubiquitinating enzyme USP2a regulates the p53 pathway by targeting Mdm2. EMBO J 26(4):976–986PubMedCentralCrossRefPubMed Stevenson LF, Sparks A, Allende-Vega N, Xirodimas DP, Lane DP, Saville MK (2007) The deubiquitinating enzyme USP2a regulates the p53 pathway by targeting Mdm2. EMBO J 26(4):976–986PubMedCentralCrossRefPubMed
28.
Zurück zum Zitat Wang CL, Wang JY, Liu ZY, Ma XM, Wang XW, Jin H, Zhang XP, Fu D, Hou LJ, Lu YC (2014) Ubiquitin-specific protease 2a stabilizes MDM4 and facilitates the p53-mediated intrinsic apoptotic pathway in glioblastoma. Carcinogenesis 35(7):1500–1509CrossRefPubMed Wang CL, Wang JY, Liu ZY, Ma XM, Wang XW, Jin H, Zhang XP, Fu D, Hou LJ, Lu YC (2014) Ubiquitin-specific protease 2a stabilizes MDM4 and facilitates the p53-mediated intrinsic apoptotic pathway in glioblastoma. Carcinogenesis 35(7):1500–1509CrossRefPubMed
29.
Zurück zum Zitat Park KC, Kim JH, Choi EJ, Min SW, Rhee S, Baek SH, Chung SS, Bang O, Park D, Chiba T, Tanaka K, Chung CH (2002) Antagonistic regulation of myogenesis by two deubiquitinating enzymes, UBP45 and UBP69. Proc Natl Acad Sci USA 99(15):9733–9738PubMedCentralCrossRefPubMed Park KC, Kim JH, Choi EJ, Min SW, Rhee S, Baek SH, Chung SS, Bang O, Park D, Chiba T, Tanaka K, Chung CH (2002) Antagonistic regulation of myogenesis by two deubiquitinating enzymes, UBP45 and UBP69. Proc Natl Acad Sci USA 99(15):9733–9738PubMedCentralCrossRefPubMed
30.
Zurück zum Zitat Gousseva N, Baker RT (2003) Gene structure, alternate splicing, tissue distribution, cellular localization, and developmental expression pattern of mouse deubiquitinating enzyme isoforms Usp2-45 and Usp2-69. Gene Expr 11(3–4):163–179CrossRefPubMed Gousseva N, Baker RT (2003) Gene structure, alternate splicing, tissue distribution, cellular localization, and developmental expression pattern of mouse deubiquitinating enzyme isoforms Usp2-45 and Usp2-69. Gene Expr 11(3–4):163–179CrossRefPubMed
31.
Zurück zum Zitat Guo Y, Stacey DW, Hitomi M (2002) Post-transcriptional regulation of cyclin D1 expression during G2 phase. Oncogene 21(49):7545–7556CrossRefPubMed Guo Y, Stacey DW, Hitomi M (2002) Post-transcriptional regulation of cyclin D1 expression during G2 phase. Oncogene 21(49):7545–7556CrossRefPubMed
32.
Zurück zum Zitat Stacey DW (2003) Cyclin D1 serves as a cell cycle regulatory switch in actively proliferating cells. Curr Opin Cell Biol 15(2):158–163CrossRefPubMed Stacey DW (2003) Cyclin D1 serves as a cell cycle regulatory switch in actively proliferating cells. Curr Opin Cell Biol 15(2):158–163CrossRefPubMed
33.
Zurück zum Zitat Stacey DW, Hitomi M (2008) Cell cycle studies based upon quantitative image analysis. Cytometry A 73(4):270–278CrossRefPubMed Stacey DW, Hitomi M (2008) Cell cycle studies based upon quantitative image analysis. Cytometry A 73(4):270–278CrossRefPubMed
Metadaten
Titel
PTH-Induced Osteoblast Proliferation Requires Upregulation of the Ubiquitin-Specific Peptidase 2 (Usp2) Expression
verfasst von
Jumpei Shirakawa
Hiroyuki Harada
Masaki Noda
Yoichi Ezura
Publikationsdatum
01.03.2016
Verlag
Springer US
Erschienen in
Calcified Tissue International / Ausgabe 3/2016
Print ISSN: 0171-967X
Elektronische ISSN: 1432-0827
DOI
https://doi.org/10.1007/s00223-015-0083-5

Weitere Artikel der Ausgabe 3/2016

Calcified Tissue International 3/2016 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Notfall-TEP der Hüfte ist auch bei 90-Jährigen machbar

26.04.2024 Hüft-TEP Nachrichten

Ob bei einer Notfalloperation nach Schenkelhalsfraktur eine Hemiarthroplastik oder eine totale Endoprothese (TEP) eingebaut wird, sollte nicht allein vom Alter der Patientinnen und Patienten abhängen. Auch über 90-Jährige können von der TEP profitieren.

Niedriger diastolischer Blutdruck erhöht Risiko für schwere kardiovaskuläre Komplikationen

25.04.2024 Hypotonie Nachrichten

Wenn unter einer medikamentösen Hochdrucktherapie der diastolische Blutdruck in den Keller geht, steigt das Risiko für schwere kardiovaskuläre Ereignisse: Darauf deutet eine Sekundäranalyse der SPRINT-Studie hin.

Bei schweren Reaktionen auf Insektenstiche empfiehlt sich eine spezifische Immuntherapie

Insektenstiche sind bei Erwachsenen die häufigsten Auslöser einer Anaphylaxie. Einen wirksamen Schutz vor schweren anaphylaktischen Reaktionen bietet die allergenspezifische Immuntherapie. Jedoch kommt sie noch viel zu selten zum Einsatz.

Therapiestart mit Blutdrucksenkern erhöht Frakturrisiko

25.04.2024 Hypertonie Nachrichten

Beginnen ältere Männer im Pflegeheim eine Antihypertensiva-Therapie, dann ist die Frakturrate in den folgenden 30 Tagen mehr als verdoppelt. Besonders häufig stürzen Demenzkranke und Männer, die erstmals Blutdrucksenker nehmen. Dafür spricht eine Analyse unter US-Veteranen.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.