Skip to main content
Erschienen in: Urolithiasis 1/2012

01.02.2012 | Original Paper

The effect of intracrystalline and surface-bound osteopontin on the degradation and dissolution of calcium oxalate dihydrate crystals in MDCKII cells

verfasst von: Lauren A. Thurgood, Esben S. Sørensen, Rosemary L. Ryall

Erschienen in: Urolithiasis | Ausgabe 1/2012

Einloggen, um Zugang zu erhalten

Abstract

In vivo, urinary crystals are associated with proteins located within the mineral bulk as well as upon their surfaces. Proteins incarcerated within the mineral phase of retained crystals could act as a defence against urolithiasis by rendering them more vulnerable to destruction by intracellular and interstitial proteases. The aim of this study was to examine the effects of intracrystalline and surface-bound osteopontin (OPN) on the degradation and dissolution of urinary calcium oxalate dihydrate (COD) crystals in cultured Madin Darby canine kidney (MDCK) cells. [14C]-oxalate-labelled COD crystals with intracrystalline (IC), surface-bound (SB) and IC + SB OPN, were generated from ultrafiltered (UF) urine containing 0, 1 and 5 mg/L human milk OPN and incubated with MDCKII cells, using UF urine as the binding medium. Crystal size and degradation were assessed using field emission scanning electron microscopy (FESEM) and dissolution was quantified by the release of radioactivity into the culture medium. Crystal size decreased directly with OPN concentration. FESEM examination indicated that crystals covered with SB OPN were more resistant to cellular degradation than those containing IC OPN, whose degree of disruption appeared to be related to OPN concentration. Whether bound to the crystal surface or incarcerated within the mineral interior, OPN inhibited crystal dissolution in direct proportion to its concentration. Under physiological conditions OPN may routinely protect against stone formation by inhibiting the growth of COD crystals, which would encourage their excretion in urine and thereby perhaps partly explain why, compared with calcium oxalate monohydrate crystals, COD crystals are more prevalent in urine, but less common in kidney stones.
Literatur
1.
Zurück zum Zitat Vervaet BA, Verhulst A, D’Haese PC, De Broe ME (2009) Nephrocalcinosis: new insights into mechanisms and consequences. Nephrol Dial Transpl 24:2030–2035CrossRef Vervaet BA, Verhulst A, D’Haese PC, De Broe ME (2009) Nephrocalcinosis: new insights into mechanisms and consequences. Nephrol Dial Transpl 24:2030–2035CrossRef
2.
Zurück zum Zitat Coe FL, Evan AP, Worcester EM, Lingeman JE (2010) Three pathways for human kidney stone formation. Urol Res 38:147–160PubMedCrossRef Coe FL, Evan AP, Worcester EM, Lingeman JE (2010) Three pathways for human kidney stone formation. Urol Res 38:147–160PubMedCrossRef
3.
Zurück zum Zitat Khan SR (1995) Experimental calcium oxalate nephrolithiasis and the formation of human urinary stones. Scan Microsc Int 9:89–101 Khan SR (1995) Experimental calcium oxalate nephrolithiasis and the formation of human urinary stones. Scan Microsc Int 9:89–101
4.
Zurück zum Zitat Evan AP, Coe FL, Rittling SR, Bledsoe SB, Shao Y, Lingeman JE, Worcester EM (2005) Apatite plaque particles in inner medulla of kidneys of calcium oxalate stone formers: osteopontin localization. Kidney Int 68:145–154PubMedCrossRef Evan AP, Coe FL, Rittling SR, Bledsoe SB, Shao Y, Lingeman JE, Worcester EM (2005) Apatite plaque particles in inner medulla of kidneys of calcium oxalate stone formers: osteopontin localization. Kidney Int 68:145–154PubMedCrossRef
5.
Zurück zum Zitat Evan AP, Lingeman JE, Worcester EM, Bledsoe SB, Sommer AJ, Williams JC, Krambeck AE, Philips CL, Coe FL (2010) Renal histopathology and crystal deposits in patients with small bowel resection and calcium oxalate stone disease. Kidney Int 78:310–317PubMedCrossRef Evan AP, Lingeman JE, Worcester EM, Bledsoe SB, Sommer AJ, Williams JC, Krambeck AE, Philips CL, Coe FL (2010) Renal histopathology and crystal deposits in patients with small bowel resection and calcium oxalate stone disease. Kidney Int 78:310–317PubMedCrossRef
6.
Zurück zum Zitat Evan AP, Coe FL, Gillen D, Lingeman JE, Bledsoe S, Worcester EM (2008) Renal intratubular crystals and hyaluronan staining occur in stone formers with bypass surgery but not with idiopathic CaOx stones. Anat Rec 291:325–334CrossRef Evan AP, Coe FL, Gillen D, Lingeman JE, Bledsoe S, Worcester EM (2008) Renal intratubular crystals and hyaluronan staining occur in stone formers with bypass surgery but not with idiopathic CaOx stones. Anat Rec 291:325–334CrossRef
7.
Zurück zum Zitat Verhulst A, Asselman M, De Naeyer S, Vervaet BA, Mengel M, Gwinner W, D’Haese PC, Verkoelen CF, De Broe ME (2005) Preconditioning of the distal tubular epithelium of the human kidney precedes nephrocalcinosis. Kidney Int 68:1643–1647PubMedCrossRef Verhulst A, Asselman M, De Naeyer S, Vervaet BA, Mengel M, Gwinner W, D’Haese PC, Verkoelen CF, De Broe ME (2005) Preconditioning of the distal tubular epithelium of the human kidney precedes nephrocalcinosis. Kidney Int 68:1643–1647PubMedCrossRef
8.
Zurück zum Zitat Vervaet BA, Verhulst A, Dauwe SE, De Broe ME, D’Haese PC (2009) An active renal crystal clearance mechanism in rat and man. Kidney Int 75:41–51PubMedCrossRef Vervaet BA, Verhulst A, Dauwe SE, De Broe ME, D’Haese PC (2009) An active renal crystal clearance mechanism in rat and man. Kidney Int 75:41–51PubMedCrossRef
9.
Zurück zum Zitat Evan AP, Lingeman JE, Coe FL, Parks JH, Bledsoe SB, Shao Y, Sommers AJ, Paterson RF, Kuo RL, Grynpas M (2003) Randall’s plaque of patients with nephrolithiasis begins in basement membranes of thin loops of Henle. J Clin Invest 111:607–616PubMed Evan AP, Lingeman JE, Coe FL, Parks JH, Bledsoe SB, Shao Y, Sommers AJ, Paterson RF, Kuo RL, Grynpas M (2003) Randall’s plaque of patients with nephrolithiasis begins in basement membranes of thin loops of Henle. J Clin Invest 111:607–616PubMed
10.
Zurück zum Zitat Beer E (1904) Lime deposits especially the so-called “kalkmetastasen”, in the kidney. J Pathol Bacteriol 9:225–233CrossRef Beer E (1904) Lime deposits especially the so-called “kalkmetastasen”, in the kidney. J Pathol Bacteriol 9:225–233CrossRef
11.
Zurück zum Zitat Stout HA, Akin RH, Morton E (1955) Nephrocalcinosis in routine necropsies: its relationship to stone formation. J Urol 74:8–22PubMed Stout HA, Akin RH, Morton E (1955) Nephrocalcinosis in routine necropsies: its relationship to stone formation. J Urol 74:8–22PubMed
12.
Zurück zum Zitat Bennington JL, Haber SL, Smith JV, Warner NE (1964) Crystals of calcium oxalate in the human kidney. Am J Clin Pathol 41:8–14PubMed Bennington JL, Haber SL, Smith JV, Warner NE (1964) Crystals of calcium oxalate in the human kidney. Am J Clin Pathol 41:8–14PubMed
13.
Zurück zum Zitat Ebisuno S, Kohjimoto Y, Tamura M, Inagaki T, Ohkawa T (1997) Histological observations of the adhesion and endocytosis of calcium oxalate crystals in MDCK cells and in rat and human kidney. Urol Int 58:227–231PubMedCrossRef Ebisuno S, Kohjimoto Y, Tamura M, Inagaki T, Ohkawa T (1997) Histological observations of the adhesion and endocytosis of calcium oxalate crystals in MDCK cells and in rat and human kidney. Urol Int 58:227–231PubMedCrossRef
14.
Zurück zum Zitat Vervaet BA, D’Haese PC, De Broe ME, Verhulst A (2009) Crystalluric and tubular epithelial parameters during the onset of intratubular nephrocalcinosis: illustration of the ‘fixed particle’ theory in vivo. Nephrol Dial Transpl 24:3659–3668CrossRef Vervaet BA, D’Haese PC, De Broe ME, Verhulst A (2009) Crystalluric and tubular epithelial parameters during the onset of intratubular nephrocalcinosis: illustration of the ‘fixed particle’ theory in vivo. Nephrol Dial Transpl 24:3659–3668CrossRef
15.
Zurück zum Zitat Kumar V, Farell G, Yu S, Harrington S, Fitzpatrick L, Rzewuska E, Miller VM, Lieske JC (2006) Cell biology of pathologic renal calcification: contribution of crystal transcytosis, cell-mediated calcification, and nanoparticles. J Invest Med 54:412–424CrossRef Kumar V, Farell G, Yu S, Harrington S, Fitzpatrick L, Rzewuska E, Miller VM, Lieske JC (2006) Cell biology of pathologic renal calcification: contribution of crystal transcytosis, cell-mediated calcification, and nanoparticles. J Invest Med 54:412–424CrossRef
16.
Zurück zum Zitat Ryall RL (2011) The possible roles of inhibitors, promoters and macromolecules in the formation of calcium kidney stones. In: Rao N, Kavanagh JP, Preminger G (eds) Urinary tract stone disease. Springer, London, pp 31–60 Ryall RL (2011) The possible roles of inhibitors, promoters and macromolecules in the formation of calcium kidney stones. In: Rao N, Kavanagh JP, Preminger G (eds) Urinary tract stone disease. Springer, London, pp 31–60
17.
18.
Zurück zum Zitat Ryall RL (2004) Macromolecules and urolithiasis: parallels and paradoxes. Nephron Physiol 98:37–42CrossRef Ryall RL (2004) Macromolecules and urolithiasis: parallels and paradoxes. Nephron Physiol 98:37–42CrossRef
19.
Zurück zum Zitat Kumar V, Yu S, Farell G, Toback FG, Lieske JC (2004) Renal epithelial cells constitutively produce a protein that blocks adhesion of crystals to their surface. Am J Physiol Renal Physiol 287:F373–F383PubMedCrossRef Kumar V, Yu S, Farell G, Toback FG, Lieske JC (2004) Renal epithelial cells constitutively produce a protein that blocks adhesion of crystals to their surface. Am J Physiol Renal Physiol 287:F373–F383PubMedCrossRef
20.
Zurück zum Zitat Lieske JC, Leonard R, Toback FG (1995) Adhesion of calcium oxalate monohydrate crystals to renal epithelial cells is inhibited by specific anions. Am J Physiol Renal Physiol 268:F604–F612 Lieske JC, Leonard R, Toback FG (1995) Adhesion of calcium oxalate monohydrate crystals to renal epithelial cells is inhibited by specific anions. Am J Physiol Renal Physiol 268:F604–F612
21.
Zurück zum Zitat Kohjimoto Y, Ebisuno S, Tamura M, Ohkawa T (1996) Adhesion and endocytosis of calcium oxalate crystals on renal tubular cells. Scanning Microsc 10:459–470PubMed Kohjimoto Y, Ebisuno S, Tamura M, Ohkawa T (1996) Adhesion and endocytosis of calcium oxalate crystals on renal tubular cells. Scanning Microsc 10:459–470PubMed
22.
Zurück zum Zitat Lieske JC, Toback FG (1993) Regulation of renal epithelial cell endocytosis of calcium oxalate monohydrate crystals. Am J Physiol Renal Physiol 264:F800–F807 Lieske JC, Toback FG (1993) Regulation of renal epithelial cell endocytosis of calcium oxalate monohydrate crystals. Am J Physiol Renal Physiol 264:F800–F807
23.
Zurück zum Zitat Tsujihata M, Yoshimura K, Tsujikawa K, Tei N, Okuyama A (2006) Fibronectin inhibits endocytosis of calcium oxalate crystals by renal tubular cells. Int J Urol 13:743–746PubMedCrossRef Tsujihata M, Yoshimura K, Tsujikawa K, Tei N, Okuyama A (2006) Fibronectin inhibits endocytosis of calcium oxalate crystals by renal tubular cells. Int J Urol 13:743–746PubMedCrossRef
24.
Zurück zum Zitat Ebisuno S, Nishihata M, Inagaki T, Umehara M, Kohjimoto Y (1999) Bikunin prevents adhesion of calcium oxalate crystal to renal tubular cells in human urine. J Am Soc Nephrol 10(Suppl 14):S436–S440PubMed Ebisuno S, Nishihata M, Inagaki T, Umehara M, Kohjimoto Y (1999) Bikunin prevents adhesion of calcium oxalate crystal to renal tubular cells in human urine. J Am Soc Nephrol 10(Suppl 14):S436–S440PubMed
25.
Zurück zum Zitat Tei N, Tsujihata M, Tsujikawa K, Yoshimura K, Nonomura N, Okuyama A (2006) Hepatocyte growth factor has protective effects on crystal–cell interactions and crystal deposits. Urology 67:864–869PubMedCrossRef Tei N, Tsujihata M, Tsujikawa K, Yoshimura K, Nonomura N, Okuyama A (2006) Hepatocyte growth factor has protective effects on crystal–cell interactions and crystal deposits. Urology 67:864–869PubMedCrossRef
26.
Zurück zum Zitat Verkoelen CF, Van Der Boom BG, Romijn JC (2000) Identification of hyaluronan as a crystal-binding molecule at the surface of migrating and proliferating MDCK cells. Kidney Int 58:1045–1054PubMedCrossRef Verkoelen CF, Van Der Boom BG, Romijn JC (2000) Identification of hyaluronan as a crystal-binding molecule at the surface of migrating and proliferating MDCK cells. Kidney Int 58:1045–1054PubMedCrossRef
27.
Zurück zum Zitat Verkoelen CF, van der Boom BG, Houtsmuller AB, Schröder FH, Romijn JC (1998) Increased calcium oxalate monohydrate crystal binding to injured renal tubular epithelial cells in culture. Am J Physiol 274:F958–F965PubMed Verkoelen CF, van der Boom BG, Houtsmuller AB, Schröder FH, Romijn JC (1998) Increased calcium oxalate monohydrate crystal binding to injured renal tubular epithelial cells in culture. Am J Physiol 274:F958–F965PubMed
28.
Zurück zum Zitat Verhulst A, Asselman M, Persy VP, Schepers MS, Helbert MF, Verkoelen CF, De Broe ME (2003) Crystal retention capacity of cells in the human nephron: involvement of CD44 and its ligands hyaluronic acid and osteopontin in the transition of a crystal binding- into a non-adherent epithelium. J Am Soc Nephrol 14:107–114PubMedCrossRef Verhulst A, Asselman M, Persy VP, Schepers MS, Helbert MF, Verkoelen CF, De Broe ME (2003) Crystal retention capacity of cells in the human nephron: involvement of CD44 and its ligands hyaluronic acid and osteopontin in the transition of a crystal binding- into a non-adherent epithelium. J Am Soc Nephrol 14:107–114PubMedCrossRef
29.
Zurück zum Zitat Asselman M, Verhulst A, De Broe ME, Verkoelen CF (2003) Calcium oxalate crystal adherence to hyaluronan-, osteopontin-, and CD44-expressing injured/regenerating tubular epithelial cells in rat kidneys. J Am Soc Nephrol 14:3155–3166PubMedCrossRef Asselman M, Verhulst A, De Broe ME, Verkoelen CF (2003) Calcium oxalate crystal adherence to hyaluronan-, osteopontin-, and CD44-expressing injured/regenerating tubular epithelial cells in rat kidneys. J Am Soc Nephrol 14:3155–3166PubMedCrossRef
30.
Zurück zum Zitat Yamate T, Kohri K, Umekawa T, Amasaki N, Amasaki N, Isikawa Y, Iguchi M, Kurita T (1996) The effect of osteopontin on the adhesion of calcium oxalate crystals to Madin–Darby canine kidney cells. Eur Urol 30:388–393PubMed Yamate T, Kohri K, Umekawa T, Amasaki N, Amasaki N, Isikawa Y, Iguchi M, Kurita T (1996) The effect of osteopontin on the adhesion of calcium oxalate crystals to Madin–Darby canine kidney cells. Eur Urol 30:388–393PubMed
31.
Zurück zum Zitat Yamate T, Kohri K, Umekawa T, Iguchi M, Kurita T (1998) Osteopontin antisense oligonucleotide inhibits adhesion of calcium oxalate crystals in Madin–Darby canine kidney cell. J Urol 160:1506–1512PubMedCrossRef Yamate T, Kohri K, Umekawa T, Iguchi M, Kurita T (1998) Osteopontin antisense oligonucleotide inhibits adhesion of calcium oxalate crystals in Madin–Darby canine kidney cell. J Urol 160:1506–1512PubMedCrossRef
32.
Zurück zum Zitat Yamate T, Kohri K, Umekawa T, Konya E, Ishikawa Y, Iguchi M, Kurita T (1999) Interaction between osteopontin on Madin Darby canine kidney cell membrane and calcium oxalate crystal. Urol Int 62:81–86PubMedCrossRef Yamate T, Kohri K, Umekawa T, Konya E, Ishikawa Y, Iguchi M, Kurita T (1999) Interaction between osteopontin on Madin Darby canine kidney cell membrane and calcium oxalate crystal. Urol Int 62:81–86PubMedCrossRef
33.
Zurück zum Zitat Sorokina EA, Wesson JA, Kleinman JG (2004) An acidic peptide sequence of nucleolin-related protein can mediate the attachment of calcium oxalate to renal tubule cells. J Am Soc Nephrol 15:2057–2065PubMedCrossRef Sorokina EA, Wesson JA, Kleinman JG (2004) An acidic peptide sequence of nucleolin-related protein can mediate the attachment of calcium oxalate to renal tubule cells. J Am Soc Nephrol 15:2057–2065PubMedCrossRef
34.
Zurück zum Zitat Kumar V, Farell G, Deganello S, Lieske JC (2003) Annexin II is present on renal epithelial cells and binds calcium oxalate monohydrate crystals. J Am Soc Nephrol 14:289–297PubMedCrossRef Kumar V, Farell G, Deganello S, Lieske JC (2003) Annexin II is present on renal epithelial cells and binds calcium oxalate monohydrate crystals. J Am Soc Nephrol 14:289–297PubMedCrossRef
35.
Zurück zum Zitat Kohri K, Kodama M, Ishikawa Y, Katayama Y, Matsuda H, Imanishi M, Takada M, Katoh Y, Kataoka K, Akiyama T (1991) Immunofluorescent study on the interaction between collagen and calcium oxalate crystals in the renal tubules. Eur Urol 19:249–252PubMed Kohri K, Kodama M, Ishikawa Y, Katayama Y, Matsuda H, Imanishi M, Takada M, Katoh Y, Kataoka K, Akiyama T (1991) Immunofluorescent study on the interaction between collagen and calcium oxalate crystals in the renal tubules. Eur Urol 19:249–252PubMed
36.
Zurück zum Zitat Asselman M, Verkoelen CF (2002) Crystal-cell interaction in the pathogenesis of kidney stone disease. Curr Opin Urol 12:271–276PubMedCrossRef Asselman M, Verkoelen CF (2002) Crystal-cell interaction in the pathogenesis of kidney stone disease. Curr Opin Urol 12:271–276PubMedCrossRef
37.
Zurück zum Zitat Kramer G, Steiner GE, Prinz-Kashani M, Bursa B, Marberger M (2003) Cell-surface matrix proteins and sialic acids in cell–crystal adhesion; the effect of crystal binding on the viability of human CAKI-1 renal epithelial cells. Br J Urol 91:554–559CrossRef Kramer G, Steiner GE, Prinz-Kashani M, Bursa B, Marberger M (2003) Cell-surface matrix proteins and sialic acids in cell–crystal adhesion; the effect of crystal binding on the viability of human CAKI-1 renal epithelial cells. Br J Urol 91:554–559CrossRef
38.
Zurück zum Zitat de Bruijn WC, Boevé ER, van Run PR, van Miert PP, de Water R, Romijn JC, Verkoelen CF, Cao LC, Schröder FH (1995) Etiology of calcium oxalate nephrolithiasis in rats. I. Can this be a model for human stone formation? Scanning Microsc 9:103–114PubMed de Bruijn WC, Boevé ER, van Run PR, van Miert PP, de Water R, Romijn JC, Verkoelen CF, Cao LC, Schröder FH (1995) Etiology of calcium oxalate nephrolithiasis in rats. I. Can this be a model for human stone formation? Scanning Microsc 9:103–114PubMed
39.
Zurück zum Zitat de Bruijn WC, Boevé ER, van Run PR, van Miert PP, Romijn JC, Verkoelen CF, Cao LC, Schröder FH (1994) Etiology of experimental cacluium oxalate monohydrate nephrolithiasis in rats. Scanning Microsc 8:541–549PubMed de Bruijn WC, Boevé ER, van Run PR, van Miert PP, Romijn JC, Verkoelen CF, Cao LC, Schröder FH (1994) Etiology of experimental cacluium oxalate monohydrate nephrolithiasis in rats. Scanning Microsc 8:541–549PubMed
40.
Zurück zum Zitat de Water R, Noordermeer C, Houtsmuller AB, Nigg AL, Stijnen T, Schröder FH, Kok DJ (2000) The role of macrophages in nephrolithiasis in rats: an analysis of the renal interstitium. Am J Kidney Dis 36:615–625PubMedCrossRef de Water R, Noordermeer C, Houtsmuller AB, Nigg AL, Stijnen T, Schröder FH, Kok DJ (2000) The role of macrophages in nephrolithiasis in rats: an analysis of the renal interstitium. Am J Kidney Dis 36:615–625PubMedCrossRef
41.
Zurück zum Zitat de Water R, Leenen PJ, Noordermeer C, Nigg AL, Houtsmuller AB, Kok DJ, Schröder FH (2001) Cytokine production induced by binding and processing of calcium oxalate crystals in cultured macrophages. Am J Kidney Dis 38:331–338PubMedCrossRef de Water R, Leenen PJ, Noordermeer C, Nigg AL, Houtsmuller AB, Kok DJ, Schröder FH (2001) Cytokine production induced by binding and processing of calcium oxalate crystals in cultured macrophages. Am J Kidney Dis 38:331–338PubMedCrossRef
42.
Zurück zum Zitat de Water R, Nordermeer C, van der Kwast TH, Nizze H, Boevé ER, Kok DJ, Schröder FH (1999) Calcium oxalate nephrolithiasis: effect of renal crystal deposition on the cellular composition of the renal interstitium. Am J Kidney Dis 33:761–771PubMedCrossRef de Water R, Nordermeer C, van der Kwast TH, Nizze H, Boevé ER, Kok DJ, Schröder FH (1999) Calcium oxalate nephrolithiasis: effect of renal crystal deposition on the cellular composition of the renal interstitium. Am J Kidney Dis 33:761–771PubMedCrossRef
43.
Zurück zum Zitat Schepers MS, Duim RA, Asselman M, Romijn JC, Schröder FH, Verkoelen CF (2003) Internalization of calcium oxalate crystals by renal tubular cells: a nephron segment-specific process? Kidney Int 64:493–500PubMedCrossRef Schepers MS, Duim RA, Asselman M, Romijn JC, Schröder FH, Verkoelen CF (2003) Internalization of calcium oxalate crystals by renal tubular cells: a nephron segment-specific process? Kidney Int 64:493–500PubMedCrossRef
44.
Zurück zum Zitat Chauvet MC, Ryall RL (2005) Intracrystalline proteins and calcium oxalate crystal degradation in MDCK II cells. J Struct Biol 151:12–17PubMedCrossRef Chauvet MC, Ryall RL (2005) Intracrystalline proteins and calcium oxalate crystal degradation in MDCK II cells. J Struct Biol 151:12–17PubMedCrossRef
45.
Zurück zum Zitat Grover PK, Thurgood LA, Fleming DE, van Bronswijk W, Wang T, Ryall RL (2008) Intracrystalline urinary proteins facilitate degradation and dissolution of calcium oxalate crystals in cultured renal cells. Am J Physiol Renal Physiol 294:F355–F361PubMedCrossRef Grover PK, Thurgood LA, Fleming DE, van Bronswijk W, Wang T, Ryall RL (2008) Intracrystalline urinary proteins facilitate degradation and dissolution of calcium oxalate crystals in cultured renal cells. Am J Physiol Renal Physiol 294:F355–F361PubMedCrossRef
46.
Zurück zum Zitat Lieske JC, Swift H, Martin T, Patterson B, Toback FG (1994) Renal epithelial cells rapidly bind and internalize calcium oxalate monohydrate crystals. Proc Natl Acad Sci 91:6987–6991PubMedCrossRef Lieske JC, Swift H, Martin T, Patterson B, Toback FG (1994) Renal epithelial cells rapidly bind and internalize calcium oxalate monohydrate crystals. Proc Natl Acad Sci 91:6987–6991PubMedCrossRef
47.
Zurück zum Zitat Lieske JC, Norris R, Swift H, Toback FG (1997) Adhesion, internalization and metabolism of calcium oxalate monohydrate crystals by renal epithelial cells. Kidney Int 52:1291–1301PubMedCrossRef Lieske JC, Norris R, Swift H, Toback FG (1997) Adhesion, internalization and metabolism of calcium oxalate monohydrate crystals by renal epithelial cells. Kidney Int 52:1291–1301PubMedCrossRef
48.
Zurück zum Zitat Lieske JC, Deganello S, Toback FG (1999) Cell-crystal interactions and kidney stone formation. Nephron 81:8–17PubMedCrossRef Lieske JC, Deganello S, Toback FG (1999) Cell-crystal interactions and kidney stone formation. Nephron 81:8–17PubMedCrossRef
49.
Zurück zum Zitat Lieske JC, Walsh‐Reitz MM, Toback FG (1992) Calcium oxalate monohydrate crystals are endocytosed by renal epithelial cells and induce proliferation. Am J Physiol 262:F622–F630 Lieske JC, Walsh‐Reitz MM, Toback FG (1992) Calcium oxalate monohydrate crystals are endocytosed by renal epithelial cells and induce proliferation. Am J Physiol 262:F622–F630
50.
Zurück zum Zitat Lieske JC, Toback FG, Deganello S (1998) Direct nucleation of calcium oxalate dihydrate crystals onto the surface of living renal epithelial cells in culture. Kidney Int 54:796–803PubMedCrossRef Lieske JC, Toback FG, Deganello S (1998) Direct nucleation of calcium oxalate dihydrate crystals onto the surface of living renal epithelial cells in culture. Kidney Int 54:796–803PubMedCrossRef
51.
Zurück zum Zitat Ryall RL, Fleming DE, Grover PK, Chauvet M, Dean CJ, Marshall VR (2000) The hole truth: intracrystalline proteins and calcium oxalate kidney stones. Mol Urol 4:391–402PubMed Ryall RL, Fleming DE, Grover PK, Chauvet M, Dean CJ, Marshall VR (2000) The hole truth: intracrystalline proteins and calcium oxalate kidney stones. Mol Urol 4:391–402PubMed
52.
Zurück zum Zitat Ryall RL, Fleming DE, Doyle IR, Evans NA, Dean CJ, Marshall VR (2001) Intracrystalline proteins and the hidden ultrastructure of calcium oxalate urinary crystals: implications for kidney stone formation. J Struct Biol 134:5–14CrossRef Ryall RL, Fleming DE, Doyle IR, Evans NA, Dean CJ, Marshall VR (2001) Intracrystalline proteins and the hidden ultrastructure of calcium oxalate urinary crystals: implications for kidney stone formation. J Struct Biol 134:5–14CrossRef
53.
Zurück zum Zitat Ryall RL, Chauvet MC, Grover PK (2005) Intracrystalline proteins and urolithiasis: a comparison of the protein content and ultrastructure of urinary calcium oxalate monohydrate and dihydrate crystals. Br J Urol 96:654–663CrossRef Ryall RL, Chauvet MC, Grover PK (2005) Intracrystalline proteins and urolithiasis: a comparison of the protein content and ultrastructure of urinary calcium oxalate monohydrate and dihydrate crystals. Br J Urol 96:654–663CrossRef
54.
Zurück zum Zitat Fleming DE, van Riessen A, Chauvet MC, Grover PK, Hunter B, van Bronswijk W, Ryall RL (2003) Intracrystalline proteins and urolithiasis: a synchrotron X-ray diffraction study of calcium oxalate monohydrate. J Bone Min Res 18:1282–1291CrossRef Fleming DE, van Riessen A, Chauvet MC, Grover PK, Hunter B, van Bronswijk W, Ryall RL (2003) Intracrystalline proteins and urolithiasis: a synchrotron X-ray diffraction study of calcium oxalate monohydrate. J Bone Min Res 18:1282–1291CrossRef
55.
Zurück zum Zitat Wang T, Thurgood LA, Grover PK, Ryall RL (2010) A comparison of the binding of urinary calcium oxalate monohydrate and dihydrate crystals to human kidney cells in urine. Br J Urol Int 106:1768–1774CrossRef Wang T, Thurgood LA, Grover PK, Ryall RL (2010) A comparison of the binding of urinary calcium oxalate monohydrate and dihydrate crystals to human kidney cells in urine. Br J Urol Int 106:1768–1774CrossRef
56.
Zurück zum Zitat Lieske JC, Deganello S (1999) Nucleation, adhesion and internalization of calcium-containing urinary crystals by renal cells. J Am Nephrol Soc 10:S422–S429 Lieske JC, Deganello S (1999) Nucleation, adhesion and internalization of calcium-containing urinary crystals by renal cells. J Am Nephrol Soc 10:S422–S429
57.
Zurück zum Zitat Semangoen T, Sinchaikul S, Chen ST, Thongboonkerd V (2008) Altered proteins in MDCK renal tubular cells in response to calcium oxalate dihydrate crystal adhesion: a proteomics approach. J Proteome Res 7:2889–2896PubMedCrossRef Semangoen T, Sinchaikul S, Chen ST, Thongboonkerd V (2008) Altered proteins in MDCK renal tubular cells in response to calcium oxalate dihydrate crystal adhesion: a proteomics approach. J Proteome Res 7:2889–2896PubMedCrossRef
58.
Zurück zum Zitat Webber D, Chauvet MC, Ryall RL (2005) Proteolysis and partial dissolution of calcium oxalate: a comparative, morphological study of urinary crystals from black and white subjects. Urol Res 33:273–284PubMedCrossRef Webber D, Chauvet MC, Ryall RL (2005) Proteolysis and partial dissolution of calcium oxalate: a comparative, morphological study of urinary crystals from black and white subjects. Urol Res 33:273–284PubMedCrossRef
59.
Zurück zum Zitat Chien YC, Masica DL, Gray JJ, Nguyen S, Vali H, McKee MD (2009) Modulation of calcium oxalate dihydrate growth by selective crystal-face binding of phosphorylated osteopontin and poly-aspartate peptide showing occlusion by sectoral (compositional) zoning. J Biol Chem 284:23491–23501PubMedCrossRef Chien YC, Masica DL, Gray JJ, Nguyen S, Vali H, McKee MD (2009) Modulation of calcium oxalate dihydrate growth by selective crystal-face binding of phosphorylated osteopontin and poly-aspartate peptide showing occlusion by sectoral (compositional) zoning. J Biol Chem 284:23491–23501PubMedCrossRef
60.
Zurück zum Zitat Thurgood LA, Cook AF, Sørensen ES, Ryall RL (2010) Face-specific incorporation of osteopontin into urinary and inorganic calcium oxalate monohydrate and dihydrate crystals. Urol Res 38:357–376PubMedCrossRef Thurgood LA, Cook AF, Sørensen ES, Ryall RL (2010) Face-specific incorporation of osteopontin into urinary and inorganic calcium oxalate monohydrate and dihydrate crystals. Urol Res 38:357–376PubMedCrossRef
61.
Zurück zum Zitat Thurgood LA, Wang T, Chataway TK, Ryall RL (2010) Comparison of the specific incorporation of intracrystalline proteins into urinary calcium oxalate monohydrate and dihydrate crystals. J Proteome Res 9:4745–4757PubMedCrossRef Thurgood LA, Wang T, Chataway TK, Ryall RL (2010) Comparison of the specific incorporation of intracrystalline proteins into urinary calcium oxalate monohydrate and dihydrate crystals. J Proteome Res 9:4745–4757PubMedCrossRef
62.
Zurück zum Zitat Shiraga H, Min W, VanDusen WJ, Clayman MD, Miner D, Terrell CH, Sherbotie JR, Foreman JW, Przysiecki C, Neilson EG, Hoyer JR (1992) Inhibition of calcium oxalate crystal growth in vitro by uropontin: another member of the aspartic acid-rich protein superfamily. PNAS 89:426–430PubMedCrossRef Shiraga H, Min W, VanDusen WJ, Clayman MD, Miner D, Terrell CH, Sherbotie JR, Foreman JW, Przysiecki C, Neilson EG, Hoyer JR (1992) Inhibition of calcium oxalate crystal growth in vitro by uropontin: another member of the aspartic acid-rich protein superfamily. PNAS 89:426–430PubMedCrossRef
63.
Zurück zum Zitat Asplin JR, Arsenault D, Parks JH, Coe FL, Hoyer JR (1998) Contribution of uropontin to inhibition of calcium oxalate crystallization. Kidney Int 53:194–199PubMedCrossRef Asplin JR, Arsenault D, Parks JH, Coe FL, Hoyer JR (1998) Contribution of uropontin to inhibition of calcium oxalate crystallization. Kidney Int 53:194–199PubMedCrossRef
64.
Zurück zum Zitat Nishio S, Hatanaka M, Takeda H, Aoki K, Iseda T, Iwata H, Yokoyama M (2001) Calcium phosphate crystal-associated proteins: alpha-2-HS-glycoprotein, prothrombin fragment 1 and osteopontin. Int J Urol 8:S58–S62PubMedCrossRef Nishio S, Hatanaka M, Takeda H, Aoki K, Iseda T, Iwata H, Yokoyama M (2001) Calcium phosphate crystal-associated proteins: alpha-2-HS-glycoprotein, prothrombin fragment 1 and osteopontin. Int J Urol 8:S58–S62PubMedCrossRef
65.
Zurück zum Zitat Thurgood LA, Sorensen ES, Ryall RL (2011) The effect of intracrystalline and surface-bound osteopontin on the attachment of calcium oxalate dihydrate crystals to MDCKII cells in ultrafiltered human urine. Br J Urol (in press) Thurgood LA, Sorensen ES, Ryall RL (2011) The effect of intracrystalline and surface-bound osteopontin on the attachment of calcium oxalate dihydrate crystals to MDCKII cells in ultrafiltered human urine. Br J Urol (in press)
66.
Zurück zum Zitat Kleinman JG, Wesson JA, Hughes J (2004) Osteopontin and calcium stone formation. Nephron Physiol 98:43–47CrossRef Kleinman JG, Wesson JA, Hughes J (2004) Osteopontin and calcium stone formation. Nephron Physiol 98:43–47CrossRef
67.
Zurück zum Zitat Okada A, Nomura S, Saeki Y, Higashibata Y, Hamamoto S, Hirose M, Itoh Y, Yasui T, Tozawa K, Kohri K (2008) Morphological conversion of calcium oxalate crystals into stones is regulated by osteopontin in mouse kidney. J Bone Miner Res 23:1629–1637PubMedCrossRef Okada A, Nomura S, Saeki Y, Higashibata Y, Hamamoto S, Hirose M, Itoh Y, Yasui T, Tozawa K, Kohri K (2008) Morphological conversion of calcium oxalate crystals into stones is regulated by osteopontin in mouse kidney. J Bone Miner Res 23:1629–1637PubMedCrossRef
68.
Zurück zum Zitat Hamamoto S, Nomura S, Yasui T, Okada A, Hirose M, Shimizu H, Itoh Y, Tozawa K, Kohri K (2010) Effects of impaired functional domains of osteopontin on renal crystal formation: analyses of OPN-transgenic and OPN-knockout mice. J Bone Miner Res 25:2436–2447 Hamamoto S, Nomura S, Yasui T, Okada A, Hirose M, Shimizu H, Itoh Y, Tozawa K, Kohri K (2010) Effects of impaired functional domains of osteopontin on renal crystal formation: analyses of OPN-transgenic and OPN-knockout mice. J Bone Miner Res 25:2436–2447
69.
Zurück zum Zitat Senger DR, Perruzzi CA, Papadopoulos A, Tenen DG (1989) Purification of a human milk protein closely similar to tumor-secreted phosphoproteins and osteopontin. Biochim Biophys Acta 996:43–48PubMedCrossRef Senger DR, Perruzzi CA, Papadopoulos A, Tenen DG (1989) Purification of a human milk protein closely similar to tumor-secreted phosphoproteins and osteopontin. Biochim Biophys Acta 996:43–48PubMedCrossRef
70.
Zurück zum Zitat Christensen B, Nielsen MS, Haselmann KF, Petersen TE, Sørensen ES (2005) Post-translationally modified residues of native human osteopontin are located in clusters: identification of 36 phosphorylation and five O-glycosylation sites and their biological implications. Biochem J 390:285–292PubMedCrossRef Christensen B, Nielsen MS, Haselmann KF, Petersen TE, Sørensen ES (2005) Post-translationally modified residues of native human osteopontin are located in clusters: identification of 36 phosphorylation and five O-glycosylation sites and their biological implications. Biochem J 390:285–292PubMedCrossRef
71.
Zurück zum Zitat Bautista DS, Denstedt JM, Chamber AF, Harris JF (1996) Low-molecular-weight variants of osteopontin generated by serine proteinases in urine of patients with kidney stones. J Cell Biochem 61:402–409PubMedCrossRef Bautista DS, Denstedt JM, Chamber AF, Harris JF (1996) Low-molecular-weight variants of osteopontin generated by serine proteinases in urine of patients with kidney stones. J Cell Biochem 61:402–409PubMedCrossRef
72.
Zurück zum Zitat Thurgood LA, Grover PK, Ryall RL (2008) High calcium concentration and calcium oxalate crystals cause significant inaccuracies in the measurement of urinary osteopontin by enzyme linked immunosorbent assay. Urol Res 36:103–110PubMedCrossRef Thurgood LA, Grover PK, Ryall RL (2008) High calcium concentration and calcium oxalate crystals cause significant inaccuracies in the measurement of urinary osteopontin by enzyme linked immunosorbent assay. Urol Res 36:103–110PubMedCrossRef
73.
Zurück zum Zitat Ryall RL, Grover PK, Thurgood LA, Chauvet MC, Fleming DE, van Bronswijk W (2007) The importance of a clean face: the effect of different washing procedures on the association of Tamm-Horsfall glycoprotein and other urinary proteins with calcium oxalate crystals. Urol Res 35:1–14PubMedCrossRef Ryall RL, Grover PK, Thurgood LA, Chauvet MC, Fleming DE, van Bronswijk W (2007) The importance of a clean face: the effect of different washing procedures on the association of Tamm-Horsfall glycoprotein and other urinary proteins with calcium oxalate crystals. Urol Res 35:1–14PubMedCrossRef
74.
Zurück zum Zitat Verkoelen CF, van der Boom BG, Kok DJ, Houtsmuller AB, Visser P, Schröder FH, Romijn JC (1999) Cell type-specific acquired protection from crystal adherence by renal tubule cells in culture. Kidney Int 55:1426–1433PubMedCrossRef Verkoelen CF, van der Boom BG, Kok DJ, Houtsmuller AB, Visser P, Schröder FH, Romijn JC (1999) Cell type-specific acquired protection from crystal adherence by renal tubule cells in culture. Kidney Int 55:1426–1433PubMedCrossRef
75.
Zurück zum Zitat Grover PK, Thurgood LA, Ryall RL (2007) Effect of urine fractionation on attachment of calcium oxalate crystals to renal epithelial cells: implications for studying renal calculogenesis. Am J Physiol Renal Physiol 292:F1396–F1403PubMedCrossRef Grover PK, Thurgood LA, Ryall RL (2007) Effect of urine fractionation on attachment of calcium oxalate crystals to renal epithelial cells: implications for studying renal calculogenesis. Am J Physiol Renal Physiol 292:F1396–F1403PubMedCrossRef
76.
Zurück zum Zitat Walton RC, Kavanagh JP, Heywood BR (2003) The density and protein content of calcium oxalate crystals precipitated from human urine: a tool to investigate ultrastructure and the fractional volume occupied by organic matrix. J Struct Biol 143:2–14CrossRef Walton RC, Kavanagh JP, Heywood BR (2003) The density and protein content of calcium oxalate crystals precipitated from human urine: a tool to investigate ultrastructure and the fractional volume occupied by organic matrix. J Struct Biol 143:2–14CrossRef
77.
Zurück zum Zitat Belliveau J, Griffin H (2001) The solubility of calcium oxalate in tissue culture media. Anal Biochem 291:69–73PubMedCrossRef Belliveau J, Griffin H (2001) The solubility of calcium oxalate in tissue culture media. Anal Biochem 291:69–73PubMedCrossRef
78.
Zurück zum Zitat Grover PK, Thurgood LA, Wang T, Ryall RL (2010) The effects of intracrystalline and surface-bound proteins on the attachment of calcium oxalate monohydrate crystals to renal cells in undiluted human urine. Br J Urol 105:708–715CrossRef Grover PK, Thurgood LA, Wang T, Ryall RL (2010) The effects of intracrystalline and surface-bound proteins on the attachment of calcium oxalate monohydrate crystals to renal cells in undiluted human urine. Br J Urol 105:708–715CrossRef
79.
Zurück zum Zitat Hsu WL, Lin MJ, Hsu JP (2009) Dissolution of solid particles in liquids: a shrinking core model. World Acad Sci Eng Technol Chem Mater Eng 2:4–8 Hsu WL, Lin MJ, Hsu JP (2009) Dissolution of solid particles in liquids: a shrinking core model. World Acad Sci Eng Technol Chem Mater Eng 2:4–8
80.
Zurück zum Zitat Addadi L, Joester D, Nudelman F, Weiner S (2006) Mollusk shell formation: a source of new concepts for understanding biomineralization processes. Chemistry 12:980–987PubMedCrossRef Addadi L, Joester D, Nudelman F, Weiner S (2006) Mollusk shell formation: a source of new concepts for understanding biomineralization processes. Chemistry 12:980–987PubMedCrossRef
81.
Zurück zum Zitat Qiu SR, Orme CA (2008) Dynamics of biomineral formation at the near-molecular level. Chem Rev 108:4784–4822PubMedCrossRef Qiu SR, Orme CA (2008) Dynamics of biomineral formation at the near-molecular level. Chem Rev 108:4784–4822PubMedCrossRef
83.
Zurück zum Zitat White DJ, Coyle-Rees M, Nancollas GH (1988) Kinetic factors influencing the dissolution behaviour of calcium oxalate stones: a constant composition study. Calcif Tissue Int 43:319–327PubMedCrossRef White DJ, Coyle-Rees M, Nancollas GH (1988) Kinetic factors influencing the dissolution behaviour of calcium oxalate stones: a constant composition study. Calcif Tissue Int 43:319–327PubMedCrossRef
84.
Zurück zum Zitat Lepage L, Tawashi R (1982) Growth and characterization of calcium oxalate dihydrate crystals (weddellite). J Pharm Sci 71:1059–1062PubMedCrossRef Lepage L, Tawashi R (1982) Growth and characterization of calcium oxalate dihydrate crystals (weddellite). J Pharm Sci 71:1059–1062PubMedCrossRef
85.
Zurück zum Zitat Harrell PC, McCawley LJ, Fingleton B, McIntyre JO, Matrisian LM (2005) Proliferative effects of apical, but not basal, matrix metalloproteinase-7 activity in polarized MDCK cells. Exp Cell Res 303:308–320PubMedCrossRef Harrell PC, McCawley LJ, Fingleton B, McIntyre JO, Matrisian LM (2005) Proliferative effects of apical, but not basal, matrix metalloproteinase-7 activity in polarized MDCK cells. Exp Cell Res 303:308–320PubMedCrossRef
86.
Zurück zum Zitat McGwire GB, Becker RP, Skidgel RA (1999) Carboxypeptidase M, a glycosylphosphatidylinositol-anchored protein, is localized on both the apical and basolateral domains of polarized Madin-Darby canine kidney cells. J Biol Chem 274:31632–31640PubMedCrossRef McGwire GB, Becker RP, Skidgel RA (1999) Carboxypeptidase M, a glycosylphosphatidylinositol-anchored protein, is localized on both the apical and basolateral domains of polarized Madin-Darby canine kidney cells. J Biol Chem 274:31632–31640PubMedCrossRef
87.
Zurück zum Zitat Gstraunthaler G, Pfaller W, Kotanko P (1985) Biochemical characterization of renal epithelial cell cultures (LLC-PK1 and MDCK). Am J Physiol 248:F536–F544PubMed Gstraunthaler G, Pfaller W, Kotanko P (1985) Biochemical characterization of renal epithelial cell cultures (LLC-PK1 and MDCK). Am J Physiol 248:F536–F544PubMed
88.
Zurück zum Zitat Hackett RL, Shevock PN, Khan SR (1994) Madin-Darby canine kidney cells are injured by exposure to oxalate and to calcium oxalate crystals. Urol Res 22:197–204PubMedCrossRef Hackett RL, Shevock PN, Khan SR (1994) Madin-Darby canine kidney cells are injured by exposure to oxalate and to calcium oxalate crystals. Urol Res 22:197–204PubMedCrossRef
89.
Zurück zum Zitat Richardson JC, Scalera V, Simmons NL (1981) Identification of two strains of MDCK cells which resemble separate nephron tubule segments. Biochim Biophys Acta 673:26–36PubMedCrossRef Richardson JC, Scalera V, Simmons NL (1981) Identification of two strains of MDCK cells which resemble separate nephron tubule segments. Biochim Biophys Acta 673:26–36PubMedCrossRef
90.
Zurück zum Zitat Oliveira V, Ferro ES, Gomes MD, Oshiro ME, Almeida PC, Juliano MA, Juliano L (2000) Characterization of thiol-, aspartyl-, and thiol-metallo-peptidase activities in Madin-Darby canine kidney cells. J Cell Biochem 76:478–488PubMedCrossRef Oliveira V, Ferro ES, Gomes MD, Oshiro ME, Almeida PC, Juliano MA, Juliano L (2000) Characterization of thiol-, aspartyl-, and thiol-metallo-peptidase activities in Madin-Darby canine kidney cells. J Cell Biochem 76:478–488PubMedCrossRef
91.
Zurück zum Zitat Shalamanova L, Kübler B, Scharf JG, Braulke T (2001) MDCK cells secrete neutral proteases cleaving insulin-like growth factor-binding protein-2 to -6. Am J Physiol Endocrinol Metab 281:E1221–E1229PubMed Shalamanova L, Kübler B, Scharf JG, Braulke T (2001) MDCK cells secrete neutral proteases cleaving insulin-like growth factor-binding protein-2 to -6. Am J Physiol Endocrinol Metab 281:E1221–E1229PubMed
92.
Zurück zum Zitat Andersson G, Ek-Rylander B, Hollberg K, Ljusberg-Sjölander J, Lång P, Norgård M, Wang Y, Zhang SJ (2003) TRACP as an osteopontin phosphatase. J Bone Miner Res 18:1912–1915PubMedCrossRef Andersson G, Ek-Rylander B, Hollberg K, Ljusberg-Sjölander J, Lång P, Norgård M, Wang Y, Zhang SJ (2003) TRACP as an osteopontin phosphatase. J Bone Miner Res 18:1912–1915PubMedCrossRef
93.
Zurück zum Zitat Christensen B, Schack L, Kläning E, Sørensen ES (2010) Osteopontin is cleaved at multiple sites close to its integrin-binding motifs in milk and is a novel substrate for plasmin and cathepsin D. J Biol Chem 285:7929–7937PubMedCrossRef Christensen B, Schack L, Kläning E, Sørensen ES (2010) Osteopontin is cleaved at multiple sites close to its integrin-binding motifs in milk and is a novel substrate for plasmin and cathepsin D. J Biol Chem 285:7929–7937PubMedCrossRef
94.
Zurück zum Zitat Agnihotri R, Crawford HC, Haro H, Matrisian LM, Havrda MC, Liaw L (2001) Osteopontin, a novel substrate for matrix metalloproteinase-3 (stromelysin-1) and matrix metalloproteinase-7 (matrilysin). J Biol Chem 276:28261–28267PubMedCrossRef Agnihotri R, Crawford HC, Haro H, Matrisian LM, Havrda MC, Liaw L (2001) Osteopontin, a novel substrate for matrix metalloproteinase-3 (stromelysin-1) and matrix metalloproteinase-7 (matrilysin). J Biol Chem 276:28261–28267PubMedCrossRef
95.
Zurück zum Zitat Moriyama MT, Domiki C, Miyazawa K, Tanaka T, Suzuki K (2005) Effects of oxalate exposure on Madin-Darby canine kidney cells in culture: renal prothrombin fragment-1 mRNA expression. Urol Res 33:470–475CrossRef Moriyama MT, Domiki C, Miyazawa K, Tanaka T, Suzuki K (2005) Effects of oxalate exposure on Madin-Darby canine kidney cells in culture: renal prothrombin fragment-1 mRNA expression. Urol Res 33:470–475CrossRef
96.
Zurück zum Zitat Hartz PA, Wilson PD (1997) Functional defects in lysosomal enzymes in autosomal dominant polycystic kidney disease (ADPKD): abnormalities in synthesis, molecular processing, polarity, and secretion. Biochem Mol Med 60:8–26PubMedCrossRef Hartz PA, Wilson PD (1997) Functional defects in lysosomal enzymes in autosomal dominant polycystic kidney disease (ADPKD): abnormalities in synthesis, molecular processing, polarity, and secretion. Biochem Mol Med 60:8–26PubMedCrossRef
97.
Zurück zum Zitat Neame PJ, Butler WT (1996) Post-translational modification in rat bone osteopontin. Connect Tissue Res 35:145–150PubMedCrossRef Neame PJ, Butler WT (1996) Post-translational modification in rat bone osteopontin. Connect Tissue Res 35:145–150PubMedCrossRef
98.
Zurück zum Zitat Christensen B, Kazanecki CC, Petersen TE, Rittling SR, Denhardt DT, Sørensen ES (2007) Cell type-specific post-translational modifications of mouse osteopontin are associated with different adhesive properties. J Biol Chem 282:19463–19472PubMedCrossRef Christensen B, Kazanecki CC, Petersen TE, Rittling SR, Denhardt DT, Sørensen ES (2007) Cell type-specific post-translational modifications of mouse osteopontin are associated with different adhesive properties. J Biol Chem 282:19463–19472PubMedCrossRef
99.
Zurück zum Zitat Kasemo B, Lausmaa J (1994) Material-tissue interfaces: the role of surface properties and processes. Environ Health Perspect 102(Suppl 5):41–45PubMedCrossRef Kasemo B, Lausmaa J (1994) Material-tissue interfaces: the role of surface properties and processes. Environ Health Perspect 102(Suppl 5):41–45PubMedCrossRef
100.
Zurück zum Zitat Malmström J, Shipovskov S, Christensen B, Sørensen ES, Kingshott P, Sutherland DS (2009) Adsorption and enzymatic cleavage of osteopontin at interfaces with different surface chemistries. Biointerphases 4:47–55PubMedCrossRef Malmström J, Shipovskov S, Christensen B, Sørensen ES, Kingshott P, Sutherland DS (2009) Adsorption and enzymatic cleavage of osteopontin at interfaces with different surface chemistries. Biointerphases 4:47–55PubMedCrossRef
101.
Zurück zum Zitat Nishiyama K, Sugawara K, Nouchi T, Kawano N, Soejima K, Abe S, Mizokami H (2008) Purification and cDNA cloning of a novel protease inhibitor secreted into culture supernatant by MDCK cells. Biologicals 36:122–133PubMedCrossRef Nishiyama K, Sugawara K, Nouchi T, Kawano N, Soejima K, Abe S, Mizokami H (2008) Purification and cDNA cloning of a novel protease inhibitor secreted into culture supernatant by MDCK cells. Biologicals 36:122–133PubMedCrossRef
102.
Zurück zum Zitat Kon S, Ikesue M, Kimura C, Aoki M, Nakayama Y, Saito Y, Kurotaki D, Diao H, Matsui Y, Segawa T, Maeda M, Kojima T, Uede T (2008) Syndecan-4 protects against osteopontin-mediated acute hepatic injury by masking functional domains of osteopontin. J Exp Med 205:25–33PubMedCrossRef Kon S, Ikesue M, Kimura C, Aoki M, Nakayama Y, Saito Y, Kurotaki D, Diao H, Matsui Y, Segawa T, Maeda M, Kojima T, Uede T (2008) Syndecan-4 protects against osteopontin-mediated acute hepatic injury by masking functional domains of osteopontin. J Exp Med 205:25–33PubMedCrossRef
103.
Zurück zum Zitat Shanmugam V, Chackalaparampil I, Kundu GC, Mukherjee AB, Mukherjee BB (1997) Altered sialylation of osteopontin prevents its receptor-mediated binding on the surface of oncogenically transformed TSB77 cells. Biochem 36:5729–5738CrossRef Shanmugam V, Chackalaparampil I, Kundu GC, Mukherjee AB, Mukherjee BB (1997) Altered sialylation of osteopontin prevents its receptor-mediated binding on the surface of oncogenically transformed TSB77 cells. Biochem 36:5729–5738CrossRef
104.
Zurück zum Zitat Kugler P, Wolf G, Scherberich J (1985) Histochemical demonstration of peptidases in the human kidney. Histochem 83:337–341CrossRef Kugler P, Wolf G, Scherberich J (1985) Histochemical demonstration of peptidases in the human kidney. Histochem 83:337–341CrossRef
105.
Zurück zum Zitat Singh AK (1993) Presence of lysosomal enzymes in the normal glomerular basement membrane matrix. Histochem J 25:562–568PubMed Singh AK (1993) Presence of lysosomal enzymes in the normal glomerular basement membrane matrix. Histochem J 25:562–568PubMed
106.
Zurück zum Zitat Yokota S, Tsuji H, Kato K (1985) Immunocytochemica localization of cathepsin D in lysosomes of cortical collecting tubule cells of the rat kidney. J Histochem Cytochem 33:191–200PubMedCrossRef Yokota S, Tsuji H, Kato K (1985) Immunocytochemica localization of cathepsin D in lysosomes of cortical collecting tubule cells of the rat kidney. J Histochem Cytochem 33:191–200PubMedCrossRef
108.
Zurück zum Zitat Huang HS, Chen CF, Chien CT, Chen J (2000) Possible biphasic changes of free radicals in ethylene glycol-induced nephrolithaisis in rats. BJU Int 85:1143–1149PubMedCrossRef Huang HS, Chen CF, Chien CT, Chen J (2000) Possible biphasic changes of free radicals in ethylene glycol-induced nephrolithaisis in rats. BJU Int 85:1143–1149PubMedCrossRef
109.
Zurück zum Zitat Baggio B, Gambaro G, Ossi E, Favaro S, Borsatti A (1983) Increased urinary excretion of renal enzymes in idiopathic calcium oxalate nephrolithiasis. J Urol 129:1161–1162PubMed Baggio B, Gambaro G, Ossi E, Favaro S, Borsatti A (1983) Increased urinary excretion of renal enzymes in idiopathic calcium oxalate nephrolithiasis. J Urol 129:1161–1162PubMed
Metadaten
Titel
The effect of intracrystalline and surface-bound osteopontin on the degradation and dissolution of calcium oxalate dihydrate crystals in MDCKII cells
verfasst von
Lauren A. Thurgood
Esben S. Sørensen
Rosemary L. Ryall
Publikationsdatum
01.02.2012
Verlag
Springer-Verlag
Erschienen in
Urolithiasis / Ausgabe 1/2012
Print ISSN: 2194-7228
Elektronische ISSN: 2194-7236
DOI
https://doi.org/10.1007/s00240-011-0423-5

Weitere Artikel der Ausgabe 1/2012

Urolithiasis 1/2012 Zur Ausgabe

Harninkontinenz: Netz-Op. erfordert über lange Zeit intensive Nachsorge

30.04.2024 Harninkontinenz Nachrichten

Frauen mit Belastungsinkontinenz oder Organprolaps sind nach einer Netz-Operation keineswegs beschwerdefrei. Vielmehr scheint die Krankheitslast weiterhin hoch zu sein, sogar höher als von harninkontinenten Frauen, die sich nicht haben operieren lassen.

Adjuvante Immuntherapie verlängert Leben bei RCC

25.04.2024 Nierenkarzinom Nachrichten

Nun gibt es auch Resultate zum Gesamtüberleben: Eine adjuvante Pembrolizumab-Therapie konnte in einer Phase-3-Studie das Leben von Menschen mit Nierenzellkarzinom deutlich verlängern. Die Sterberate war im Vergleich zu Placebo um 38% geringer.

Bei Senioren mit Prostatakarzinom auf Anämie achten!

24.04.2024 DGIM 2024 Nachrichten

Patienten, die zur Behandlung ihres Prostatakarzinoms eine Androgendeprivationstherapie erhalten, entwickeln nicht selten eine Anämie. Wer ältere Patienten internistisch mitbetreut, sollte auf diese Nebenwirkung achten.

Stufenschema weist Prostatakarzinom zuverlässig nach

22.04.2024 Prostatakarzinom Nachrichten

Erst PSA-Test, dann Kallikrein-Score, schließlich MRT und Biopsie – ein vierstufiges Screening-Schema kann die Zahl der unnötigen Prostatabiopsien erheblich reduzieren: Die Hälfte der Männer, die in einer finnischen Studie eine Biopsie benötigten, hatte einen hochgradigen Tumor.

Update Urologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.