Skip to main content
Erschienen in: Pediatric Radiology 2/2022

19.05.2021 | Pediatric Body MRI

Radial sequences and compressed sensing in pediatric body magnetic resonance imaging

verfasst von: Dianna M. E. Bardo, Nicholas Rubert

Erschienen in: Pediatric Radiology | Ausgabe 2/2022

Einloggen, um Zugang zu erhalten

Abstract

Magnetic resonance imaging (MRI) is often an ideal imaging modality for children of any age for any anatomy and for many pathologies. MRI sequences can be prescribed to produce high-resolution images of anatomical structures, characterize tissue composition, and detect physiological states and organ function. Shortening imaging sequences in any manner possible has been a topic of research and development in MRI since its emergence. Selection of imaging sequence parameters influences more than just the appearance and signal qualities of the imaged tissues; these details along with spatial encoding and data readout steps determine the time it takes to acquire an image. As each piece of image data is acquired and encoded with spatial and temporal information it is stored in k-space. As k-space is filled, either completely or partially, a diagnostic image or physiological data can be reconstructed. Shortening the length of time required for the readout step by efficiently filling k-space using compressed sensing and radial techniques is the subject of this manuscript.
Literatur
1.
2.
Zurück zum Zitat Paschal CB, Morris HD (2004) K-space in the clinic. J Magn Reson Imaging 19:145–159CrossRef Paschal CB, Morris HD (2004) K-space in the clinic. J Magn Reson Imaging 19:145–159CrossRef
3.
Zurück zum Zitat Robinson E, Clark D (1991) Sampling and the Nyquist frequency. Leading Edge 10:51–53CrossRef Robinson E, Clark D (1991) Sampling and the Nyquist frequency. Leading Edge 10:51–53CrossRef
4.
Zurück zum Zitat Song T, Laine AF, Chen Q et al (2009) Optimal k-space sampling for dynamic contrast-enhanced MRI with applicaton to MR renography. Magn Reson Med 61:1242–1248CrossRef Song T, Laine AF, Chen Q et al (2009) Optimal k-space sampling for dynamic contrast-enhanced MRI with applicaton to MR renography. Magn Reson Med 61:1242–1248CrossRef
5.
Zurück zum Zitat Moratal D, Valles-Luch A, Marti-Bonmati L, Brummer ME (2008) K-space tutorial: an MRI educational tool for a better understanding of k-space. Biomed Imaging Interv J 4:e15CrossRef Moratal D, Valles-Luch A, Marti-Bonmati L, Brummer ME (2008) K-space tutorial: an MRI educational tool for a better understanding of k-space. Biomed Imaging Interv J 4:e15CrossRef
6.
Zurück zum Zitat van Vaals JJ, Brummer ME, Dixon WT et al (1993) “Keyhole” method for accererating imaging of contrast agent uptake. J Magn Reson Imaging 3:671–675CrossRef van Vaals JJ, Brummer ME, Dixon WT et al (1993) “Keyhole” method for accererating imaging of contrast agent uptake. J Magn Reson Imaging 3:671–675CrossRef
8.
Zurück zum Zitat Lauterbur C (1973) Image formation by induced local interatctions: examples employing nuclear magnetic resonance. Nature 242:190–191CrossRef Lauterbur C (1973) Image formation by induced local interatctions: examples employing nuclear magnetic resonance. Nature 242:190–191CrossRef
9.
Zurück zum Zitat Feng L, Grimm R, Block KT et al (2014) Golden-angle radial sparse parallel MRI: combination of compressed sensing, parallel imaging, and golden-angle radial sampling for fast and flexible dynamic volumetric MRI. Magn Reson Med 72:505–717 Feng L, Grimm R, Block KT et al (2014) Golden-angle radial sparse parallel MRI: combination of compressed sensing, parallel imaging, and golden-angle radial sampling for fast and flexible dynamic volumetric MRI. Magn Reson Med 72:505–717
10.
Zurück zum Zitat Zhou Z, Han F, Yan L et al (2017) Golden-ratio rotated stack-of-stars acquisition for improved volumetric MRI. Magn Reson Med 78:2290–2298CrossRef Zhou Z, Han F, Yan L et al (2017) Golden-ratio rotated stack-of-stars acquisition for improved volumetric MRI. Magn Reson Med 78:2290–2298CrossRef
11.
Zurück zum Zitat Chandarana H, Block TK, Rosenkrantz AB et al (2011) Free-breathing radial 3D fat-suppressed T1-weighted gradient echo sequence: a viable alternative for contrast-enhanced liver imaging in patients unable to suspend respiration. Investig Radiol 46:648–653CrossRef Chandarana H, Block TK, Rosenkrantz AB et al (2011) Free-breathing radial 3D fat-suppressed T1-weighted gradient echo sequence: a viable alternative for contrast-enhanced liver imaging in patients unable to suspend respiration. Investig Radiol 46:648–653CrossRef
12.
Zurück zum Zitat Stehning C, Börnert P, Nehrke K et al (2004) Fast isotropic volumetric coronary MR angiography using free-breathing 3D radial balanced FFE acquisition. Magn Reson Med 52:197–203CrossRef Stehning C, Börnert P, Nehrke K et al (2004) Fast isotropic volumetric coronary MR angiography using free-breathing 3D radial balanced FFE acquisition. Magn Reson Med 52:197–203CrossRef
13.
Zurück zum Zitat Block KT, Uecker M, Frahm J (2007) Undersampled radial MRI with multiple coils. Iterative image reconstruction using a total variation constraint. Magn Reson Med 57:1086–1098CrossRef Block KT, Uecker M, Frahm J (2007) Undersampled radial MRI with multiple coils. Iterative image reconstruction using a total variation constraint. Magn Reson Med 57:1086–1098CrossRef
14.
Zurück zum Zitat Gmitro AF, Kono M, Theilmann RJ et al (2005) Radial GRASE: implementation and applications. Magn Reson Med 53:1363–1371CrossRef Gmitro AF, Kono M, Theilmann RJ et al (2005) Radial GRASE: implementation and applications. Magn Reson Med 53:1363–1371CrossRef
15.
Zurück zum Zitat Rasche V, Holz D, Schepper W (1994) Radial turbo spin echo imaging. Magn Reson Med 32:629–638CrossRef Rasche V, Holz D, Schepper W (1994) Radial turbo spin echo imaging. Magn Reson Med 32:629–638CrossRef
16.
Zurück zum Zitat Doneva M (2020) Mathematical models for magnetic resonance imaging reconstruction. An overview of the approaches, problems, and future research areas. IEEE Signal Proc Mag 37:24–32CrossRef Doneva M (2020) Mathematical models for magnetic resonance imaging reconstruction. An overview of the approaches, problems, and future research areas. IEEE Signal Proc Mag 37:24–32CrossRef
17.
Zurück zum Zitat Ahn CB, Kim JH, Cho ZH (1986) High-speed spiral-scan echo planar NMR imaging–1. IEEE Trans Med Imaging 5:2–7CrossRef Ahn CB, Kim JH, Cho ZH (1986) High-speed spiral-scan echo planar NMR imaging–1. IEEE Trans Med Imaging 5:2–7CrossRef
18.
Zurück zum Zitat Wu HH, Gurney PT, Hu BS et al (2013) Free-breathing multiphase whole-heart coronary MR angiography using image-based navigators and three-dimensional cones imaging. Magn Reson Med 69:1083–1093CrossRef Wu HH, Gurney PT, Hu BS et al (2013) Free-breathing multiphase whole-heart coronary MR angiography using image-based navigators and three-dimensional cones imaging. Magn Reson Med 69:1083–1093CrossRef
19.
Zurück zum Zitat Chen Q, Stock KW, Prasad PV, Hatabu H (1999) Fast magnetic resonance imaging techniques. Eur J Radiol 29:90–100CrossRef Chen Q, Stock KW, Prasad PV, Hatabu H (1999) Fast magnetic resonance imaging techniques. Eur J Radiol 29:90–100CrossRef
20.
Zurück zum Zitat Pruessmann KP, Weiger M, Scheidegger MB, Boesiger P (1999) SENSE: sensitivity encoding for fast MRI. Magn Reson Med 42:952–962CrossRef Pruessmann KP, Weiger M, Scheidegger MB, Boesiger P (1999) SENSE: sensitivity encoding for fast MRI. Magn Reson Med 42:952–962CrossRef
21.
Zurück zum Zitat Glockner JF, Hu HH, Stanley DW et al (2005) Parallel MR imaging: a user's guide. Radiographics 25:1279–1297CrossRef Glockner JF, Hu HH, Stanley DW et al (2005) Parallel MR imaging: a user's guide. Radiographics 25:1279–1297CrossRef
22.
Zurück zum Zitat Moore MM, Chung T (2017) Review of key concepts in magnetic resonance physics. Pediatr Radiol 47:497–506CrossRef Moore MM, Chung T (2017) Review of key concepts in magnetic resonance physics. Pediatr Radiol 47:497–506CrossRef
23.
Zurück zum Zitat Reddy BV, Reddy PB, Kumar PS, Reddy AS (2016) Lossless compression of medical images for better diagnosis. IEEE 6th Int Conf Advan Comput 2016:404–408 Reddy BV, Reddy PB, Kumar PS, Reddy AS (2016) Lossless compression of medical images for better diagnosis. IEEE 6th Int Conf Advan Comput 2016:404–408
24.
Zurück zum Zitat Shiao YH, Chen TJ, Chuang KS et al (2007) Quality of compressed medical images. J Digit Imaging 20:149–159CrossRef Shiao YH, Chen TJ, Chuang KS et al (2007) Quality of compressed medical images. J Digit Imaging 20:149–159CrossRef
25.
Zurück zum Zitat Vasanawala SS, Alley MT, Hargreaves BT et al (2010) Improved pediatric MR imaging with compressed sensing. Radiology 256:607–616CrossRef Vasanawala SS, Alley MT, Hargreaves BT et al (2010) Improved pediatric MR imaging with compressed sensing. Radiology 256:607–616CrossRef
26.
Zurück zum Zitat Donoho DL (2006) Compressed sensing. IEEE Trans Inf Theory 52:1289–1306CrossRef Donoho DL (2006) Compressed sensing. IEEE Trans Inf Theory 52:1289–1306CrossRef
27.
Zurück zum Zitat Lustig M, Donoho D, Pauly JM (2007) Sparse MRI: the application of compressed sensing for rapid MR imaging. Magn Reson Med 58:1182–1195CrossRef Lustig M, Donoho D, Pauly JM (2007) Sparse MRI: the application of compressed sensing for rapid MR imaging. Magn Reson Med 58:1182–1195CrossRef
28.
Zurück zum Zitat Serai SD, Hu HH, Ahmad R et al (2020) Newly developed methods for reducing motion artifacts in pediatric abdominal MRI: tips and pearls. AJR Am J Roentgenol 214:1042–1053CrossRef Serai SD, Hu HH, Ahmad R et al (2020) Newly developed methods for reducing motion artifacts in pediatric abdominal MRI: tips and pearls. AJR Am J Roentgenol 214:1042–1053CrossRef
29.
Zurück zum Zitat Chavhan GB, Babyn PS, Vasanawala SS (2013) Abdominal MR imaging in children: motion compensation, sequence optimization, and protocol organization. Radiographics 33:703–719CrossRef Chavhan GB, Babyn PS, Vasanawala SS (2013) Abdominal MR imaging in children: motion compensation, sequence optimization, and protocol organization. Radiographics 33:703–719CrossRef
30.
Zurück zum Zitat Chavhan GB, Babyn PS, John P et al (2014) Pediatric body MR angiography: principles, techniques, and current status in body imaging. AJR Am J Roentgenol 205:173–184CrossRef Chavhan GB, Babyn PS, John P et al (2014) Pediatric body MR angiography: principles, techniques, and current status in body imaging. AJR Am J Roentgenol 205:173–184CrossRef
31.
Zurück zum Zitat Dillman JR, Trout AT, Merrow AC et al (2019) Non-contrast three-dimensional gradient recalled echo Dixon-based magnetic resonance angiography/venography in children. Pediatr Radiol 49:407–414CrossRef Dillman JR, Trout AT, Merrow AC et al (2019) Non-contrast three-dimensional gradient recalled echo Dixon-based magnetic resonance angiography/venography in children. Pediatr Radiol 49:407–414CrossRef
32.
Zurück zum Zitat Gamper U, Boesiger P, Kozerke S (2008) Compressed sensing in dynamic MRI. Magn Reson Med 59:365–373CrossRef Gamper U, Boesiger P, Kozerke S (2008) Compressed sensing in dynamic MRI. Magn Reson Med 59:365–373CrossRef
33.
Zurück zum Zitat Vasanawala SS, Murphy MJ, Alley MT et al (2011) Practical parallel imaging compressed sensing MRI: summary of two years of experience in accelerating body MRI of pediatric patients. IEEE Int Symp Biomed Imaging 2011:1039–1043 Vasanawala SS, Murphy MJ, Alley MT et al (2011) Practical parallel imaging compressed sensing MRI: summary of two years of experience in accelerating body MRI of pediatric patients. IEEE Int Symp Biomed Imaging 2011:1039–1043
34.
Zurück zum Zitat Zhang T, Chowdhury S, Lustig M et al (2014) Clinical performance of contrast enhanced abdominal pediatric MRI with fast combined parallel imaging compressed sensing reconstruction. J Magn Reson Imag 40:13–25CrossRef Zhang T, Chowdhury S, Lustig M et al (2014) Clinical performance of contrast enhanced abdominal pediatric MRI with fast combined parallel imaging compressed sensing reconstruction. J Magn Reson Imag 40:13–25CrossRef
35.
Zurück zum Zitat Liang D, Lui B, Wang J, Ying L (2009) Accelerating SENSE using compressed sensing. Magn Reson Med 62:1574–1584CrossRef Liang D, Lui B, Wang J, Ying L (2009) Accelerating SENSE using compressed sensing. Magn Reson Med 62:1574–1584CrossRef
36.
Zurück zum Zitat Henning J (1999) K-space sampling strategies. Eur Radiol 9:1020–1031CrossRef Henning J (1999) K-space sampling strategies. Eur Radiol 9:1020–1031CrossRef
37.
Zurück zum Zitat da Silva JT, Murata CH, Medeiros RB (2016) Influence of partial k-space filling on the quality of magnetic resonance images. Radiol Bras 49:158–164CrossRef da Silva JT, Murata CH, Medeiros RB (2016) Influence of partial k-space filling on the quality of magnetic resonance images. Radiol Bras 49:158–164CrossRef
38.
Zurück zum Zitat Jaimes C, Gee MS (2016) Stategies to minimize sedation in pediatric body magnetic resonance imaging. Pediatr Radiol 46:916–927CrossRef Jaimes C, Gee MS (2016) Stategies to minimize sedation in pediatric body magnetic resonance imaging. Pediatr Radiol 46:916–927CrossRef
39.
Zurück zum Zitat Kozak BM, Jaimes C, Kirsch J, Gee MS (2020) MRI techniques to decrease imaging times in children. Radiographics 4:485–502CrossRef Kozak BM, Jaimes C, Kirsch J, Gee MS (2020) MRI techniques to decrease imaging times in children. Radiographics 4:485–502CrossRef
40.
Zurück zum Zitat Ahmad R, Hu HH, Krishnamurthy R, Krishnamurthy R (2018) Reducing sedation for pediatric body MRI using accelerated and abbreviated imaging protocols. Pediatr Radiol 48:37–49CrossRef Ahmad R, Hu HH, Krishnamurthy R, Krishnamurthy R (2018) Reducing sedation for pediatric body MRI using accelerated and abbreviated imaging protocols. Pediatr Radiol 48:37–49CrossRef
41.
Zurück zum Zitat Jia R, Du H (2016) Motion compensated dynamic MRI reconstruction exploiting sparsity and low rank structure. 2016 IEEE 13th Int Conf Sign Proc (2016):19–22 Jia R, Du H (2016) Motion compensated dynamic MRI reconstruction exploiting sparsity and low rank structure. 2016 IEEE 13th Int Conf Sign Proc (2016):19–22
Metadaten
Titel
Radial sequences and compressed sensing in pediatric body magnetic resonance imaging
verfasst von
Dianna M. E. Bardo
Nicholas Rubert
Publikationsdatum
19.05.2021
Verlag
Springer Berlin Heidelberg
Erschienen in
Pediatric Radiology / Ausgabe 2/2022
Print ISSN: 0301-0449
Elektronische ISSN: 1432-1998
DOI
https://doi.org/10.1007/s00247-021-05097-6

Weitere Artikel der Ausgabe 2/2022

Pediatric Radiology 2/2022 Zur Ausgabe

Darf man die Behandlung eines Neonazis ablehnen?

08.05.2024 Gesellschaft Nachrichten

In einer Leseranfrage in der Zeitschrift Journal of the American Academy of Dermatology möchte ein anonymer Dermatologe bzw. eine anonyme Dermatologin wissen, ob er oder sie einen Patienten behandeln muss, der eine rassistische Tätowierung trägt.

Ein Drittel der jungen Ärztinnen und Ärzte erwägt abzuwandern

07.05.2024 Klinik aktuell Nachrichten

Extreme Arbeitsverdichtung und kaum Supervision: Dr. Andrea Martini, Sprecherin des Bündnisses Junge Ärztinnen und Ärzte (BJÄ) über den Frust des ärztlichen Nachwuchses und die Vorteile des Rucksack-Modells.

Endlich: Zi zeigt, mit welchen PVS Praxen zufrieden sind

IT für Ärzte Nachrichten

Darauf haben viele Praxen gewartet: Das Zi hat eine Liste von Praxisverwaltungssystemen veröffentlicht, die von Nutzern positiv bewertet werden. Eine gute Grundlage für wechselwillige Ärztinnen und Psychotherapeuten.

Akuter Schwindel: Wann lohnt sich eine MRT?

28.04.2024 Schwindel Nachrichten

Akuter Schwindel stellt oft eine diagnostische Herausforderung dar. Wie nützlich dabei eine MRT ist, hat eine Studie aus Finnland untersucht. Immerhin einer von sechs Patienten wurde mit akutem ischämischem Schlaganfall diagnostiziert.

Update Radiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.