Skip to main content
Erschienen in: European Journal of Nuclear Medicine and Molecular Imaging 9/2020

25.01.2020 | Original Article

A kinetics-based approach to amyloid PET semi-quantification

verfasst von: A. Chincarini, E. Peira, M. Corosu, S. Morbelli, M. Bauckneht, S. Capitanio, M. Pardini, D. Arnaldi, C. Vellani, D. D’Ambrosio, V. Garibotto, F. Assal, B. Paghera, G. Savelli, A. Stefanelli, U. P. Guerra, F. Nobili

Erschienen in: European Journal of Nuclear Medicine and Molecular Imaging | Ausgabe 9/2020

Einloggen, um Zugang zu erhalten

Abstract

Purpose

To develop and validate a semi-quantification method (time-delayed ratio, TDr) applied to amyloid PET scans, based on tracer kinetics information.

Methods

The TDr method requires two static scans per subject: one early (~ 0–10 min after the injection) and one late (typically 50–70 min or 90–100 min after the injection, depending on the tracer). High perfusion regions are delineated on the early scan and applied onto the late scan. A SUVr-like ratio is calculated between the average intensities in the high perfusion regions and the late scan hotspot. TDr was applied to a naturalistic multicenter dataset of 143 subjects acquired with [18F]florbetapir. TDr values are compared to visual evaluation, cortical–cerebellar SUVr, and to the geometrical semi-quantification method ELBA. All three methods are gauged versus the heterogeneity of the dataset.

Results

TDr shows excellent agreement with respect to the binary visual assessment (AUC = 0.99) and significantly correlates with both validated semi-quantification methods, reaching a Pearson correlation coefficient of 0.86 with respect to ELBA.

Conclusions

TDr is an alternative approach to previously validated ones (SUVr and ELBA). It requires minimal image processing; it is independent on predefined regions of interest and does not require MR registration. Besides, it takes advantage on the availability of early scans which are becoming common practice while imposing a negligible added patient discomfort.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
2.
Zurück zum Zitat Dubois B, Feldman HH, Jacova C, Hampel H, Molinuevo JL, Blennow K, et al. Advancing research diagnostic criteria for Alzheimer’s disease: the IWG-2 criteria. Lancet Neurol. 2014;13:614–29.CrossRefPubMed Dubois B, Feldman HH, Jacova C, Hampel H, Molinuevo JL, Blennow K, et al. Advancing research diagnostic criteria for Alzheimer’s disease: the IWG-2 criteria. Lancet Neurol. 2014;13:614–29.CrossRefPubMed
4.
Zurück zum Zitat Clark CM, Pontecorvo MJ, Beach TG, Bedell BJ, Coleman RE, Doraiswamy PM, et al. Cerebral PET with florbetapir compared with neuropathology at autopsy for detection of neuritic amyloid-β plaques: a prospective cohort study. Lancet Neurol. 2012;11:669–78.CrossRefPubMed Clark CM, Pontecorvo MJ, Beach TG, Bedell BJ, Coleman RE, Doraiswamy PM, et al. Cerebral PET with florbetapir compared with neuropathology at autopsy for detection of neuritic amyloid-β plaques: a prospective cohort study. Lancet Neurol. 2012;11:669–78.CrossRefPubMed
6.
Zurück zum Zitat Villemagne VL, Ong K, Mulligan RS, Holl G, Pejoska S, Jones G, et al. Amyloid imaging with (18)F-florbetaben in Alzheimer disease and other dementias. J Nucl Med. 2011;52:1210–7.CrossRefPubMed Villemagne VL, Ong K, Mulligan RS, Holl G, Pejoska S, Jones G, et al. Amyloid imaging with (18)F-florbetaben in Alzheimer disease and other dementias. J Nucl Med. 2011;52:1210–7.CrossRefPubMed
7.
Zurück zum Zitat Wolz R, Schwarz AJ, Gray KR, Yu P, Hill DLG, Alzheimer’s Disease Neuroimaging Initiative. Enrichment of clinical trials in MCI due to AD using markers of amyloid and neurodegeneration. Neurology. 2016;87:1235–41.CrossRefPubMedPubMedCentral Wolz R, Schwarz AJ, Gray KR, Yu P, Hill DLG, Alzheimer’s Disease Neuroimaging Initiative. Enrichment of clinical trials in MCI due to AD using markers of amyloid and neurodegeneration. Neurology. 2016;87:1235–41.CrossRefPubMedPubMedCentral
8.
Zurück zum Zitat Kinahan PE, Fletcher JW. Positron emission tomography-computed tomography standardized uptake values in clinical practice and assessing response to therapy. Semin Ultrasound CT MR. 2010;31:496–505.CrossRefPubMedPubMedCentral Kinahan PE, Fletcher JW. Positron emission tomography-computed tomography standardized uptake values in clinical practice and assessing response to therapy. Semin Ultrasound CT MR. 2010;31:496–505.CrossRefPubMedPubMedCentral
9.
Zurück zum Zitat Thurfjell L, Lilja J, Lundqvist R, Buckley C, Smith A, Vandenberghe R, et al. Automated quantification of 18F-flutemetamol PET activity for categorizing scans as negative or positive for brain amyloid: concordance with visual image reads. J Nucl Med. 2014;55:1623–8.CrossRefPubMed Thurfjell L, Lilja J, Lundqvist R, Buckley C, Smith A, Vandenberghe R, et al. Automated quantification of 18F-flutemetamol PET activity for categorizing scans as negative or positive for brain amyloid: concordance with visual image reads. J Nucl Med. 2014;55:1623–8.CrossRefPubMed
12.
Zurück zum Zitat Klunk WE, Koeppe RA, Price JC, Benzinger TL, Devous MD Sr, Jagust WJ, et al. The Centiloid Project: standardizing quantitative amyloid plaque estimation by PET. Alzheimers Dement. 2015;11:1–15.e1–4.CrossRefPubMed Klunk WE, Koeppe RA, Price JC, Benzinger TL, Devous MD Sr, Jagust WJ, et al. The Centiloid Project: standardizing quantitative amyloid plaque estimation by PET. Alzheimers Dement. 2015;11:1–15.e1–4.CrossRefPubMed
13.
Zurück zum Zitat Tryputsen V, DiBernardo A, Samtani M, Novak GP, Narayan VA, Raghavan N, et al. Optimizing regions-of-interest composites for capturing treatment effects on brain amyloid in clinical trials. J Alzheimers Dis. 2015;43:809–21.CrossRefPubMed Tryputsen V, DiBernardo A, Samtani M, Novak GP, Narayan VA, Raghavan N, et al. Optimizing regions-of-interest composites for capturing treatment effects on brain amyloid in clinical trials. J Alzheimers Dis. 2015;43:809–21.CrossRefPubMed
14.
Zurück zum Zitat Su Y, Blazey TM, Snyder AZ, Raichle ME, Marcus DS, Ances BM, et al. Partial volume correction in quantitative amyloid imaging. Neuroimage. 2015;107:55–64.CrossRefPubMed Su Y, Blazey TM, Snyder AZ, Raichle ME, Marcus DS, Ances BM, et al. Partial volume correction in quantitative amyloid imaging. Neuroimage. 2015;107:55–64.CrossRefPubMed
15.
Zurück zum Zitat Schmidt ME, Chiao P, Klein G, Matthews D, Thurfjell L, Cole PE, et al. The influence of biological and technical factors on quantitative analysis of amyloid PET: points to consider and recommendations for controlling variability in longitudinal data. Alzheimers Dement. 2015;11:1050–68.CrossRefPubMed Schmidt ME, Chiao P, Klein G, Matthews D, Thurfjell L, Cole PE, et al. The influence of biological and technical factors on quantitative analysis of amyloid PET: points to consider and recommendations for controlling variability in longitudinal data. Alzheimers Dement. 2015;11:1050–68.CrossRefPubMed
16.
Zurück zum Zitat Chincarini A, Sensi F, Rei L, Bossert I, Morbelli S, Guerra UP, et al. Standardized uptake value ratio-independent evaluation of brain amyloidosis. J Alzheimers Dis. 2016;54:1437–57.CrossRefPubMed Chincarini A, Sensi F, Rei L, Bossert I, Morbelli S, Guerra UP, et al. Standardized uptake value ratio-independent evaluation of brain amyloidosis. J Alzheimers Dis. 2016;54:1437–57.CrossRefPubMed
17.
Zurück zum Zitat Cecchin D, Barthel H, Poggiali D, Cagnin A, Tiepolt S, Zucchetta P, et al. A new integrated dual time-point amyloid PET/MRI data analysis method. Eur J Nucl Med Mol Imaging. 2017;44:2060–72.CrossRefPubMed Cecchin D, Barthel H, Poggiali D, Cagnin A, Tiepolt S, Zucchetta P, et al. A new integrated dual time-point amyloid PET/MRI data analysis method. Eur J Nucl Med Mol Imaging. 2017;44:2060–72.CrossRefPubMed
18.
Zurück zum Zitat Landau SM, Thomas BA, Thurfjell L, Schmidt M, Margolin R, Mintun M, et al. Amyloid PET imaging in Alzheimer’s disease: a comparison of three radiotracers. Eur J Nucl Med Mol Imaging. 2014;41:1398–407.CrossRefPubMedPubMedCentral Landau SM, Thomas BA, Thurfjell L, Schmidt M, Margolin R, Mintun M, et al. Amyloid PET imaging in Alzheimer’s disease: a comparison of three radiotracers. Eur J Nucl Med Mol Imaging. 2014;41:1398–407.CrossRefPubMedPubMedCentral
19.
21.
Zurück zum Zitat Price JC, Klunk WE, Lopresti BJ, Lu X, Hoge JA, Ziolko SK, et al. Kinetic modeling of amyloid binding in humans using PET imaging and Pittsburgh Compound-B. J Cereb Blood Flow Metab. 2005;25:1528–47.CrossRefPubMed Price JC, Klunk WE, Lopresti BJ, Lu X, Hoge JA, Ziolko SK, et al. Kinetic modeling of amyloid binding in humans using PET imaging and Pittsburgh Compound-B. J Cereb Blood Flow Metab. 2005;25:1528–47.CrossRefPubMed
23.
Zurück zum Zitat Meyer PT, Hellwig S, Amtage F, Rottenburger C, Sahm U, Reuland P, et al. Dual-biomarker imaging of regional cerebral amyloid load and neuronal activity in dementia with PET and 11C-labeled Pittsburgh compound B. J Nucl Med. 2011;52:393–400.CrossRefPubMed Meyer PT, Hellwig S, Amtage F, Rottenburger C, Sahm U, Reuland P, et al. Dual-biomarker imaging of regional cerebral amyloid load and neuronal activity in dementia with PET and 11C-labeled Pittsburgh compound B. J Nucl Med. 2011;52:393–400.CrossRefPubMed
24.
Zurück zum Zitat van Osch MJP, Teeuwisse WM, van Walderveen MAA, Hendrikse J, Kies DA, van Buchem MA. Can arterial spin labeling detect white matter perfusion signal? Magn Reson Med. 2009;62:165–73.CrossRefPubMed van Osch MJP, Teeuwisse WM, van Walderveen MAA, Hendrikse J, Kies DA, van Buchem MA. Can arterial spin labeling detect white matter perfusion signal? Magn Reson Med. 2009;62:165–73.CrossRefPubMed
26.
Zurück zum Zitat Asllani I, Borogovac A, Brown TR. Regression algorithm correcting for partial volume effects in arterial spin labeling MRI. Magn Reson Med. 2008;60:1362–71.CrossRefPubMed Asllani I, Borogovac A, Brown TR. Regression algorithm correcting for partial volume effects in arterial spin labeling MRI. Magn Reson Med. 2008;60:1362–71.CrossRefPubMed
28.
Zurück zum Zitat Law I, Iida H, Holm S, Nour S, Rostrup E, Svarer C, et al. Quantitation of regional cerebral blood flow corrected for partial volume effect using O-15 water and PET: II. Normal values and gray matter blood flow response to visual activation. J Cereb Blood Flow Metab. 2000;20:1252–63.CrossRefPubMed Law I, Iida H, Holm S, Nour S, Rostrup E, Svarer C, et al. Quantitation of regional cerebral blood flow corrected for partial volume effect using O-15 water and PET: II. Normal values and gray matter blood flow response to visual activation. J Cereb Blood Flow Metab. 2000;20:1252–63.CrossRefPubMed
29.
Zurück zum Zitat Momjian S, Owler BK, Czosnyka Z, Czosnyka M, Pena A, Pickard JD. Pattern of white matter regional cerebral blood flow and autoregulation in normal pressure hydrocephalus. Brain. 2004;127:965–72.CrossRefPubMed Momjian S, Owler BK, Czosnyka Z, Czosnyka M, Pena A, Pickard JD. Pattern of white matter regional cerebral blood flow and autoregulation in normal pressure hydrocephalus. Brain. 2004;127:965–72.CrossRefPubMed
30.
Zurück zum Zitat Owler BK, Momjian S, Czosnyka Z, Czosnyka M, Péna A, Harris NG, et al. Normal pressure hydrocephalus and cerebral blood flow: a PET study of baseline values. J Cereb Blood Flow Metab. 2004;24:17–23.CrossRefPubMed Owler BK, Momjian S, Czosnyka Z, Czosnyka M, Péna A, Harris NG, et al. Normal pressure hydrocephalus and cerebral blood flow: a PET study of baseline values. J Cereb Blood Flow Metab. 2004;24:17–23.CrossRefPubMed
31.
Zurück zum Zitat Leinonen V, Rinne JO, Wong DF, Wolk DA, Trojanowski JQ, Sherwin PF, et al. Diagnostic effectiveness of quantitative [18F]flutemetamol PET imaging for detection of fibrillar amyloid β using cortical biopsy histopathology as the standard of truth in subjects with idiopathic normal pressure hydrocephalus. Acta Neuropathol Commun. 2014;2. https://doi.org/10.1186/2051-5960-2-46. Leinonen V, Rinne JO, Wong DF, Wolk DA, Trojanowski JQ, Sherwin PF, et al. Diagnostic effectiveness of quantitative [18F]flutemetamol PET imaging for detection of fibrillar amyloid β using cortical biopsy histopathology as the standard of truth in subjects with idiopathic normal pressure hydrocephalus. Acta Neuropathol Commun. 2014;2. https://​doi.​org/​10.​1186/​2051-5960-2-46.
33.
Zurück zum Zitat Doraiswamy PM, Sperling RA, Coleman RE, Johnson KA, Reiman EM, Davis MD, et al. Amyloid-β assessed by florbetapir F 18 PET and 18-month cognitive decline: a multicenter study. Neurology. 2012;79:1636–44.CrossRefPubMed Doraiswamy PM, Sperling RA, Coleman RE, Johnson KA, Reiman EM, Davis MD, et al. Amyloid-β assessed by florbetapir F 18 PET and 18-month cognitive decline: a multicenter study. Neurology. 2012;79:1636–44.CrossRefPubMed
36.
Zurück zum Zitat Brendel M, Högenauer M, Delker A, Sauerbeck J, Bartenstein P, Seibyl J, et al. Improved longitudinal [(18)F]-AV45 amyloid PET by white matter reference and VOI-based partial volume effect correction. Neuroimage. 2015;108:450–9.CrossRefPubMed Brendel M, Högenauer M, Delker A, Sauerbeck J, Bartenstein P, Seibyl J, et al. Improved longitudinal [(18)F]-AV45 amyloid PET by white matter reference and VOI-based partial volume effect correction. Neuroimage. 2015;108:450–9.CrossRefPubMed
37.
Zurück zum Zitat Fleisher AS, Joshi AD, Sundell KL, Chen Y-F, Kollack-Walker S, Lu M, et al. Use of white matter reference regions for detection of change in florbetapir positron emission tomography from completed phase 3 solanezumab trials. Alzheimers Dement. 2017;13:1117–24.CrossRefPubMed Fleisher AS, Joshi AD, Sundell KL, Chen Y-F, Kollack-Walker S, Lu M, et al. Use of white matter reference regions for detection of change in florbetapir positron emission tomography from completed phase 3 solanezumab trials. Alzheimers Dement. 2017;13:1117–24.CrossRefPubMed
38.
Zurück zum Zitat Su Y, Blazey TM, Owen CJ, Christensen JJ, Friedrichsen K, Joseph-Mathurin N, et al. Quantitative amyloid imaging in autosomal dominant Alzheimer’s disease: results from the DIAN study group. PLoS One. 2016;11:e0152082.CrossRefPubMedPubMedCentral Su Y, Blazey TM, Owen CJ, Christensen JJ, Friedrichsen K, Joseph-Mathurin N, et al. Quantitative amyloid imaging in autosomal dominant Alzheimer’s disease: results from the DIAN study group. PLoS One. 2016;11:e0152082.CrossRefPubMedPubMedCentral
39.
Zurück zum Zitat Fischl B, Dale AM. Measuring the thickness of the human cerebral cortex from magnetic resonance images. Proc Natl Acad Sci U S A. 2000;97:11050–5.CrossRefPubMedPubMedCentral Fischl B, Dale AM. Measuring the thickness of the human cerebral cortex from magnetic resonance images. Proc Natl Acad Sci U S A. 2000;97:11050–5.CrossRefPubMedPubMedCentral
40.
Zurück zum Zitat Sisodiya S, Free S, Fish D, Shorvon S. MRI-based surface area estimates in the normal adult human brain: evidence for structural organisation. J Anat. 1996;188(Pt 2):425–38.PubMedPubMedCentral Sisodiya S, Free S, Fish D, Shorvon S. MRI-based surface area estimates in the normal adult human brain: evidence for structural organisation. J Anat. 1996;188(Pt 2):425–38.PubMedPubMedCentral
43.
Zurück zum Zitat Lerch JP, Pruessner JC, Zijdenbos A, Hampel H, Teipel SJ, Evans AC. Focal decline of cortical thickness in Alzheimer’s disease identified by computational neuroanatomy. Cereb Cortex. 2005;15:995–1001.CrossRefPubMed Lerch JP, Pruessner JC, Zijdenbos A, Hampel H, Teipel SJ, Evans AC. Focal decline of cortical thickness in Alzheimer’s disease identified by computational neuroanatomy. Cereb Cortex. 2005;15:995–1001.CrossRefPubMed
47.
Zurück zum Zitat Chen YJ, Rosario BL, Mowrey W, Laymon CM, Lu X, Lopez OL, et al. Relative 11C-PiB delivery as a proxy of relative CBF: quantitative evaluation using single-session 15O-water and 11C-PiB PET. J Nucl Med. 2015;56:1199–205.CrossRefPubMed Chen YJ, Rosario BL, Mowrey W, Laymon CM, Lu X, Lopez OL, et al. Relative 11C-PiB delivery as a proxy of relative CBF: quantitative evaluation using single-session 15O-water and 11C-PiB PET. J Nucl Med. 2015;56:1199–205.CrossRefPubMed
Metadaten
Titel
A kinetics-based approach to amyloid PET semi-quantification
verfasst von
A. Chincarini
E. Peira
M. Corosu
S. Morbelli
M. Bauckneht
S. Capitanio
M. Pardini
D. Arnaldi
C. Vellani
D. D’Ambrosio
V. Garibotto
F. Assal
B. Paghera
G. Savelli
A. Stefanelli
U. P. Guerra
F. Nobili
Publikationsdatum
25.01.2020
Verlag
Springer Berlin Heidelberg
Erschienen in
European Journal of Nuclear Medicine and Molecular Imaging / Ausgabe 9/2020
Print ISSN: 1619-7070
Elektronische ISSN: 1619-7089
DOI
https://doi.org/10.1007/s00259-020-04689-y

Weitere Artikel der Ausgabe 9/2020

European Journal of Nuclear Medicine and Molecular Imaging 9/2020 Zur Ausgabe