Skip to main content
Erschienen in: Seminars in Immunopathology 2/2010

01.06.2010 | Review

Signals that influence T follicular helper cell differentiation and function

verfasst von: Michelle A. Linterman, Carola G. Vinuesa

Erschienen in: Seminars in Immunopathology | Ausgabe 2/2010

Einloggen, um Zugang zu erhalten

Abstract

Follicular helper T cells have recently emerged as a separate CD4+ T helper lineage specialised in provision of help to B cells. They develop independently from Th1, Th2 and Th17 cells and are critical for humoral immunity, including the generation of long-lived and high affinity plasma cells and memory cells crucial for long-term protection against infections. A stepwise differentiation programme has emerged in which T cell receptor (TCR) signalling strength, CD28-mediated costimulation, B cell-derived inducible costimulator ligand signals, induction of c-maf and actions of cytokines, including interleukin (IL)-6 and IL-21, lead to upregulation of the transcriptional repressor B cell lymphoma 6 (Bcl-6) that drives T follicular helper (Tfh) cell differentiation. Bcl-6 turns on a repression programme that targets Blimp-1, transcriptional regulators of other helper lineages and microRNAs. Their concerted actions modulate expression of chemokine receptors, surface molecules and cytokines critical for follicular homing and B cell helper functions. Here, we review the nature of Tfh cells providing help to B cells during the two phases of B cell activation that occur in the outer T zone and, for some B cells, in germinal centres (GC). Recent insights into the signalling events that drive terminal differentiation of Tfh cells critical for selecting somatically mutated GC B cells and the consequences of Tfh dysregulation for immunodeficiency and autoimmune pathology are discussed.
Literatur
1.
Zurück zum Zitat Hsu SM, Cossman J, Jaffe ES (1983) Lymphocyte subsets in normal human lymphoid tissues. Am J Clin Pathol 80(1):21–30PubMed Hsu SM, Cossman J, Jaffe ES (1983) Lymphocyte subsets in normal human lymphoid tissues. Am J Clin Pathol 80(1):21–30PubMed
2.
Zurück zum Zitat Velardi A et al (1986) Functional analysis of cloned germinal center CD4+ cells with natural killer cell-related features. Divergence from typical T helper cells. J Immunol 137(9):2808–2813PubMed Velardi A et al (1986) Functional analysis of cloned germinal center CD4+ cells with natural killer cell-related features. Divergence from typical T helper cells. J Immunol 137(9):2808–2813PubMed
3.
Zurück zum Zitat Liu YJ et al (1989) Mechanism of antigen-driven selection in germinal centres. Nature 342(6252):929–931PubMedCrossRef Liu YJ et al (1989) Mechanism of antigen-driven selection in germinal centres. Nature 342(6252):929–931PubMedCrossRef
4.
Zurück zum Zitat Klaus SJ et al (1994) Costimulation through CD28 enhances T cell-dependent B cell activation via CD40–CD40L interaction. J Immunol 152(12):5643–5652PubMed Klaus SJ et al (1994) Costimulation through CD28 enhances T cell-dependent B cell activation via CD40–CD40L interaction. J Immunol 152(12):5643–5652PubMed
5.
Zurück zum Zitat Casamayor-Palleja M, Khan M, MacLennan IC (1995) A subset of CD4+ memory T cells contains preformed CD40 ligand that is rapidly but transiently expressed on their surface after activation through the T cell receptor complex. J Exp Med 181(4):1293–1301PubMedCrossRef Casamayor-Palleja M, Khan M, MacLennan IC (1995) A subset of CD4+ memory T cells contains preformed CD40 ligand that is rapidly but transiently expressed on their surface after activation through the T cell receptor complex. J Exp Med 181(4):1293–1301PubMedCrossRef
6.
Zurück zum Zitat Casamayor-Palleja M et al (1996) Centrocytes rapidly adopt a memory B cell phenotype on co-culture with autologous germinal centre T cell-enriched preparations. Int Immunol 8(5):737–744PubMedCrossRef Casamayor-Palleja M et al (1996) Centrocytes rapidly adopt a memory B cell phenotype on co-culture with autologous germinal centre T cell-enriched preparations. Int Immunol 8(5):737–744PubMedCrossRef
7.
Zurück zum Zitat Han S et al (1995) Cellular interaction in germinal centers. Roles of CD40 ligand and B7-2 in established germinal centers. J Immunol 155(2):556–567PubMed Han S et al (1995) Cellular interaction in germinal centers. Roles of CD40 ligand and B7-2 in established germinal centers. J Immunol 155(2):556–567PubMed
8.
Zurück zum Zitat Rothstein TL et al (1995) Protection against Fas-dependent Th1-mediated apoptosis by antigen receptor engagement in B cells. Nature 374(6518):163–165PubMedCrossRef Rothstein TL et al (1995) Protection against Fas-dependent Th1-mediated apoptosis by antigen receptor engagement in B cells. Nature 374(6518):163–165PubMedCrossRef
9.
Zurück zum Zitat Forster R et al (1996) A putative chemokine receptor, BLR1, directs B cell migration to defined lymphoid organs and specific anatomic compartments of the spleen. Cell 87(6):1037–1047PubMedCrossRef Forster R et al (1996) A putative chemokine receptor, BLR1, directs B cell migration to defined lymphoid organs and specific anatomic compartments of the spleen. Cell 87(6):1037–1047PubMedCrossRef
10.
Zurück zum Zitat Walker LS et al (1999) Compromised OX40 function in CD28-deficient mice is linked with failure to develop CXC chemokine receptor 5-positive CD4 cells and germinal centers. J Exp Med 190(8):1115–1122PubMedCrossRef Walker LS et al (1999) Compromised OX40 function in CD28-deficient mice is linked with failure to develop CXC chemokine receptor 5-positive CD4 cells and germinal centers. J Exp Med 190(8):1115–1122PubMedCrossRef
11.
Zurück zum Zitat Ansel KM et al (1999) In vivo-activated CD4 T cells upregulate CXC chemokine receptor 5 and reprogram their response to lymphoid chemokines. J Exp Med 190(8):1123–1134PubMedCrossRef Ansel KM et al (1999) In vivo-activated CD4 T cells upregulate CXC chemokine receptor 5 and reprogram their response to lymphoid chemokines. J Exp Med 190(8):1123–1134PubMedCrossRef
12.
Zurück zum Zitat Kim CH et al (2001) Subspecialization of CXCR5+ T cells: B helper activity is focused in a germinal center-localized subset of CXCR5+ T cells. J Exp Med 193(12):1373–1381PubMedCrossRef Kim CH et al (2001) Subspecialization of CXCR5+ T cells: B helper activity is focused in a germinal center-localized subset of CXCR5+ T cells. J Exp Med 193(12):1373–1381PubMedCrossRef
13.
Zurück zum Zitat Schaerli P et al (2000) CXC chemokine receptor 5 expression defines follicular homing T cells with B cell helper function. J Exp Med 192(11):1553–1562PubMedCrossRef Schaerli P et al (2000) CXC chemokine receptor 5 expression defines follicular homing T cells with B cell helper function. J Exp Med 192(11):1553–1562PubMedCrossRef
14.
Zurück zum Zitat Breitfeld D et al (2000) Follicular B helper T cells express CXC chemokine receptor 5, localize to B cell follicles, and support immunoglobulin production. J Exp Med 192(11):1545–1552PubMedCrossRef Breitfeld D et al (2000) Follicular B helper T cells express CXC chemokine receptor 5, localize to B cell follicles, and support immunoglobulin production. J Exp Med 192(11):1545–1552PubMedCrossRef
15.
Zurück zum Zitat Kim CH et al (2004) Unique gene expression program of human germinal center T helper cells. Blood 104(7):1952–1960PubMedCrossRef Kim CH et al (2004) Unique gene expression program of human germinal center T helper cells. Blood 104(7):1952–1960PubMedCrossRef
16.
Zurück zum Zitat Chtanova T et al (2004) T follicular helper cells express a distinctive transcriptional profile, reflecting their role as non-Th1/Th2 effector cells that provide help for B cells. J Immunol 173(1):68–78PubMed Chtanova T et al (2004) T follicular helper cells express a distinctive transcriptional profile, reflecting their role as non-Th1/Th2 effector cells that provide help for B cells. J Immunol 173(1):68–78PubMed
17.
Zurück zum Zitat Nurieva RI et al (2008) Generation of T follicular helper cells is mediated by interleukin-21 but independent of T helper 1, 2, or 17 cell lineages. Immunity 29(1):138–149PubMedCrossRef Nurieva RI et al (2008) Generation of T follicular helper cells is mediated by interleukin-21 but independent of T helper 1, 2, or 17 cell lineages. Immunity 29(1):138–149PubMedCrossRef
18.
Zurück zum Zitat Vinuesa CG et al (2005) Follicular B helper T cells in antibody responses and autoimmunity. Nat Rev Immunol 5(11):853–865PubMedCrossRef Vinuesa CG et al (2005) Follicular B helper T cells in antibody responses and autoimmunity. Nat Rev Immunol 5(11):853–865PubMedCrossRef
19.
Zurück zum Zitat Nurieva RI et al (2009) Bcl6 mediates the development of T follicular helper cells. Science 325:1001–1005PubMedCrossRef Nurieva RI et al (2009) Bcl6 mediates the development of T follicular helper cells. Science 325:1001–1005PubMedCrossRef
20.
Zurück zum Zitat Yu D et al (2009) The transcriptional repressor Bcl-6 directs T follicular helper cell lineage commitment. Immunity 31:457–468PubMedCrossRef Yu D et al (2009) The transcriptional repressor Bcl-6 directs T follicular helper cell lineage commitment. Immunity 31:457–468PubMedCrossRef
21.
Zurück zum Zitat Johnston RJ et al (2009) Bcl6 and Blimp-1 are reciprocal and antagonistic regulators of T follicular helper cell differentiation. Science 325:1006–1010PubMedCrossRef Johnston RJ et al (2009) Bcl6 and Blimp-1 are reciprocal and antagonistic regulators of T follicular helper cell differentiation. Science 325:1006–1010PubMedCrossRef
22.
Zurück zum Zitat Toellner KM et al (1998) T helper 1 (Th1) and Th2 characteristics start to develop during T cell priming and are associated with an immediate ability to induce immunoglobulin class switching. J Exp Med 187(8):1193–1204PubMedCrossRef Toellner KM et al (1998) T helper 1 (Th1) and Th2 characteristics start to develop during T cell priming and are associated with an immediate ability to induce immunoglobulin class switching. J Exp Med 187(8):1193–1204PubMedCrossRef
23.
Zurück zum Zitat Fazilleau N et al (2009) Follicular helper T cells: lineage and location. Immunity 30(3):324–335PubMedCrossRef Fazilleau N et al (2009) Follicular helper T cells: lineage and location. Immunity 30(3):324–335PubMedCrossRef
24.
Zurück zum Zitat McHeyzer-Williams LJ et al (2009) Follicular helper T cells as cognate regulators of B cell immunity. Curr Opin Immunol 21(3):266–273PubMedCrossRef McHeyzer-Williams LJ et al (2009) Follicular helper T cells as cognate regulators of B cell immunity. Curr Opin Immunol 21(3):266–273PubMedCrossRef
25.
Zurück zum Zitat Okada T et al (2005) Antigen-engaged B cells undergo chemotaxis toward the T zone and form motile conjugates with helper T cells. PLoS Biol 3(6):e150PubMedCrossRef Okada T et al (2005) Antigen-engaged B cells undergo chemotaxis toward the T zone and form motile conjugates with helper T cells. PLoS Biol 3(6):e150PubMedCrossRef
26.
Zurück zum Zitat Chan TD et al (2009) Antigen affinity controls rapid T-dependent antibody production by driving the expansion rather than the differentiation or extrafollicular migration of early plasmablasts. J Immunol 183(5):3139–3149PubMedCrossRef Chan TD et al (2009) Antigen affinity controls rapid T-dependent antibody production by driving the expansion rather than the differentiation or extrafollicular migration of early plasmablasts. J Immunol 183(5):3139–3149PubMedCrossRef
27.
Zurück zum Zitat Odegard JM et al (2008) ICOS-dependent extrafollicular helper T cells elicit IgG production via IL-21 in systemic autoimmunity. J Exp Med 205(12):2873–2886PubMedCrossRef Odegard JM et al (2008) ICOS-dependent extrafollicular helper T cells elicit IgG production via IL-21 in systemic autoimmunity. J Exp Med 205(12):2873–2886PubMedCrossRef
28.
Zurück zum Zitat Bubier JA et al (2009) A critical role for IL-21 receptor signaling in the pathogenesis of systemic lupus erythematosus in BXSB-Yaa mice. Proc Natl Acad Sci USA 106(5):1518–1523PubMedCrossRef Bubier JA et al (2009) A critical role for IL-21 receptor signaling in the pathogenesis of systemic lupus erythematosus in BXSB-Yaa mice. Proc Natl Acad Sci USA 106(5):1518–1523PubMedCrossRef
29.
Zurück zum Zitat Linterman MA et al (2009) Roquin differentiates the specialized functions of duplicated T cell costimulatory receptor genes CD28 and ICOS. Immunity 30(2):228–241PubMedCrossRef Linterman MA et al (2009) Roquin differentiates the specialized functions of duplicated T cell costimulatory receptor genes CD28 and ICOS. Immunity 30(2):228–241PubMedCrossRef
30.
Zurück zum Zitat Haynes NM et al (2007) Role of CXCR5 and CCR7 in follicular Th cell positioning and appearance of a programmed cell death gene-1high germinal center-associated subpopulation. J Immunol 179(8):5099–5108PubMed Haynes NM et al (2007) Role of CXCR5 and CCR7 in follicular Th cell positioning and appearance of a programmed cell death gene-1high germinal center-associated subpopulation. J Immunol 179(8):5099–5108PubMed
31.
Zurück zum Zitat Fazilleau N et al (2009) The function of follicular helper T cells is regulated by the strength of T cell antigen receptor binding. Nat Immunol 10(4):375–384PubMedCrossRef Fazilleau N et al (2009) The function of follicular helper T cells is regulated by the strength of T cell antigen receptor binding. Nat Immunol 10(4):375–384PubMedCrossRef
32.
Zurück zum Zitat Linterman MA et al (2009) Follicular helper T cells are required for systemic autoimmunity. J Exp Med 206(3):561–576PubMedCrossRef Linterman MA et al (2009) Follicular helper T cells are required for systemic autoimmunity. J Exp Med 206(3):561–576PubMedCrossRef
33.
Zurück zum Zitat Crotty S et al (2003) SAP is required for generating long-term humoral immunity. Nature 421(6920):282–287PubMedCrossRef Crotty S et al (2003) SAP is required for generating long-term humoral immunity. Nature 421(6920):282–287PubMedCrossRef
34.
Zurück zum Zitat Cannons JL et al (2006) SAP regulates T cell-mediated help for humoral immunity by a mechanism distinct from cytokine regulation. J Exp Med 203(6):1551–1565PubMedCrossRef Cannons JL et al (2006) SAP regulates T cell-mediated help for humoral immunity by a mechanism distinct from cytokine regulation. J Exp Med 203(6):1551–1565PubMedCrossRef
35.
Zurück zum Zitat Veillette A (2006) Immune regulation by SLAM family receptors and SAP-related adaptors. Nat Rev Immunol 6(1):56–66PubMedCrossRef Veillette A (2006) Immune regulation by SLAM family receptors and SAP-related adaptors. Nat Rev Immunol 6(1):56–66PubMedCrossRef
36.
Zurück zum Zitat Li C, Schibli D, Li SS (2009) The XLP syndrome protein SAP interacts with SH3 proteins to regulate T cell signaling and proliferation. Cell Signal 21(1):111–119PubMedCrossRef Li C, Schibli D, Li SS (2009) The XLP syndrome protein SAP interacts with SH3 proteins to regulate T cell signaling and proliferation. Cell Signal 21(1):111–119PubMedCrossRef
37.
Zurück zum Zitat Kearney ER et al (1994) Visualization of peptide-specific T cell immunity and peripheral tolerance induction in vivo. Immunity 1(4):327–339PubMedCrossRef Kearney ER et al (1994) Visualization of peptide-specific T cell immunity and peripheral tolerance induction in vivo. Immunity 1(4):327–339PubMedCrossRef
38.
Zurück zum Zitat Malherbe L et al (2008) Vaccine adjuvants alter TCR-based selection thresholds. Immunity 28(5):698–709PubMedCrossRef Malherbe L et al (2008) Vaccine adjuvants alter TCR-based selection thresholds. Immunity 28(5):698–709PubMedCrossRef
39.
Zurück zum Zitat Walker LS et al (2003) Established T cell-driven germinal center B cell proliferation is independent of CD28 signaling but is tightly regulated through CTLA-4. J Immunol 170(1):91–98PubMed Walker LS et al (2003) Established T cell-driven germinal center B cell proliferation is independent of CD28 signaling but is tightly regulated through CTLA-4. J Immunol 170(1):91–98PubMed
40.
Zurück zum Zitat Boise LH et al (1995) CD28 costimulation can promote T cell survival by enhancing the expression of Bcl-XL. Immunity 3(1):87–98PubMedCrossRef Boise LH et al (1995) CD28 costimulation can promote T cell survival by enhancing the expression of Bcl-XL. Immunity 3(1):87–98PubMedCrossRef
41.
Zurück zum Zitat Noel PJ et al (1996) CD28 costimulation prevents cell death during primary T cell activation. J Immunol 157(2):636–642PubMed Noel PJ et al (1996) CD28 costimulation prevents cell death during primary T cell activation. J Immunol 157(2):636–642PubMed
42.
Zurück zum Zitat Vinuesa CG et al (2005) A RING-type ubiquitin ligase family member required to repress follicular helper T cells and autoimmunity. Nature 435(7041):452–458PubMedCrossRef Vinuesa CG et al (2005) A RING-type ubiquitin ligase family member required to repress follicular helper T cells and autoimmunity. Nature 435(7041):452–458PubMedCrossRef
43.
Zurück zum Zitat Yu D et al (2007) Roquin represses autoimmunity by limiting inducible T-cell co-stimulator messenger RNA. Nature 450(7167):299–303PubMedCrossRef Yu D et al (2007) Roquin represses autoimmunity by limiting inducible T-cell co-stimulator messenger RNA. Nature 450(7167):299–303PubMedCrossRef
44.
Zurück zum Zitat Greenwald RJ, Freeman GJ, Sharpe AH (2005) The B7 family revisited. Annu Rev Immunol 23:515–548PubMedCrossRef Greenwald RJ, Freeman GJ, Sharpe AH (2005) The B7 family revisited. Annu Rev Immunol 23:515–548PubMedCrossRef
45.
Zurück zum Zitat Luther SA et al (2002) Differing activities of homeostatic chemokines CCL19, CCL21, and CXCL12 in lymphocyte and dendritic cell recruitment and lymphoid neogenesis. J Immunol 169(1):424–433PubMed Luther SA et al (2002) Differing activities of homeostatic chemokines CCL19, CCL21, and CXCL12 in lymphocyte and dendritic cell recruitment and lymphoid neogenesis. J Immunol 169(1):424–433PubMed
46.
Zurück zum Zitat Muller G, Hopken UE, Lipp M (2003) The impact of CCR7 and CXCR5 on lymphoid organ development and systemic immunity. Immunol Rev 195:117–135PubMedCrossRef Muller G, Hopken UE, Lipp M (2003) The impact of CCR7 and CXCR5 on lymphoid organ development and systemic immunity. Immunol Rev 195:117–135PubMedCrossRef
47.
Zurück zum Zitat Miller MJ et al (2002) Two-photon imaging of lymphocyte motility and antigen response in intact lymph node. Science 296(5574):1869–1873PubMedCrossRef Miller MJ et al (2002) Two-photon imaging of lymphocyte motility and antigen response in intact lymph node. Science 296(5574):1869–1873PubMedCrossRef
48.
Zurück zum Zitat Okada T et al (2002) Chemokine requirements for B cell entry to lymph nodes and Peyer’s patches. J Exp Med 196(1):65–75PubMedCrossRef Okada T et al (2002) Chemokine requirements for B cell entry to lymph nodes and Peyer’s patches. J Exp Med 196(1):65–75PubMedCrossRef
49.
Zurück zum Zitat Reif K et al (2002) Balanced responsiveness to chemoattractants from adjacent zones determines B-cell position. Nature 416(6876):94–99PubMedCrossRef Reif K et al (2002) Balanced responsiveness to chemoattractants from adjacent zones determines B-cell position. Nature 416(6876):94–99PubMedCrossRef
50.
Zurück zum Zitat Ekland EH et al (2004) Requirements for follicular exclusion and competitive elimination of autoantigen-binding B cells. J Immunol 172(8):4700–4708PubMed Ekland EH et al (2004) Requirements for follicular exclusion and competitive elimination of autoantigen-binding B cells. J Immunol 172(8):4700–4708PubMed
51.
Zurück zum Zitat Hardtke S, Ohl L, Forster R (2005) Balanced expression of CXCR5 and CCR7 on follicular T helper cells determines their transient positioning to lymph node follicles and is essential for efficient B-cell help. Blood 106(6):1924–1931PubMedCrossRef Hardtke S, Ohl L, Forster R (2005) Balanced expression of CXCR5 and CCR7 on follicular T helper cells determines their transient positioning to lymph node follicles and is essential for efficient B-cell help. Blood 106(6):1924–1931PubMedCrossRef
52.
Zurück zum Zitat Qi H et al (2008) SAP-controlled T–B cell interactions underlie germinal centre formation. Nature 455(7214):764–769PubMedCrossRef Qi H et al (2008) SAP-controlled T–B cell interactions underlie germinal centre formation. Nature 455(7214):764–769PubMedCrossRef
53.
Zurück zum Zitat McAdam AJ et al (2000) Mouse inducible costimulatory molecule (ICOS) expression is enhanced by CD28 costimulation and regulates differentiation of CD4+ T cells. J Immunol 165(9):5035–5040PubMed McAdam AJ et al (2000) Mouse inducible costimulatory molecule (ICOS) expression is enhanced by CD28 costimulation and regulates differentiation of CD4+ T cells. J Immunol 165(9):5035–5040PubMed
54.
Zurück zum Zitat Dong C et al (2001) ICOS co-stimulatory receptor is essential for T-cell activation and function. Nature 409(6816):97–101PubMedCrossRef Dong C et al (2001) ICOS co-stimulatory receptor is essential for T-cell activation and function. Nature 409(6816):97–101PubMedCrossRef
55.
Zurück zum Zitat Grimbacher B et al (2003) Homozygous loss of ICOS is associated with adult-onset common variable immunodeficiency. Nat Immunol 4(3):261–268PubMedCrossRef Grimbacher B et al (2003) Homozygous loss of ICOS is associated with adult-onset common variable immunodeficiency. Nat Immunol 4(3):261–268PubMedCrossRef
56.
Zurück zum Zitat McAdam AJ et al (2001) ICOS is critical for CD40-mediated antibody class switching. Nature 409(6816):102–105PubMedCrossRef McAdam AJ et al (2001) ICOS is critical for CD40-mediated antibody class switching. Nature 409(6816):102–105PubMedCrossRef
57.
Zurück zum Zitat Tafuri A et al (2001) ICOS is essential for effective T-helper-cell responses. Nature 409(6816):105–109PubMedCrossRef Tafuri A et al (2001) ICOS is essential for effective T-helper-cell responses. Nature 409(6816):105–109PubMedCrossRef
58.
Zurück zum Zitat Akiba H et al (2005) The role of ICOS in the CXCR5+ follicular B helper T cell maintenance in vivo. J Immunol 175(4):2340–2348PubMed Akiba H et al (2005) The role of ICOS in the CXCR5+ follicular B helper T cell maintenance in vivo. J Immunol 175(4):2340–2348PubMed
59.
Zurück zum Zitat Nakazawa A et al (2004) The expression and function of costimulatory molecules B7H and B7-H1 on colonic epithelial cells. Gastroenterology 126(5):1347–1357PubMedCrossRef Nakazawa A et al (2004) The expression and function of costimulatory molecules B7H and B7-H1 on colonic epithelial cells. Gastroenterology 126(5):1347–1357PubMedCrossRef
60.
Zurück zum Zitat Mages HW et al (2000) Molecular cloning and characterization of murine ICOS and identification of B7h as ICOS ligand. Eur J Immunol 30(4):1040–1047PubMedCrossRef Mages HW et al (2000) Molecular cloning and characterization of murine ICOS and identification of B7h as ICOS ligand. Eur J Immunol 30(4):1040–1047PubMedCrossRef
61.
Zurück zum Zitat Liang L, Porter EM, Sha WC (2002) Constitutive expression of the B7h ligand for inducible costimulator on naive B cells is extinguished after activation by distinct B cell receptor and interleukin 4 receptor-mediated pathways and can be rescued by CD40 signaling. J Exp Med 196(1):97–108PubMedCrossRef Liang L, Porter EM, Sha WC (2002) Constitutive expression of the B7h ligand for inducible costimulator on naive B cells is extinguished after activation by distinct B cell receptor and interleukin 4 receptor-mediated pathways and can be rescued by CD40 signaling. J Exp Med 196(1):97–108PubMedCrossRef
62.
Zurück zum Zitat Nurieva RI et al (2003) B7h is required for T cell activation, differentiation, and effector function. Proc Natl Acad Sci USA 100(24):14163–14168PubMedCrossRef Nurieva RI et al (2003) B7h is required for T cell activation, differentiation, and effector function. Proc Natl Acad Sci USA 100(24):14163–14168PubMedCrossRef
63.
Zurück zum Zitat Swallow MM, Wallin JJ, Sha WC (1999) B7h, a novel costimulatory homolog of B7.1 and B7.2, is induced by TNFalpha. Immunity 11(4):423–432PubMedCrossRef Swallow MM, Wallin JJ, Sha WC (1999) B7h, a novel costimulatory homolog of B7.1 and B7.2, is induced by TNFalpha. Immunity 11(4):423–432PubMedCrossRef
64.
Zurück zum Zitat Nurieva RI et al (2003) Transcriptional regulation of th2 differentiation by inducible costimulator. Immunity 18(6):801–811PubMedCrossRef Nurieva RI et al (2003) Transcriptional regulation of th2 differentiation by inducible costimulator. Immunity 18(6):801–811PubMedCrossRef
65.
Zurück zum Zitat Bauquet AT et al (2009) The costimulatory molecule ICOS regulates the expression of c-Maf and IL-21 in the development of follicular T helper cells and TH-17 cells. Nat Immunol 10(2):167–175PubMedCrossRef Bauquet AT et al (2009) The costimulatory molecule ICOS regulates the expression of c-Maf and IL-21 in the development of follicular T helper cells and TH-17 cells. Nat Immunol 10(2):167–175PubMedCrossRef
66.
Zurück zum Zitat Pot C et al (2009) Cutting edge: IL-27 induces the transcription factor c-Maf, cytokine IL-21, and the costimulatory receptor ICOS that coordinately act together to promote differentiation of IL-10-producing Tr1 cells. J Immunol 183(2):797–801PubMedCrossRef Pot C et al (2009) Cutting edge: IL-27 induces the transcription factor c-Maf, cytokine IL-21, and the costimulatory receptor ICOS that coordinately act together to promote differentiation of IL-10-producing Tr1 cells. J Immunol 183(2):797–801PubMedCrossRef
67.
Zurück zum Zitat Vogelzang A et al (2008) A fundamental role for interleukin-21 in the generation of T follicular helper cells. Immunity 29(1):127–137PubMedCrossRef Vogelzang A et al (2008) A fundamental role for interleukin-21 in the generation of T follicular helper cells. Immunity 29(1):127–137PubMedCrossRef
68.
Zurück zum Zitat Kerckaert JP et al (1993) LAZ3, a novel zinc-finger encoding gene, is disrupted by recurring chromosome 3q27 translocations in human lymphomas. Nat Genet 5(1):66–70PubMedCrossRef Kerckaert JP et al (1993) LAZ3, a novel zinc-finger encoding gene, is disrupted by recurring chromosome 3q27 translocations in human lymphomas. Nat Genet 5(1):66–70PubMedCrossRef
69.
Zurück zum Zitat Ye BH et al (1993) Alterations of a zinc finger-encoding gene, BCL-6, in diffuse large-cell lymphoma. Science 262(5134):747–750PubMedCrossRef Ye BH et al (1993) Alterations of a zinc finger-encoding gene, BCL-6, in diffuse large-cell lymphoma. Science 262(5134):747–750PubMedCrossRef
70.
Zurück zum Zitat Seyfert VL et al (1996) Transcriptional repression by the proto-oncogene BCL-6. Oncogene 12(11):2331–2342PubMed Seyfert VL et al (1996) Transcriptional repression by the proto-oncogene BCL-6. Oncogene 12(11):2331–2342PubMed
71.
Zurück zum Zitat Deweindt C et al (1995) The LAZ3/BCL6 oncogene encodes a sequence-specific transcriptional inhibitor: a novel function for the BTB/POZ domain as an autonomous repressing domain. Cell Growth Differ 6(12):1495–1503PubMed Deweindt C et al (1995) The LAZ3/BCL6 oncogene encodes a sequence-specific transcriptional inhibitor: a novel function for the BTB/POZ domain as an autonomous repressing domain. Cell Growth Differ 6(12):1495–1503PubMed
72.
Zurück zum Zitat Chang CC et al (1996) BCL-6, a POZ/zinc-finger protein, is a sequence-specific transcriptional repressor. Proc Natl Acad Sci USA 93(14):6947–6952PubMedCrossRef Chang CC et al (1996) BCL-6, a POZ/zinc-finger protein, is a sequence-specific transcriptional repressor. Proc Natl Acad Sci USA 93(14):6947–6952PubMedCrossRef
73.
Zurück zum Zitat Cattoretti G et al (1995) BCL-6 protein is expressed in germinal-center B cells. Blood 86(1):45–53PubMed Cattoretti G et al (1995) BCL-6 protein is expressed in germinal-center B cells. Blood 86(1):45–53PubMed
74.
Zurück zum Zitat Allman D et al (1996) BCL-6 expression during B-cell activation. Blood 87(12):5257–5268PubMed Allman D et al (1996) BCL-6 expression during B-cell activation. Blood 87(12):5257–5268PubMed
75.
Zurück zum Zitat Dent AL et al (1997) Control of inflammation, cytokine expression, and germinal center formation by BCL-6. Science 276(5312):589–592PubMedCrossRef Dent AL et al (1997) Control of inflammation, cytokine expression, and germinal center formation by BCL-6. Science 276(5312):589–592PubMedCrossRef
76.
Zurück zum Zitat Ye BH et al (1997) The BCL-6 proto-oncogene controls germinal-centre formation and Th2-type inflammation. Nat Genet 16(2):161–170PubMedCrossRef Ye BH et al (1997) The BCL-6 proto-oncogene controls germinal-centre formation and Th2-type inflammation. Nat Genet 16(2):161–170PubMedCrossRef
77.
Zurück zum Zitat Fukuda T et al (1997) Disruption of the Bcl6 gene results in an impaired germinal center formation. J Exp Med 186(3):439–448PubMedCrossRef Fukuda T et al (1997) Disruption of the Bcl6 gene results in an impaired germinal center formation. J Exp Med 186(3):439–448PubMedCrossRef
78.
Zurück zum Zitat Toney LM et al (2000) BCL-6 regulates chemokine gene transcription in macrophages. Nat Immunol 1(3):214–220PubMedCrossRef Toney LM et al (2000) BCL-6 regulates chemokine gene transcription in macrophages. Nat Immunol 1(3):214–220PubMedCrossRef
79.
Zurück zum Zitat Ichii H et al (2002) Role for Bcl-6 in the generation and maintenance of memory CD8+ T cells. Nat Immunol 3(6):558–563PubMedCrossRef Ichii H et al (2002) Role for Bcl-6 in the generation and maintenance of memory CD8+ T cells. Nat Immunol 3(6):558–563PubMedCrossRef
80.
Zurück zum Zitat Ichii H et al (2007) Bcl6 is essential for the generation of long-term memory CD4+ T cells. Int Immunol 19(4):427–433PubMedCrossRef Ichii H et al (2007) Bcl6 is essential for the generation of long-term memory CD4+ T cells. Int Immunol 19(4):427–433PubMedCrossRef
81.
Zurück zum Zitat King C, Tangye SG, Mackay CR (2008) T follicular helper (TFH) cells in normal and dysregulated immune responses. Annu Rev Immunol 26:741–766PubMedCrossRef King C, Tangye SG, Mackay CR (2008) T follicular helper (TFH) cells in normal and dysregulated immune responses. Annu Rev Immunol 26:741–766PubMedCrossRef
82.
Zurück zum Zitat Shaffer AL et al (2000) BCL-6 represses genes that function in lymphocyte differentiation, inflammation, and cell cycle control. Immunity 13(2):199–212PubMedCrossRef Shaffer AL et al (2000) BCL-6 represses genes that function in lymphocyte differentiation, inflammation, and cell cycle control. Immunity 13(2):199–212PubMedCrossRef
83.
Zurück zum Zitat Shaffer AL et al (2002) Blimp-1 orchestrates plasma cell differentiation by extinguishing the mature B cell gene expression program. Immunity 17(1):51–62PubMedCrossRef Shaffer AL et al (2002) Blimp-1 orchestrates plasma cell differentiation by extinguishing the mature B cell gene expression program. Immunity 17(1):51–62PubMedCrossRef
84.
Zurück zum Zitat Reljic R et al (2000) Suppression of signal transducer and activator of transcription 3-dependent B lymphocyte terminal differentiation by BCL-6. J Exp Med 192(12):1841–1848PubMedCrossRef Reljic R et al (2000) Suppression of signal transducer and activator of transcription 3-dependent B lymphocyte terminal differentiation by BCL-6. J Exp Med 192(12):1841–1848PubMedCrossRef
85.
Zurück zum Zitat Kusam S et al (2003) Inhibition of Th2 differentiation and GATA-3 expression by BCL-6. J Immunol 170(5):2435–2441PubMed Kusam S et al (2003) Inhibition of Th2 differentiation and GATA-3 expression by BCL-6. J Immunol 170(5):2435–2441PubMed
86.
Zurück zum Zitat Ma CS et al (2009) Early commitment of naive human CD4(+) T cells to the T follicular helper (T(FH)) cell lineage is induced by IL-12. Immunol Cell Biol 87:590–600PubMedCrossRef Ma CS et al (2009) Early commitment of naive human CD4(+) T cells to the T follicular helper (T(FH)) cell lineage is induced by IL-12. Immunol Cell Biol 87:590–600PubMedCrossRef
87.
Zurück zum Zitat Reinhardt RL, Liang HE, Locksley RM (2009) Cytokine-secreting follicular T cells shape the antibody repertoire. Nat Immunol 10(4):385–393PubMedCrossRef Reinhardt RL, Liang HE, Locksley RM (2009) Cytokine-secreting follicular T cells shape the antibody repertoire. Nat Immunol 10(4):385–393PubMedCrossRef
88.
Zurück zum Zitat Lu R (2008) Interferon regulatory factor 4 and 8 in B-cell development. Trends Immunol 29(10):487–492PubMedCrossRef Lu R (2008) Interferon regulatory factor 4 and 8 in B-cell development. Trends Immunol 29(10):487–492PubMedCrossRef
89.
Zurück zum Zitat Flynn S et al (1998) CD4 T cell cytokine differentiation: the B cell activation molecule, OX40 ligand, instructs CD4 T cells to express interleukin 4 and upregulates expression of the chemokine receptor, Blr-1. J Exp Med 188(2):297–304PubMedCrossRef Flynn S et al (1998) CD4 T cell cytokine differentiation: the B cell activation molecule, OX40 ligand, instructs CD4 T cells to express interleukin 4 and upregulates expression of the chemokine receptor, Blr-1. J Exp Med 188(2):297–304PubMedCrossRef
90.
Zurück zum Zitat Brocker T et al (1999) CD4 T cell traffic control: in vivo evidence that ligation of OX40 on CD4 T cells by OX40-ligand expressed on dendritic cells leads to the accumulation of CD4 T cells in B follicles. Eur J Immunol 29(5):1610–1616PubMedCrossRef Brocker T et al (1999) CD4 T cell traffic control: in vivo evidence that ligation of OX40 on CD4 T cells by OX40-ligand expressed on dendritic cells leads to the accumulation of CD4 T cells in B follicles. Eur J Immunol 29(5):1610–1616PubMedCrossRef
91.
Zurück zum Zitat Kim MY et al (2003) CD4(+)CD3(−) accessory cells costimulate primed CD4 T cells through OX40 and CD30 at sites where T cells collaborate with B cells. Immunity 18(5):643–654PubMedCrossRef Kim MY et al (2003) CD4(+)CD3(−) accessory cells costimulate primed CD4 T cells through OX40 and CD30 at sites where T cells collaborate with B cells. Immunity 18(5):643–654PubMedCrossRef
92.
Zurück zum Zitat Chen AI et al (1999) Ox40-ligand has a critical costimulatory role in dendritic cell:T cell interactions. Immunity 11(6):689–698PubMedCrossRef Chen AI et al (1999) Ox40-ligand has a critical costimulatory role in dendritic cell:T cell interactions. Immunity 11(6):689–698PubMedCrossRef
93.
Zurück zum Zitat Kopf M et al (1999) OX40-deficient mice are defective in Th cell proliferation but are competent in generating B cell and CTL responses after virus infection. Immunity 11(6):699–708PubMedCrossRef Kopf M et al (1999) OX40-deficient mice are defective in Th cell proliferation but are competent in generating B cell and CTL responses after virus infection. Immunity 11(6):699–708PubMedCrossRef
94.
Zurück zum Zitat Gaspal FM et al (2005) Mice deficient in OX40 and CD30 signals lack memory antibody responses because of deficient CD4 T cell memory. J Immunol 174(7):3891–3896PubMed Gaspal FM et al (2005) Mice deficient in OX40 and CD30 signals lack memory antibody responses because of deficient CD4 T cell memory. J Immunol 174(7):3891–3896PubMed
95.
Zurück zum Zitat Lane PJ, Gaspal FM, Kim MY (2005) Two sides of a cellular coin: CD4(+)CD3− cells regulate memory responses and lymph-node organization. Nat Rev Immunol 5(8):655–660PubMedCrossRef Lane PJ, Gaspal FM, Kim MY (2005) Two sides of a cellular coin: CD4(+)CD3− cells regulate memory responses and lymph-node organization. Nat Rev Immunol 5(8):655–660PubMedCrossRef
96.
Zurück zum Zitat Mebius RE, Rennert P, Weissman IL (1997) Developing lymph nodes collect CD4+CD3− LTbeta+ cells that can differentiate to APC, NK cells, and follicular cells but not T or B cells. Immunity 7(4):493–504PubMedCrossRef Mebius RE, Rennert P, Weissman IL (1997) Developing lymph nodes collect CD4+CD3− LTbeta+ cells that can differentiate to APC, NK cells, and follicular cells but not T or B cells. Immunity 7(4):493–504PubMedCrossRef
97.
Zurück zum Zitat Vinuesa CG, Sanz I, Cook MC (2009) Dysregulation of germinal centres in autoimmune disease. Nat Rev Immunol 9:845–857PubMedCrossRef Vinuesa CG, Sanz I, Cook MC (2009) Dysregulation of germinal centres in autoimmune disease. Nat Rev Immunol 9:845–857PubMedCrossRef
98.
99.
Zurück zum Zitat Meyer-Hermann ME, Maini PK, Iber D (2006) An analysis of B cell selection mechanisms in germinal centers. Math Med Biol 23(3):255–277PubMedCrossRef Meyer-Hermann ME, Maini PK, Iber D (2006) An analysis of B cell selection mechanisms in germinal centers. Math Med Biol 23(3):255–277PubMedCrossRef
100.
Zurück zum Zitat Hauser AE et al (2007) Definition of germinal-center B cell migration in vivo reveals predominant intrazonal circulation patterns. Immunity 26(5):655–667PubMedCrossRef Hauser AE et al (2007) Definition of germinal-center B cell migration in vivo reveals predominant intrazonal circulation patterns. Immunity 26(5):655–667PubMedCrossRef
101.
Zurück zum Zitat Allen CD et al (2007) Imaging of germinal center selection events during affinity maturation. Science 315(5811):528–531PubMedCrossRef Allen CD et al (2007) Imaging of germinal center selection events during affinity maturation. Science 315(5811):528–531PubMedCrossRef
102.
Zurück zum Zitat Schwickert TA et al (2007) In vivo imaging of germinal centres reveals a dynamic open structure. Nature 446(7131):83–87PubMedCrossRef Schwickert TA et al (2007) In vivo imaging of germinal centres reveals a dynamic open structure. Nature 446(7131):83–87PubMedCrossRef
103.
Zurück zum Zitat Batista FD, Neuberger MS (1998) Affinity dependence of the B cell response to antigen: a threshold, a ceiling, and the importance of off-rate. Immunity 8(6):751–759PubMedCrossRef Batista FD, Neuberger MS (1998) Affinity dependence of the B cell response to antigen: a threshold, a ceiling, and the importance of off-rate. Immunity 8(6):751–759PubMedCrossRef
104.
Zurück zum Zitat King IL, Mohrs M (2009) IL-4-producing CD4+ T cells in reactive lymph nodes during helminth infection are T follicular helper cells. J Exp Med 206(5):1001–1007PubMedCrossRef King IL, Mohrs M (2009) IL-4-producing CD4+ T cells in reactive lymph nodes during helminth infection are T follicular helper cells. J Exp Med 206(5):1001–1007PubMedCrossRef
105.
Zurück zum Zitat Zaretsky AG et al (2009) T follicular helper cells differentiate from Th2 cells in response to helminth antigens. J Exp Med 206(5):991–999PubMedCrossRef Zaretsky AG et al (2009) T follicular helper cells differentiate from Th2 cells in response to helminth antigens. J Exp Med 206(5):991–999PubMedCrossRef
106.
Zurück zum Zitat Ozaki K et al (2002) A critical role for IL-21 in regulating immunoglobulin production. Science 298(5598):1630–1634PubMedCrossRef Ozaki K et al (2002) A critical role for IL-21 in regulating immunoglobulin production. Science 298(5598):1630–1634PubMedCrossRef
107.
Zurück zum Zitat Ozaki K et al (2004) Regulation of B cell differentiation and plasma cell generation by IL-21, a novel inducer of Blimp-1 and Bcl-6. J Immunol 173(9):5361–5371PubMed Ozaki K et al (2004) Regulation of B cell differentiation and plasma cell generation by IL-21, a novel inducer of Blimp-1 and Bcl-6. J Immunol 173(9):5361–5371PubMed
108.
Zurück zum Zitat Linterman ML et al (2010) IL-21 acts directly on B cells to regulate Bcl-6 expression and germinal center responses. J Exp Med (In press) Linterman ML et al (2010) IL-21 acts directly on B cells to regulate Bcl-6 expression and germinal center responses. J Exp Med (In press)
109.
Zurück zum Zitat Cunningham AF et al (2004) Pinpointing IL-4-independent acquisition and IL-4-influenced maintenance of Th2 activity by CD4 T cells. Eur J Immunol 34(3):686–694PubMedCrossRef Cunningham AF et al (2004) Pinpointing IL-4-independent acquisition and IL-4-influenced maintenance of Th2 activity by CD4 T cells. Eur J Immunol 34(3):686–694PubMedCrossRef
110.
Zurück zum Zitat Pape KA et al (2003) Visualization of the genesis and fate of isotype-switched B cells during a primary immune response. J Exp Med 197(12):1677–1687PubMedCrossRef Pape KA et al (2003) Visualization of the genesis and fate of isotype-switched B cells during a primary immune response. J Exp Med 197(12):1677–1687PubMedCrossRef
111.
Zurück zum Zitat Takahashi Y, Ohta H, Takemori T (2001) Fas is required for clonal selection in germinal centers and the subsequent establishment of the memory B cell repertoire. Immunity 14(2):181–192PubMedCrossRef Takahashi Y, Ohta H, Takemori T (2001) Fas is required for clonal selection in germinal centers and the subsequent establishment of the memory B cell repertoire. Immunity 14(2):181–192PubMedCrossRef
112.
Zurück zum Zitat Hao Z et al (2008) Fas receptor expression in germinal-center B cells is essential for T and B lymphocyte homeostasis. Immunity 29(4):615–627PubMedCrossRef Hao Z et al (2008) Fas receptor expression in germinal-center B cells is essential for T and B lymphocyte homeostasis. Immunity 29(4):615–627PubMedCrossRef
113.
Zurück zum Zitat William J et al (2002) Evolution of autoantibody responses via somatic hypermutation outside of germinal centers. Science 297(5589):2066–2070PubMedCrossRef William J et al (2002) Evolution of autoantibody responses via somatic hypermutation outside of germinal centers. Science 297(5589):2066–2070PubMedCrossRef
114.
Zurück zum Zitat Radic MZ, Weigert M (1994) Genetic and structural evidence for antigen selection of anti-DNA antibodies. Annu Rev Immunol 12:487–520PubMedCrossRef Radic MZ, Weigert M (1994) Genetic and structural evidence for antigen selection of anti-DNA antibodies. Annu Rev Immunol 12:487–520PubMedCrossRef
115.
Zurück zum Zitat Ray SK, Putterman C, Diamond B (1996) Pathogenic autoantibodies are routinely generated during the response to foreign antigen: a paradigm for autoimmune disease. Proc Natl Acad Sci USA 93(5):2019–2024PubMedCrossRef Ray SK, Putterman C, Diamond B (1996) Pathogenic autoantibodies are routinely generated during the response to foreign antigen: a paradigm for autoimmune disease. Proc Natl Acad Sci USA 93(5):2019–2024PubMedCrossRef
116.
Zurück zum Zitat Rosen A, Casciola-Rosen L (2001) Clearing the way to mechanisms of autoimmunity. Nat Med 7(6):664–665PubMedCrossRef Rosen A, Casciola-Rosen L (2001) Clearing the way to mechanisms of autoimmunity. Nat Med 7(6):664–665PubMedCrossRef
117.
Zurück zum Zitat Shiono H et al (2003) Scenarios for autoimmunization of T and B cells in myasthenia gravis. Ann N Y Acad Sci 998:237–256PubMedCrossRef Shiono H et al (2003) Scenarios for autoimmunization of T and B cells in myasthenia gravis. Ann N Y Acad Sci 998:237–256PubMedCrossRef
118.
Zurück zum Zitat Weyand CM, Kurtin PJ, Goronzy JJ (2001) Ectopic lymphoid organogenesis: a fast track for autoimmunity. Am J Pathol 159(3):787–793PubMed Weyand CM, Kurtin PJ, Goronzy JJ (2001) Ectopic lymphoid organogenesis: a fast track for autoimmunity. Am J Pathol 159(3):787–793PubMed
119.
Zurück zum Zitat Vinuesa CG, Sanz I, Cook MC (2009) Dysregulation of germinal centres in autoimmune disease. Nat Rev Immunol 9(12):845–857PubMedCrossRef Vinuesa CG, Sanz I, Cook MC (2009) Dysregulation of germinal centres in autoimmune disease. Nat Rev Immunol 9(12):845–857PubMedCrossRef
120.
Zurück zum Zitat Luzina IG et al (2001) Spontaneous formation of germinal centers in autoimmune mice. J Leukoc Biol 70(4):578–584PubMed Luzina IG et al (2001) Spontaneous formation of germinal centers in autoimmune mice. J Leukoc Biol 70(4):578–584PubMed
121.
Zurück zum Zitat Sims GP et al (2001) Somatic hypermutation and selection of B cells in thymic germinal centers responding to acetylcholine receptor in myasthenia gravis. J Immunol 167(4):1935–1944PubMed Sims GP et al (2001) Somatic hypermutation and selection of B cells in thymic germinal centers responding to acetylcholine receptor in myasthenia gravis. J Immunol 167(4):1935–1944PubMed
122.
Zurück zum Zitat Salomonsson S et al (2003) Cellular basis of ectopic germinal center formation and autoantibody production in the target organ of patients with Sjogren’s syndrome. Arthritis Rheum 48(11):3187–3201PubMedCrossRef Salomonsson S et al (2003) Cellular basis of ectopic germinal center formation and autoantibody production in the target organ of patients with Sjogren’s syndrome. Arthritis Rheum 48(11):3187–3201PubMedCrossRef
123.
Zurück zum Zitat Armengol MP et al (2001) Thyroid autoimmune disease: demonstration of thyroid antigen-specific B cells and recombination-activating gene expression in chemokine-containing active intrathyroidal germinal centers. Am J Pathol 159(3):861–873PubMed Armengol MP et al (2001) Thyroid autoimmune disease: demonstration of thyroid antigen-specific B cells and recombination-activating gene expression in chemokine-containing active intrathyroidal germinal centers. Am J Pathol 159(3):861–873PubMed
124.
Zurück zum Zitat Cappione A 3rd et al (2005) Germinal center exclusion of autoreactive B cells is defective in human systemic lupus erythematosus. J Clin Invest 115(11):3205–3216PubMedCrossRef Cappione A 3rd et al (2005) Germinal center exclusion of autoreactive B cells is defective in human systemic lupus erythematosus. J Clin Invest 115(11):3205–3216PubMedCrossRef
125.
Zurück zum Zitat Subramanian S et al (2006) A Tlr7 translocation accelerates systemic autoimmunity in murine lupus. Proc Natl Acad Sci USA 103(26):9970–9975PubMedCrossRef Subramanian S et al (2006) A Tlr7 translocation accelerates systemic autoimmunity in murine lupus. Proc Natl Acad Sci USA 103(26):9970–9975PubMedCrossRef
126.
Zurück zum Zitat Murata K et al (2002) Constitutive OX40/OX40 ligand interaction induces autoimmune-like diseases. J Immunol 169(8):4628–4636PubMed Murata K et al (2002) Constitutive OX40/OX40 ligand interaction induces autoimmune-like diseases. J Immunol 169(8):4628–4636PubMed
127.
Zurück zum Zitat Schwartzberg PL et al (2009) SLAM receptors and SAP influence lymphocyte interactions, development and function. Nat Rev Immunol 9(1):39–46PubMedCrossRef Schwartzberg PL et al (2009) SLAM receptors and SAP influence lymphocyte interactions, development and function. Nat Rev Immunol 9(1):39–46PubMedCrossRef
128.
Zurück zum Zitat Simpson N et al (2009) Expansion of circulating T cells resembling TFH cells is a fixed phenotype that identifies a subset of severe systemic lupus erythematosus. Arthritis Rheum 62:234–244CrossRef Simpson N et al (2009) Expansion of circulating T cells resembling TFH cells is a fixed phenotype that identifies a subset of severe systemic lupus erythematosus. Arthritis Rheum 62:234–244CrossRef
129.
Zurück zum Zitat Hsu HC et al (2007) Overexpression of activation-induced cytidine deaminase in B cells is associated with production of highly pathogenic autoantibodies. J Immunol 178(8):5357–5365PubMed Hsu HC et al (2007) Overexpression of activation-induced cytidine deaminase in B cells is associated with production of highly pathogenic autoantibodies. J Immunol 178(8):5357–5365PubMed
130.
Zurück zum Zitat Hsu HC et al (2006) Production of a novel class of polyreactive pathogenic autoantibodies in BXD2 mice causes glomerulonephritis and arthritis. Arthritis Rheum 54(1):343–355PubMedCrossRef Hsu HC et al (2006) Production of a novel class of polyreactive pathogenic autoantibodies in BXD2 mice causes glomerulonephritis and arthritis. Arthritis Rheum 54(1):343–355PubMedCrossRef
131.
Zurück zum Zitat Hsu HC et al (2008) Interleukin 17-producing T helper cells and interleukin 17 orchestrate autoreactive germinal center development in autoimmune BXD2 mice. Nat Immunol 9(2):166–175PubMedCrossRef Hsu HC et al (2008) Interleukin 17-producing T helper cells and interleukin 17 orchestrate autoreactive germinal center development in autoimmune BXD2 mice. Nat Immunol 9(2):166–175PubMedCrossRef
132.
Zurück zum Zitat Wu HY, Quintana FJ, Weiner HL (2008) Nasal anti-CD3 antibody ameliorates lupus by inducing an IL-10-secreting CD4+ CD25− LAP+ regulatory T cell and is associated with down-regulation of IL-17+ CD4+ ICOS+CXCR5+ follicular helper T cells. J Immunol 181(9):6038–6050PubMed Wu HY, Quintana FJ, Weiner HL (2008) Nasal anti-CD3 antibody ameliorates lupus by inducing an IL-10-secreting CD4+ CD25− LAP+ regulatory T cell and is associated with down-regulation of IL-17+ CD4+ ICOS+CXCR5+ follicular helper T cells. J Immunol 181(9):6038–6050PubMed
133.
Zurück zum Zitat Lim HW, Hillsamer P, Kim CH (2004) Regulatory T cells can migrate to follicles upon T cell activation and suppress GC-Th cells and GC-Th cell-driven B cell responses. J Clin Invest 114(11):1640–1649PubMed Lim HW, Hillsamer P, Kim CH (2004) Regulatory T cells can migrate to follicles upon T cell activation and suppress GC-Th cells and GC-Th cell-driven B cell responses. J Clin Invest 114(11):1640–1649PubMed
134.
Zurück zum Zitat Bossaller L et al (2006) ICOS deficiency is associated with a severe reduction of CXCR5+CD4 germinal center Th cells. J Immunol 177(7):4927–4932PubMed Bossaller L et al (2006) ICOS deficiency is associated with a severe reduction of CXCR5+CD4 germinal center Th cells. J Immunol 177(7):4927–4932PubMed
135.
Zurück zum Zitat Warnatz K et al (2006) Human ICOS deficiency abrogates the germinal center reaction and provides a monogenic model for common variable immunodeficiency. Blood 107(8):3045–3052PubMedCrossRef Warnatz K et al (2006) Human ICOS deficiency abrogates the germinal center reaction and provides a monogenic model for common variable immunodeficiency. Blood 107(8):3045–3052PubMedCrossRef
136.
Zurück zum Zitat Nichols KE et al (2005) Molecular and cellular pathogenesis of X-linked lymphoproliferative disease. Immunol Rev 203:180–199PubMedCrossRef Nichols KE et al (2005) Molecular and cellular pathogenesis of X-linked lymphoproliferative disease. Immunol Rev 203:180–199PubMedCrossRef
137.
Zurück zum Zitat Ma CS et al (2005) Impaired humoral immunity in X-linked lymphoproliferative disease is associated with defective IL-10 production by CD4+ T cells. J Clin Invest 115(4):1049–1059PubMed Ma CS et al (2005) Impaired humoral immunity in X-linked lymphoproliferative disease is associated with defective IL-10 production by CD4+ T cells. J Clin Invest 115(4):1049–1059PubMed
138.
Zurück zum Zitat DiSanto JP et al (1993) CD40 ligand mutations in X-linked immunodeficiency with hyper-IgM. Nature 361(6412):541–543PubMedCrossRef DiSanto JP et al (1993) CD40 ligand mutations in X-linked immunodeficiency with hyper-IgM. Nature 361(6412):541–543PubMedCrossRef
139.
Zurück zum Zitat Korthauer U et al (1993) Defective expression of T-cell CD40 ligand causes X-linked immunodeficiency with hyper-IgM. Nature 361(6412):539–541PubMedCrossRef Korthauer U et al (1993) Defective expression of T-cell CD40 ligand causes X-linked immunodeficiency with hyper-IgM. Nature 361(6412):539–541PubMedCrossRef
140.
Zurück zum Zitat Allen RC et al (1993) CD40 ligand gene defects responsible for X-linked hyper-IgM syndrome. Science 259(5097):990–993PubMedCrossRef Allen RC et al (1993) CD40 ligand gene defects responsible for X-linked hyper-IgM syndrome. Science 259(5097):990–993PubMedCrossRef
141.
Zurück zum Zitat Aruffo A et al (1993) The CD40 ligand, gp39, is defective in activated T cells from patients with X-linked hyper-IgM syndrome. Cell 72(2):291–300PubMedCrossRef Aruffo A et al (1993) The CD40 ligand, gp39, is defective in activated T cells from patients with X-linked hyper-IgM syndrome. Cell 72(2):291–300PubMedCrossRef
Metadaten
Titel
Signals that influence T follicular helper cell differentiation and function
verfasst von
Michelle A. Linterman
Carola G. Vinuesa
Publikationsdatum
01.06.2010
Verlag
Springer-Verlag
Erschienen in
Seminars in Immunopathology / Ausgabe 2/2010
Print ISSN: 1863-2297
Elektronische ISSN: 1863-2300
DOI
https://doi.org/10.1007/s00281-009-0194-z

Weitere Artikel der Ausgabe 2/2010

Seminars in Immunopathology 2/2010 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Notfall-TEP der Hüfte ist auch bei 90-Jährigen machbar

26.04.2024 Hüft-TEP Nachrichten

Ob bei einer Notfalloperation nach Schenkelhalsfraktur eine Hemiarthroplastik oder eine totale Endoprothese (TEP) eingebaut wird, sollte nicht allein vom Alter der Patientinnen und Patienten abhängen. Auch über 90-Jährige können von der TEP profitieren.

Niedriger diastolischer Blutdruck erhöht Risiko für schwere kardiovaskuläre Komplikationen

25.04.2024 Hypotonie Nachrichten

Wenn unter einer medikamentösen Hochdrucktherapie der diastolische Blutdruck in den Keller geht, steigt das Risiko für schwere kardiovaskuläre Ereignisse: Darauf deutet eine Sekundäranalyse der SPRINT-Studie hin.

Bei schweren Reaktionen auf Insektenstiche empfiehlt sich eine spezifische Immuntherapie

Insektenstiche sind bei Erwachsenen die häufigsten Auslöser einer Anaphylaxie. Einen wirksamen Schutz vor schweren anaphylaktischen Reaktionen bietet die allergenspezifische Immuntherapie. Jedoch kommt sie noch viel zu selten zum Einsatz.

Therapiestart mit Blutdrucksenkern erhöht Frakturrisiko

25.04.2024 Hypertonie Nachrichten

Beginnen ältere Männer im Pflegeheim eine Antihypertensiva-Therapie, dann ist die Frakturrate in den folgenden 30 Tagen mehr als verdoppelt. Besonders häufig stürzen Demenzkranke und Männer, die erstmals Blutdrucksenker nehmen. Dafür spricht eine Analyse unter US-Veteranen.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.