Skip to main content
Erschienen in: Acta Neuropathologica 3/2015

Open Access 01.03.2015 | Review

Early etiology of Alzheimer’s disease: tipping the balance toward autophagy or endosomal dysfunction?

verfasst von: Aleksandar Peric, Wim Annaert

Erschienen in: Acta Neuropathologica | Ausgabe 3/2015

Abstract

Alzheimer’s disease (AD) is the most common form of dementia in the elderly. This brain neuropathology is characterized by a progressive synaptic dysfunction and neuronal loss, which lead to decline in memory and other cognitive functions. Histopathologically, AD manifests via synaptic abnormalities, neuronal degeneration as well as the deposition of extracellular amyloid plaques and intraneuronal neurofibrillary tangles. While the exact pathogenic contribution of these two AD hallmarks and their abundant constituents [aggregation-prone amyloid β (Aβ) peptide species and hyperphosphorylated tau protein, respectively] remain debated, a growing body of evidence suggests that their development may be paralleled or even preceded by the alterations/dysfunctions in the endolysosomal and the autophagic system. In AD-affected neurons, abnormalities in these cellular pathways are readily observed already at early stages of disease development, and even though many studies agree that defective lysosomal degradation may relate to or even underlie some of these deficits, specific upstream molecular defects are still deliberated. In this review we summarize various pathogenic events that may lead to these cellular abnormalities, in light of our current understanding of molecular mechanisms that govern AD progression. In addition, we also highlight the increasing evidence supporting mutual functional dependence of the endolysosomal trafficking and autophagy, in particular focusing on those molecules and processes which may be of significance to AD.

Introduction

Alzheimer’s disease (AD) is a progressive neurodegenerative disorder and the most common form of dementia in the elderly. With the average life expectancy on the rise, AD is predicted to become a major socioeconomic burden in the near future. Extracellular amyloid plaques (APs) and intraneuronal neurofibrillary tangles (NFTs) are two major hallmark lesions of this fatal pathology [13]. Despite the significant advancement in our understanding of the mechanisms that contribute to AD progression, the effective disease-modifying/-ceasing drugs are still missing. In search for more optimal treatment avenues, AD researchers are increasingly considering combinatory approaches and shifting their focus to more fundamental disease-promoting events. To this end, alterations/dysfunctions in the endolysosomal–autophagic system are well-recognized early neuropathological features of AD, marked by prominent enlargement of endosomal compartments, progressive accumulation of autophagic vacuoles (AVs) and lysosomal deficits [102]. Lysosomes are major cellular degradative organelles, involved in turnover of molecular cargo from both autophagic and endocytic pathways, and in AD, disturbed lysosomal degradation is presumed to be of key importance in aberrant AV turnover. However, the principal causes of this dysfunction and the specific contribution of endosomal alterations herein are still debated, owing to the high complexity and the strong contextual dependence of AD pathogenesis. In this review, we summarize some of the findings pertaining to these issues in light of our current understanding of AD progression. We highlight the increasing evidence supporting the mutually dependent functioning of autophagy and endolysosomal trafficking regulators, particularly focusing on aspects of possible pathogenic importance in AD. Finally, we propose how insights from these early disease-promoting mechanisms could/should shape the development of novel therapeutic strategies toward the more efficient treatments for AD. The general modes of action and specific cellular functions of numerous autophagy and endolysosomal trafficking regulators are discussed only briefly, as they have already been summarized in other excellent reviews [48, 108], including some of this cluster (see e.g., Damme et al. [26]). We limit our focus to molecules/processes relevant to AD.

Etiology of Alzheimer’s disease

AD pathology is associated with a progressive deterioration of memory and other cognitive functions. In most prevalent sporadic cases, the disease has a late onset. Here, the time between the initiation of cognitive decline and death is highly variable, ranging from years to over a decade. The main risk factor in AD is age; however, even though one in three people older than 85 years will become affected by this pathology, the disease itself is not a simple outcome of aging. For instance, rare familial AD (FAD) forms have an early onset and many additional genetic and environmental risk factors influence the more common sporadic AD (SAD) pathology [13]. Symptomatic manifestations of AD reflect impaired functioning of specific brain areas, where underlying pathogenic processes result in a progressive dysfunction/degeneration of synapses/neurites and eventual loss of vulnerable neurons [13]. Assuming that APs and NFTs are disease-causing alterations, the majority of the research efforts in the AD field initially focused on these lesions, revealing that amyloid beta (Aβ) peptide aggregates and hyperphosphorylated tau fibrils, respectively, are their prominent constituents [13]. Despite our growing understanding of this disease, how exactly these AD hallmarks relate to specific pathogenic processes, however, still remains enigmatic.

Aβ: mechanisms of generation and toxicity

Aβ peptides are produced by a consecutive cleavage of amyloid precursor protein (APP) by beta-site APP-cleaving enzyme 1 (BACE1, or β-secretase), and γ-secretase, a transmembrane protein complex, which in humans consists of anterior pharynx-defective 1 (APH-1A/1B), presenilin enhancer 2 (PEN-2), nicastrin (NCT) and catalytically active presenilin 1 or 2 (PSEN1/2) [28, 138]. This dual amyloidogenic scission of APP, which in cells/neurons competes with the non-amyloidogenic processing mechanisms, yields several peptide species of slightly different length, among which the 40 amino acid residues long (Aβ40) is the most abundant form [28]. Longer Aβ42/43 species, however, have a higher propensity to aggregate and are therefore considered more neurotoxic [28, 123] (Fig. 1a, b). They are believed to be a main driver of neurodegeneration in AD, as many FAD-associated dominant mutations in the genes encoding APP and PSENs increase their total and/or relative amounts compared to Aβ40 [22, 28]. While this provides a strong support for the disease-promoting role of Aβ in context of certain early-onset FAD cases, the precise contribution of these peptide entities to SAD is still elusive. Also, the primary sites of Aβ toxic activity and the contribution of its aggregation status herein continue to be debated.

Extracellular vs. intracellular Aβ and its aggregation in the pathogenesis of AD

The presumed pathogenicity of extracellular Aβ is based on the fact that these aggregation-prone peptides are secreted into the external environment where plaques are found [133]. In this case, amyloidogenic processing of APP would result in Aβ liberation and its consequent spontaneous self-aggregation into amyloid forms of higher order, including Aβ fibrils, which precipitate in APs. Insoluble APs, however, correlate poorly with neuronal loss [45] and dementia [5], and nowadays their Aβ oligomeric precursors are considered to be more neurotoxic [160]. In AD, these soluble Aβ forms associate better with disease severity [88] and dementia [87], and display stronger correlation with synaptic loss [79]. Here, their excessive binding to synaptic membranes/receptors is believed to underlie consequent cognitive deficits [94]; however, whether all aspects of Aβ toxicity are exclusively mediated via their pathogenic influences from the extracellular environment remains an intriguing question (Fig. 1b, c).
To this end, in recent years, there is a growing awareness that the intraneuronal pool of Aβ as well may be detrimental in AD. In an APP-based murine AD model, in which enhanced oligomerization of Aβ occurs without its fibrillization, it is noted that the time of initial deterioration of synaptic function and memory coincides with intraneuronal Aβ accumulation [150]. Also, in 3xTg-AD and arcAβ mice, accumulation of intraneuronal Aβ correlates with early cognitive deficits, preceding the appearance of APs [11, 65]. In APP(SL)/PS1KI mice, in turn, internal pile up of Aβ, rather than its external deposition in APs, associates with neuronal loss [23]. In primary neurons and brains of Tg2576-AD APP mutant mice as well as in human AD brains, intracellular Aβ42 accumulates and oligomerizes within late endosomal multivesicular bodies (MVBs) of neuronal processes and synaptic compartments, where its deposition associates with their morphological abnormalization [144]. In line, in both AD and Down syndrome patients (that invariably develop features of AD neuropathology due to trisomy of chromosome 21 and thus an extra APP copy) early rises in Aβ coincide with its deposition within abnormally enlarged neuronal endosomes [19]. Dystrophic neurites and synaptic terminals in AD also prominently accumulate AVs [101], which not only can facilitate the Aβ clearance [62], but also may be an important source of amyloidogenic activity [172]. Together, this implies that part of the pathogenic mechanisms in AD could also affect the homeostasis of the cellular interior, where internalized and/or internally produced Aβ may be a factor of synapto/neurotoxicity (Fig. 1c).

Endosomal trafficking/sorting regulation in amyloidogenesis

Indeed, increasing evidence suggests that in neurons/cells amyloidogenic processing of APP preferentially occurs internally, e.g., within the biochemically optimal endosomal compartments, where specific protein trafficking/sorting regulators can impact the Aβ production [113, 125]. In this respect, in AD context, the role of retromer and its accessory proteins is becoming prominent. This heteropentameric adaptor protein complex, comprising two subcomplexes (the VPS35/26/29 trimer and hetero/homodimer of sorting nexins (SNXs)), facilitates protein cargo recognition and transport from endosomes to the trans Golgi network (TGN) or plasma membrane [131]. While this is primarily important in the maintenance of an active pool of lysosomal hydrolase receptors in TGN, retromer-mediated sorting also controls intracellular shuttling of other proteins, including Aβ yielding APP and BACE1 [113, 162, 163]. Notably, in AD-vulnerable entorhinal cortex, the levels of both VPS35 and VPS26 are specifically decreased [135]. The importance of this AD-related change is underscored by findings demonstrating that hemizygous deletion of VPS35 in Tg2576 mice elevates the hippocampal Aβ levels and exacerbates the AD pathology [162]. There is also strong evidence that APP sorting receptor SORLA/LR11/SORL1 (sortilin-related receptor), genetically linked to AD, is as well decreased and/or dysfunctional in this disorder [163]. SORLA controls the intracellular APP trafficking by associating with the retromer and other sorting adaptors [163]. Like in the case of VPS35, its deficiency has been implicated in enhanced Aβ production and AD pathogenesis [34]. Although there is still no clear consensus with respect to how exactly retromer-mediated intracellular sorting of APP and BACE1 affects the Aβ production, a currently prevailing idea postulates that retromer dysfunction may disrupt normal trafficking of APP and BACE1, thereby increasing the likelihood of their physical co-sequestration in endosomal vesicles, and thus promote amyloidogenesis (for a review see [113, 163]). In line, other retromer-associated sorting receptors genetically linked to increased AD risk, like, e.g., SORCS1, may play a similar role [68]. Interestingly, in addition to APP, SORLA via its N-terminal VPS10P domain may also directly bind Aβ and thus regulate its trafficking to lysosomes for degradation. This function is disturbed by an FAD mutation in SORL1, which compromises its interaction with Aβ [17]. Endosomal sorting defects related to decreased levels of phosphatidylinositol-3-phosphate (PI3P), required for proper functioning of retromer and other sorting regulators, were recently also associated with AD and shown to underlie aberrant amyloidogenic processing [93]. Finally, intracellular sequestration of cholesterol, a relevant risk factor in AD [13], can as well promote abnormal endosomal trafficking/activity of amyloidogenic proteins, thus enhancing Aβ production [81, 119, 167].

Toxic effects of Aβ on endolysosomal–autophagic system

In addition to being produced within intracellular compartments, Aβ can also disturb their normal functioning. To this end, recent genome-wide genetic screen in yeast, accompanied by congruent findings in nematode glutamatergic and rat primary cortical neurons [151], identified several endocytic regulators as modifiers of Aβ42 toxicity. This among others included the ortholog of human PICALM (phosphatidylinositol binding clathrin assembly protein), a regulator of clathrin-mediated endocytic trafficking and one of the most well-established SAD risk factors [151]. The importance of endosomally localized Aβ indeed cannot be underestimated, because a failure in either degrading or secreting it may increase its local concentration within these acidic compartments, thus facilitating its oligomerization and subsequent pathogenic processes [41, 51, 144]. Accordingly, AD-associated APP “Arctic” mutation (APParc; E693G) favors the formation of soluble Aβ protofibrils as well as the intracellular amyloidogenic APP processing [99, 122]. Pile up of oligomeric Aβ42 in endosomes in turn may hamper cholesterol efflux from these compartments [91], thus creating a vicious cycle of self-propelling endosomal dysfunction and excessive Aβ production (see above and Fig. 1c). Localized to endosomes, Aβ42 may also affect their sorting capacity, thereby causing degradation and signaling defects [1]. Importantly, excessive levels of oligomerized Aβ42 may even compromise the physical integrity (impermeability) of endolysosomal–autophagic compartments [31, 41, 74, 144, 155, 169]. For instance, an in vivo overexpression of Aβ42 in fruit fly (Drosophila melanogaster) neurons causes progressive impairment of their degradative capacity and buildup of increasingly dysfunctional AVs [74]. Here, at early stages, AVs are protective and contribute to Aβ42 elimination, but as toxic burden increases, impaired degradation and leakage of lysosomal proteins from abnormal AVs promote neurodegeneration [74]. Taken together, intracellular Aβ accumulation may be both a cause and a consequence of an endolysosomal–autophagic dysfunction in AD (Figs. 1c, 4).

Molecular origins of NFTs: tau phosphorylation and its pathological functions in AD

NFTs are insoluble intraneuronal fibrillary aggregates comprised of hyperphosphorylated microtubule-binding protein tau, which are readily observed in relation to AD and several other neurodegenerative tauopathies [8]. Tau protein is primarily found in neurons of the central nervous system, where it mainly localizes to axons and to a lesser extent neuronal soma and dendrites [12]. Here, tau stabilizes neuronal microtubules and regulates axonal transport of molecular cargo between the cell body and the distant synapses [32]. In neurons, tau, however, may also act as a specialized protein scaffold, thereby taking part in various signal transduction cascades [47]. Phosphorylation is one of the major posttranslational modifications of tau, which contributes to fine-tuning of its physiological functions both in development and adulthood [161]. In neurodegenerative pathologies, including AD, abnormal tau phosphorylation, however, disrupts its normal functioning, resulting in its self-aggregation into paired helical filaments that form NFTs [2, 8] (Fig. 1c). Notably, while the anatomically defined blueprint of NFT spreading is a well-established correlate of dementia and AD severity [16], increasing data suggest that here prefilamentous tau oligomers may in fact be a more relevant contributing factor to early toxicity [95].
Although tau plays an important role in AD pathogenesis, no FAD mutations have been found in its MAPT gene, arguing against an initial causality for developing AD. Familial mutations in tau, however, do exist in a subset of frontotemporal lobar degeneration (FTLD) pathologies, called frontotemporal dementia with parkinsonism linked to chromosome 17 (FTDP-17). Here, filamentous intraneuronal inclusions of hyperphosphorylated tau found in carriers of these mutations strongly reinforce the importance of this protein and its excessive phosphorylation in neurodegeneration in general [18, 165].
Importantly, in AD context, Aβ-mediated neurotoxicity seems to require tau [55, 117]. Accordingly, Aβ is able to modulate tau phosphorylation and the extent of NFT burden [46, 149]. Recent data also show that Aβ-associated clinical decline in cognitively normal older individuals occurs only in relation to elevated phospho-tau [30]. Therefore, in the pathogenic cascade of events leading to tau hyperphosphorylation, Aβ likely acts as an upstream modulator.
How abnormal tau phosphorylation contributes to AD pathology is nevertheless still enigmatic. On one hand, tau deficiency is largely protective against Aβ toxicity, suggesting that in AD tau may gain a toxic function [55, 117]. However, in certain contexts, lack of tau may as well be detrimental, as shown by crossing Tg2576-AD mice with tau−/− animals [27]. While this suggests that loss of function mechanisms cannot be excluded as potential pathogenic modality for tau, increasing evidence implies that toxic gain of function by this protein may after all be more relevant. One of the current hypotheses postulates that in AD, tau-related toxicity may result from its mislocalization to neuronal soma/dendrites and/or excessive phosphorylation that would render aberrant interactions with molecules with which it either would not normally interact or would do so to a lesser extent [47]. Notably, these tau pathogenic activities may affect processes in both axonal and dendritic compartments. For instance, tau phosphorylation-dependent retention of the kinesin complex component, c-Jun N-terminal kinase-interacting protein 1 (JIP1) in neuronal soma, provides a possible explanation for impaired axonal transport in AD [56]. In turn, in the context of dendritic roles of tau, its interaction with the Src kinase Fyn was shown to be pivotal in Aβ-mediated excitotoxicity via a mechanism involving tau-dependent shuttling of Fyn to postsynaptic sites [55]. As phosphorylation of tau can promote its interaction with Fyn [10] as well as its postsynaptic targeting and consequent early synaptic deficits [50], abnormal localization, phosphorylation and interactions of this protein in dendrites may all be relevant AD promoters (Fig. 1c). While the precise spatio-temporal relationship in this cascade of pathogenic events in AD is slowly emerging, the key mechanisms responsible for the aberrant tau phosphorylation are still obscure. Based on certain pathomechanistic analogies between AD and Niemann–Picks disease type-C (NPC), we hypothesize that here deficits in endolysosomal–autophagic system may, at least in part, underlie the abnormal activity of enzymes controlling the extent of tau phosphorylation.

Endolysosomal–autophagic dysfunction and tau phosphorylation: lessons from NPC

NPC is an autosomal recessive lysosomal storage disorder, caused by mutations in NPC1 or NPC2 genes and characterized by late endosomal/lysosomal accumulation of several lipid species, including unesterified cholesterol [156]. Interestingly, this fatal neurodegenerative disease displays some intriguing parallels to AD with respect to certain aspects of cellular pathology. In addition to similar exacerbating influence of cholesterol and intracellular Aβ42 deposition in endosomes [58], this also includes pronounced endolysosomal–autophagic abnormalities [36, 58, 73] as well as aberrant tau phosphorylation [78, 128]. Because neither in AD nor NPC tau is mutated, its abnormal phosphorylation in the context of these diseases therefore likely results from deregulated levels/activity of tau kinases and/or phosphatases. To this end, it is noteworthy that many of these enzymes (reviewed in [82, 83] and summarized in Table 1) take part in various cellular signaling cascades, in which endosomal membranes play an important regulatory function as signaling platforms [90, 108]. Because a similar role in cellular signaling control has recently also been ascribed to certain autophagy regulators and autophagosomal membranes [84, 85], it seems plausible to assume that anomalies in endolysosomal–autophagic system, common to both NPC and AD, may at least in part explain the aberrant activity of enzymes regulating tau phosphorylation. Notably, abnormal functioning of the endolysosomal–autophagic system, in addition, may contribute to pile up of toxic tau species by hampering their clearance (as their turnover relies on autophagy and lysosomal function) [109]. Accordingly, autophagy deficits have recently been directly implicated in tau phosphorylation and related neurodegeneration [52]. Moreover, intracellular accumulation of oligomeric Aβ, known to promote endolysosomal–autophagic defects (see above), coincides with early rises in abnormal tau phosphorylation in an APP-based AD model with endogenous (unmutated) tau, long before APs are formed [150]. Overall, this strongly supports the pathogenic relevance of disturbed intracellular trafficking/degradative homeostasis in AD in general and tau pathology in particular (Fig. 1c). Additional evidence reinforcing this concept comes from studies demonstrating that AD-related and γ-secretase-associated PSENs, may independent of their proteolytic function affect the endolysosomal–autophagic system as well as tau phosphorylation.
Table 1
Protein kinases and phosphatases implicated in regulation of tau phosphorylation
 
Full name
GSK3
Glycogen synthase kinase-3
CDK5
Cyclin-dependent protein kinase-5
Erk1/2
Extracellular signal-regulated kinase 1/2
JNK1–3
c-Jun N-terminal kinase 1–3
P38
P38 kinase
CK1/2
Casein kinase 1/2
PKA
Protein kinase A
CaMKII
Calcium- and calmodulin-dependent protein kinase-II
TTBK1/2
Tau tubulin kinase 1/2
PKC
Protein kinase C
PhK
Phosphorylase kinase
PKB (Akt) 1–3
Protein kinase B 1–3
DYRK1A/2
Dual-specificity tyrosine phosphorylation and regulated kinase-1A/2
PKN
Protein kinase N
MARK 1–4
Microtubule affinity-regulating kinase 1–4
SFK
Src family kinases (Src, Lck, Syk, Fyn)
c-Abl
c-Abelson kinase
(Arg) kinase
Abl-related gene kinase
PP-2A
Protein phosphatase 2A
PP-1
Protein phosphatase 1
PP-2B (PP3)
Protein phosphatase 2B (calcineurin)
PP5
Protein phosphatase 5
PTEN
Phosphatase and tensin homolog deleted on chromosome 10
Note that the above listed enzymes can affect the extent of tau phosphorylation directly and/or indirectly, by regulating the activity and/or the ability of other kinases/phosphatases to phosphorylate/dephosphorylate tau at specific serine, threonine or tyrosine residues (as reviewed in [82, 83])

γ-Secretase-independent function of PSENs in the endolysosomal–autophagic system

PSENs are primarily known to be catalytic components of the γ-secretase complex that—besides APP—cleaves many other type I transmembrane proteins, thus taking part in a wide range of cellular processes [28, 60]. However, other functions, distinct from their role in intramembrane proteolysis have been attributed to the PSENs as well, including cellular signaling, intracellular Ca2+ homeostasis, endolysosomal trafficking and autophagy (Fig. 2). Particularly interesting seems that, in both in vitro and in vivo settings, using various cell types, primary neuronal cultures as well as murine brain samples, PSEN deficiency was shown to result in endolysosomal–autophagic abnormalities [33, 37, 69, 97, 164]. For instance, in adult murine brain neurons, with both PSEN isoforms genetically ablated, such defects occur very early (already at 2–3 months after birth) [69]. Around the same time these mice start having synaptic and memory deficits, which worsen with age due to progressive neurodegenerative alterations, accompanied by aberrant tau phosphorylation [127], implying an important role of PSENs in all these phenomena. Additional evidence indicates that much like lack of PSENs, also certain of their FAD-linked mutations can alter the intracellular signaling, leading to pathological tau phosphorylation [7] and in vitro degeneration of primary neurons [6], in a manner independent of their catalytic activity [6, 7]. FAD-related PSEN mutations also associate with pronounced lysosomal neuropathology in AD neurons [20], which based on evidence from FAD patient fibroblasts may compromise their degradative function [69]. In line, other studies demonstrate that some of the PSEN1 FAD mutants, unlike wild-type human PSEN1 (hPSEN1) and its catalytically inactive forms, are unable to fully rescue altered Wnt signaling in PSEN-deficient cells [33] or completely alleviate defective epidermal growth factor receptor (EGFR) turnover in lysosomes, in a similar context [116]. Together, all these studies suggest that FAD-associated PSEN mutations, in addition to altering the catalytic activity of this protein, may also contribute to disease progression via additional loss of other functions. As PSEN-dependent endolysosomal–autophagic and signaling phenotypes are even more pronounced when PSENs are lacking [33, 69, 116], their overall decreased levels, per se, may also be important. In support, polymorphisms are found in the PSEN1 promotor sequence that repress transcription of PSEN1 and associate with both increased risk for AD and elevated total Aβ load [146]. Progressive lowering of PSEN1 expression in vitro, paralleled by concomitant gradual increase in Aβ42 levels (observed in another study) [115], accordingly reinforces the assumption that such mechanisms are possible and potentially relevant, also in amyloidogenesis. To this end, structural (conformational) changes in PSEN1, similar to those observed in some of its FAD mutants, were recently shown to occur in relation to SAD and aging, wherein they were proposed to underlie pathogenic amyloidogenesis [159]. Based on this, it seems tempting to speculate that in AD, altered levels, structure and activity of PSEN proteins may all be relevantly important and that their catalytic function may work together with γ-secretase-independent roles in disease promotion.
One of the first clear indications of a γ-secretase-independent role of PSEN1 in endolysosomal–autophagic system emerged from the identification of its interaction with ICAM-5 (also named telencephalin) [3]. This forebrain-specific neuronal intercellular cell adhesion molecule with an exclusive somatodendritic localization is, despite its type I transmembrane topology, not a γ-secretase substrate [37]. Instead, in PSEN1−/− primary hippocampal neurons, ICAM-5 accumulates intracellularly in degradative organelles that are not acidified, but label positively for certain autophagic markers [37]. While these accumulations also occur in wild-type (WT) neurons, PSEN1 deficiency clearly leads to their earlier and more abundant appearance [37, 111]. Accumulation of similar degradative organelles was also noted in another study, where PSEN1 deficiency in neurons was shown to lead to a pronounced α- and β-synuclein intracellular accumulation [164]. Later, Lee and co-workers supported these seminal observations by identifying extensive accumulations of autophagic compartments in PSEN1-deficient cells, as well as in the brains of PSEN1 hypomorph or conditional knockout mice [69]. Importantly, in addition to extensive accumulation of AVs, PSEN-deficient cells were also shown to have significantly more late endosomal MVBs [33]. Although all studies agree that the observed phenomena relate to an impaired turnover of endosomal/autophagic cargo, whether lysosomal degradation per se or their fusion capacity is compromised, remains debated. To explain these deficits, two major hypotheses have been put forth, including defective lysosomal acidification and Ca2+ homeostasis (Fig. 3).
Lee et al. suggested a model whereby PSEN1 deficiency/FAD-related mutations would compromise a proclaimed role of endoplasmic reticulum (ER)-localized full-length PSEN1 as a critical co-factor of the oligosaccharyltransferase (OST) complex in N-glycosylation of the V0a1 subunit of the vacuolar ATPase (v-ATPase; proton pump). Allegedly, this should hamper the targeting of V0a1 to lysosomes, thus compromising the proton pump function and consequently lysosomal acidification and degradation (by impairing the activity of lysosomal hydrolases) [69]. In contrast, we as well as others failed to reproduce pronounced acidification defects [24, 97, 175], related to it disruption of lysosomal proteolysis and cathepsin D maturation [24, 175] and, critically important for the original hypothesis, defective N-glycosylation of the V0a1 subunit in PSEN-deficient cells [24, 175]. Using Drosophila melanogaster as a model, we conclusively showed that embryonic lethality caused by the lack of the V0a1 ortholog v100 could be fully rescued by a glycosylation-deficient v100 mutant, underscoring that N-glycosylation is even dispensable for the proper lysosomal targeting and function of this proton pump subunit [24]. Overall, this raises doubt if defective lysosomal acidification and the proposed mechanism, in particular, indeed primarily underlie PSEN-related lysosomal deficits. Alternatively, we originally demonstrated that lysosomal calcium storage/release, which is as well required for lysosomal function and fusion, is compromised in PSEN-deficient cells and neurons [24]; a finding later confirmed by others [96] (Fig. 3).
This phenomenon resembles the situation in NPC cells where a significant reduction in lysosomal calcium storage/release irrespective of acidification defects causes similar endolysosomal dysfunction. The initiating factor here is an aberrant sphingosine storage that instigates altered calcium homeostasis leading to secondary sphingomyelin and cholesterol storage [76]. In line, NPC disease-associated endolysosomal dysfunction can be induced by decreasing and rescued by increasing the Ca2+ levels [76]. Rescue of Ca2+ defects in PSEN-deficient cells in turn can be achieved by catalytically inactive hPSEN1 [24], underscoring a γ-secretase-independent nature of PSEN-mediated lysosomal Ca2+ regulation.
Toward identifying the underlying causes of this lysosomal dysfunction, our recent omics study performed on isolated plasma membranes (PMs) of PSEN-deficient cells already provide first insights. Using a novel isolation procedure, based on superparamagnetic nanoparticles, we compared the biomolecular composition of pure PMs derived from PSEN double knockout (PSENdKO) mouse embryonic fibroblasts (MEFs) vs. their WT and hPSEN1 rescued counterparts [147]. Our experiments revealed a convergent prominent surface depletion of cholesterol along with certain proteins, of which many are constituents of focal adhesion sites, lipid rafts and caveolae (or functionally related to them), in PSEN deficient cells [147]. Several of these molecules are also small GTPases involved in endosomal transport regulation [147]. As these PSEN-dependent surface alterations go along with a decrease in focal adhesion sites and caveolae, intracellular accumulation of cholesterol, caveolin-1 and the integrin-interacting CD47 protein [147, 166], we hypothesize that PSENs may regulate selective intracellular trafficking routes. Among the surface-depleted GTPases in PSENdKO MEFs, several play a role in endosomal recycling, such as RAB10, RAB11 and RAB35. RAB11 is a known interactor of PSENs [35], also recently shown to be of potential relevance to AD and amyloidogenesis [154]. RAB35, on the other hand, has mutually antagonizing roles with ADP-ribosylation factor 6 (ARF6) in endocytosis and endosomal sorting/recycling, important in regulation of cellular adhesion, migration, phagocytosis, cytokinesis and neurite outgrowth [21]. Interestingly, ARF6 has recently been found to be functionally linked as well to both APP processing and PSEN1 interactors. First, we showed that ARF6 plays a role in surface to endosome transport of BACE1 via the clathrin-independent internalization route, thereby keeping this amyloidogenic sheddase spatially separated from APP (the internalization of which is primarily clathrin dependent) until they meet in early endosomes [126]. Here, affecting ARF6 activity or expression inversely impacted on APP processing and Aβ production, thereby underscoring the important role of sorting/recycling regulation mediated by ARF6 in amyloidogenesis [126]. Second, and related to PSEN1, ARF6 also regulates the surface expression and later endosomal routing of the PSEN1 interactor ICAM-5 (which accumulates intracellularly in PSEN1−/− neurons; see above) [37, 111]. While the exact role of ARF6 in these PSEN-related trafficking defects remains to be elucidated, it seems interesting that NPC-associated aberrant cholesterol efflux from endosomes can be induced by blocking and rescued by promoting ARF6-mediated recycling [130]. Aberrant cholesterol efflux in NPC also affects amyloidogenic APP processing by trapping APP and BACE-1 in the same endosomal compartments [81], thus further extending parallels to ARF6-mediated transport regulation in amyloidogenesis. Based on these studies it seems tempting to speculate that a defect in selective protein/membrane routing (to recycling and/or degradation) may contribute to or even underlie the endolysosomal–autophagic dysfunction observed in relation to PSEN deficiency and/or different PSEN FAD mutants (Fig. 3). As similar deficits are also noted in SAD, analogous pathogenic mechanisms, disturbing specific trafficking/degradative processes, may also operate in late-onset AD. Note, however, that depending on the context (FAD vs. SAD) the primary pathogenic factors may differ. To provide further support for this concept, in the following paragraphs we will highlight the known functional links between the autophagy and the endolysosomal trafficking regulators, which may be of potential pathogenic significance in AD.

(Macro)autophagy, a major neuroprotective stress response pathway: functional links with endolysosomal trafficking regulators and their potential roles in AD

Aging is still the primary risk factor in AD [13]. Macroautophagy, (hereafter called autophagy) in turn, is one of the main quality control systems in cellular homeostasis and a major regulator of longevity [157], triggered by various stressors, including nutrient scarcity, hypoxia, oxidative stress, infection as well as the accumulation of aggregated (aggregate-prone proteins) and dysfunctional organelles [66]. Autophagy proceeds in a stepwise manner, via the initiation, elongation, maturation and degradation phases, during which its cytoplasmic targets are first engulfed by autophagosomal membranes to eventually become delivered to lysosomes for degradation (see Damme et al. [26] from this cluster of reviews for an updated overview of molecular mechanisms of autophagy progression and selective cargo clearance).
Autophagy-mediated degradation is particularly important in neurons because these postmitotic cells are otherwise unable to dilute accumulating toxic cytoplasmic debris and dysfunctional organelles (e.g., mitochondria) through subsequent cellular divisions. It is therefore not surprising that defects in the highly efficient baseline autophagic flux, likely at later AV maturation stages, are relevant to AD pathogenesis [14] (Fig. 4).
Importantly, studies from the last two decades established that undisturbed autophagic flux requires a tight cooperation between the endosomal compartments and AVs. For instance, before fusing with lysosomes and forming autolysosomes, autophagosomes can also directly fuse with early and/or late endosomes, to form hybrid structures named amphisomes [9, 75] (Fig. 4). Moreover, successful autophagic degradation not only requires undisturbed early and late endosomal sorting/maturation [40, 114, 121], but autophagosomal biogenesis mechanisms also share some regulators with endosomal compartments [64, 72] and may even rely on recycling endosomes as a source of membranes [110].
Indeed, key endosomal recycling regulators appear to be functionally involved at crossing points of these two cellular pathways. For instance Rab11, in addition to facilitating the physical merger of MVBs with autophagosomes [39, 143], also functions in early steps of autophagosome formation [77]. On the other hand, a recent study revealed a novel role for ARF6 in late endosomal maturation (sorting) [44], which, similarly to Rab11, in addition to cellular recycling also promotes biogenesis of autophagosomes [59, 92]. Interestingly, these roles of ARF6 are mediated via its downstream effector phospholipase D (PLD) [59, 92], an enzyme which as well takes part in the later maturation steps of autophagy [25]. Here, PLD seems to operate downstream of the class III phosphatidylinositol-3 kinase (hereafter referred to as PI3K) [25], a multimeric protein complex and a key regulator of both autophagy and endosomal trafficking [42, 112]. PI3K drives the phosphorylation of phosphatidylinositol (PI) to produce PI3P, a membrane-localized lipid species that recruits proteins with specific binding modules and distinct regulatory functions in endosomal trafficking/signaling and/or autophagy [70, 103, 112]. The catalytic component of the PI3K was originally identified in yeast as a regulator of vesicular protein targeting to the vacuole (analogous process to endolysosomal protein trafficking in mammals), and named therefore vacuolar protein sorting 34 (Vps34) [129]. Later studies revealed the human orthologs of both Vps34 (PIK3C3) and one of its regulatory subunits Vps15 (p150/PIK3R4) [106, 158]. Interestingly, Vps34 may affect autophagy at its early, initiating stages, via direct involvement in autophagosomal biogenesis, as well as at its later maturation steps [42]. Thereby, the cellular activities of Vps34 resemble the above-mentioned small GTPases (Rab11/ARF6); nevertheless, how exactly these proteins are functionally related remains to be established. We do however know that in these dual and converging PI3K activities in autophagy, particularly important is the role of several proteins associated with beclin 1, which either alone or as part of a PI3K/beclin 1 core complex affect these specific processes [49]. Beclin 1 is a mammalian ortholog of the yeast autophagy-related 6 (Atg6)/Vps30 protein and an essential component of the PI3 K complex, important in various (patho)physiological processes, including neurodegeneration [49]. Its functional/physical interactions within the PI3K protein complex are of pivotal relevance for cellular homeostasis, as they ensure dynamic coordination of specific endosomal trafficking and autophagy steps at various levels [72, 86, 120].
In both yeast and mammals, two distinct mutually exclusive beclin 1 containing PI3K complexes exist. The first one contains the yeast Atg14 [mammalian Atg14L (yeast Atg14-like)/Beclin 1-associated autophagy-related key regulator (Barcor)] protein [53, 63, 140]. Conversely, the other complex contains only the Vps38 protein [53, 63], a likely functional analog of the mammalian UV irradiation resistance-associated gene (UVRAG) [54]. In yeast, Atg14 and Vps38 complexes have specific subcellular localization and distinct functions in early autophagosomal biogenesis and protein transport to the vacuole, respectively [63, 104]. While a similar functional specification has been implied also for their mammalian counterparts [53, 54, 148], a recent study demonstrated that here Atg14L as well may affect the endocytic trafficking (independently of its association with beclin 1), underscoring its more complex regulatory functions in higher organisms [64]. This higher complexity is further highlighted by the function of another PI3K/beclin 1 complex component not present in yeast, namely RUN domain and cysteine-rich domain containing beclin 1-interacting protein (Rubicon). Rubicon interacts with a subpopulation of UVRAG containing PI3K/beclin 1 complexes [86] and blocks the autophagosomal maturation steps and autophagosomal clearance in lysosomes, by directly inhibiting PI3K activity and other mechanisms involved in endosomal/autophagosomal maturation [86, 141, 142]. Taken together, these findings highlight the fact that different roles of PI3K/beclin 1 complex may relate to specific accessory proteins which at particular subcellular sites synchronize the functioning of autophagic and the endolysosomal system to ensure undisturbed degradation of incoming cargo from both pathways.

PI3K/beclin 1 complex and its relevance in AD

These mechanisms may be of great importance in AD, as decreased PI3P, Vps34 and beclin 1 levels have all been reported [57, 93, 107]. Importantly, as genetic ablation of beclin 1 or Vps34 results in reduced levels of both Atg14L and UVRAG [53, 148], these changes in addition to compromising autophagy as well may affect endolysosomal trafficking [148]. Indeed, the phenotypes of beclin 1- and Vps34-deficient mice are more severe (E7.5–8.5; lethal) [173, 176] than that of other autophagy-related genes, such as Atg3 [136], Atg5 [67] and Atg16L [124] (P1; neonatal lethal). This suggests additional, autophagy-independent cellular roles of beclin 1 and Vps34, some of which likely relate to their endolysosomal trafficking function.
In line, Vps34 deficiency in sensory neurons leads to rapid neurodegeneration, primarily resulting from disruption of the endosomal and not the autophagic pathway [177]. Similarly, Vps34 downregulation in primary cortical neurons results in impaired endosomal sorting and consequent endosomal swelling [93].
Also in relation to beclin 1, recent studies demonstrate that this protein may not be exclusively involved in autophagy initiation, as originally proposed [174], but as well could play a role in endocytic trafficking regulation. For instance, beclin 1, Vps34, Vps15 and UVRAG were all shown to take part in trafficking of membrane receptors toward lysosomes [148]. Moreover, in C. elegans both beclin 1 ortholog (BEC-1) and Vps34 are pivotal in retrograde retromer-mediated endocytic sorting toward the TGN [118]. Finally, a similar role in endocytic trafficking for beclin1 has also been demonstrated in Drosophila [134].
In beclin 1+/− mice also lysosomal abnormalities are noted, while their crossing with an APP-based AD mouse model results in higher intraneuronal and extraneuronal Aβ levels, more profound ultrastructural defects, including more severe lysosomal/autophagic abnormalities as well as increased neurodegeneration [107]. Beclin 1 overexpression in the same AD model reduces intraneuronal Aβ and extracellular plaque pathology [107], thus underscoring that turnover and/or excessive production of toxic Aβ peptides may rely on beclin 1-mediated functions. To this end, in the follow-up study, the authors show that beclin 1 transient downregulation in parallel to increasing the Aβ secretion also causes intracellular accumulation of APP and APP-CTFs [57]. Interestingly however, in beclin 1 silenced cells and in AD brains where beclin 1 and Vps34 are reduced, higher levels of autophagosomal marker LC3-II (the lipidated form of the microtubule-associated protein 1 light chain 3) are also observed [57]. As this indicates boosted (not hampered) autophagy, which would be expected should beclin 1 exclusively regulate autophagy initiation, to explain their findings Jaeger and colleagues proposed that beclin 1 may also regulate later maturation steps of autophagy. Here, defective beclin 1-dependent clearance of autophagic compartments would explain the increased levels of APP metabolites and Aβ. These findings are also consistent with a primary defect in the endolysosomal trafficking pathway: in the study of Jaeger et al., lowered beclin 1 levels parallel those of Vps34 not only in AD, but also in cells where either of these two proteins is silenced [57]. This is important, as in AD lowered levels of Vps34 and its product PI3P may disturb normal endosomal sorting of APP, thus causing its enhanced amyloidogenic processing [93]. As decreased PI3P levels also directly impact functioning of the endosomal sorting complex required for transport (ESCRT) [93], which is pivotal in MVB maturation as well as fusion of AVs with the endolysosomal system and consequent cargo degradation [121], a primary defect in the endolysosomal system provides an alternative explanation for the observed effects by Jaeger and collaegues [57].
In line, although AVs were implied as an important source of amyloidogenic activity in neurons [172], more recently Boland et al. contested this view by showing a more likely primary role of the endolysosomal system in APP processing [15]. Despite these conceptual disparities, both studies, however, largely agree with respect to the contribution of disturbed lysosomal degradation in these phenomena [15, 172]. Accordingly, in TgCRND8 AD mice, improved lysosomal degradative function, achieved through genetic ablation of endogenous lysosomal cysteine protease inhibitor cystatin B, rescues autophagic/lysosomal dysfunction and amyloid pathology, as well as related memory and cognitive deficits [170].
Taken together, all these findings further strengthen the important role of the endolysosomal system in amyloidogenesis and balanced autophagic degradation (Fig. 4).

Granulovacuolar degeneration (GVD) bodies: additional pathomorphological link between the endolysosomal and autophagy dysfunction in AD

Endolysosomal and autophagy dysfunctions in AD may also be linked via an underappreciated pathomorphological feature of this disease, namely the granulovacuolar degeneration (GVD) bodies. These intracellular, double membrane-bound organelles, with electron-dense core granules [105], occur in relation to aging and different neurodegenerative disorders, but only in AD do these autophagic-like structures [43] disseminate in an orderly hierarchical pattern, which correlates with distribution of several disease progression markers and the degree of dementia [145].
Interestingly, GVD bodies stain positively for the charged multi-vesicular body protein 2B (CHMP2B) [43]. This subunit of the ESCRT-III protein complex, involved in intraluminal vesicle (ILV) sorting in MVBs, is important in successful autophagic degradation, as CHMP2B mutations, found in a subset of FTD and amyotrophic later sclerosis (ALS) patients, compromise lysosomal degradation of AV cargo [40]. In line, depletion of other ESCRT complex components produces a similar phenotype. Here, autophagosomes and amphisomes seem to be normally formed; however, ESCRT depletion-related sorting defects impair fusion of these AVs with lysosomes and thus degradation in nascent autolysosomes [40]. Based on their resemblance to late-stage AVs, CHMP2B-positive GVD bodies were also proposed to accumulate due to a failure in autolysosome formation [43].
Interestingly, GVD bodies may also link to tau pathology. Accordingly, several prominent tau kinases, such as casein kinase 1 delta (CK1δ) [61], glycogen synthase kinase-3 beta (GSK3β) [71] and cyclin-dependent protein kinase-5 (CDK5) [100], physically associate with GVD bodies, which appear in correlation with the early accumulation of phospho-tau pathology [168]. This provides additional proof for the concept proposed by us that aberrant tau phosphorylation may in fact stem from endolysosomal–autophagic deficits and related cellular signaling and/or degradative abnormalities (see previously and Fig. 1c).
GVD bodies also contain lipid raft marker proteins, such as flotillin-1 [100]. In this respect, we reported that the PSEN1-interactor ICAM-5 associates with flotillin-1 both at the cell surface and within endosomal compartments [111]. Moreover, in “aged” (in vitro) WT primary neurons, ICAM-5 accumulations (similar to those observed in younger PSEN1−/− neurons [37]), much like GVD bodies, stain positively for flotillin-1 as well as late endosomal MVBs [111]. These convergent pathomorphological and cell biological findings may reflect commonalities in endolysosomal dysfunction that occur in relation to aging and of relevance to AD. Here, underlying transport jamming and/or delayed cargo degradation potentially relates to either declining function (levels) of PSEN1 or another relevant trafficking deficit. Taken together, all this further strengthens the notion that autophagic and endolysosomal trafficking pathways cannot be perceived as autonomous, physically separate entities, but rather as two functional components of an integrated cellular system, the balance of which in AD may become compromised at various levels and in relation to many different factors.

Conclusions

We here provide a comprehensive literature overview to highlight the important role of endolysosomal trafficking as well as autophagy in pathogenic processes underlying AD. Overall, the available data strongly argue that in AD, defective endosomal sorting/trafficking and lysosomal dysfunction may work together with intracellular (endosomal) Aβ accumulation to subsequently affect the late autophagy stages, leading to inefficient clearance of AVs and thus resulting in their progressive buildup (Fig. 4). This is supported by the fact that autophagic degradation requires undisturbed endolysosomal sorting and that in unrelated neurodegenerative diseases, like NPC, similar autophagic phenotypes result from primary endolysosomal deficits. Following the same analogy to NPC, we also hypothesize that in AD these pathogenic mechanisms may as well contribute to abnormal tau phosphorylation and accumulation of toxic tau species.
Considering the multistep character of the autophagic process and its major reliance on endolysosomal trafficking regulation, therapeutic strategies aiming at promoting autophagic activity in AD will most likely have to be combined with treatments which would concomitantly enhance the performance of lysosomal degradation to allow efficient turnover of the incoming AVs. Transcription factor EB (TFEB) fulfills both of these criteria as it coordinately activates lysosomal biogenesis as well as genes required for autophagosomal formation [132]. As its efficacy has already been demonstrated in several diseases, including lysosomal storage disorders [137], Huntington’s disease (HD) [152] and Parkinson’s disease (PD) [29], it is expected that similar benefits may also be achieved in the AD context. To this end, a recently published study provides a first support that TFEB may indeed be beneficial in AD and other tauopathies [109]. Another way to tackle the disturbed lysosomal function and AV clearance may involve pharmacological treatments which would improve the catalytic performance of lysosomal enzymes, as implied by the study of Yang et al. [170]. Alternatively, interventions aiming at alleviating the burden to the endolysosomal compartments causing their inappropriate functioning as well hold some potential. Here, for instance, lowering cholesterol and/or preventing Aβ production/oligomerization may all prove beneficial. Indeed, in both NPC and AD, the cholesterol-lowering drug 2-hydroxypropyl-beta-cyclodextrin (HP-β-cyclodextrin) is emerging as a potentially useful pharmacological tool [4, 171]. In light of Aβ in turn, our recent work implies that peptides that disrupt the physical interaction between the APP and PSEN1 may be useful selective inhibitors of Aβ production [38]. Finally, as growing evidence suggests that restoring proper endosomal trafficking (recycling) may be similarly efficient, development of specific pharmacological modulators of these processes may constitute another potential strategy. Here, a recently developed pharmacological stabilizer of the retromer sorting complex provides a first proof of concept [89]. Indeed, given the relatively early character of endolysosomal/dysfunction in AD, and a major reliance of amyloidogenic processing on sorting regulators, future therapeutic efforts should maybe aim to lengthen the fidelity of endosomal transport and degradation, and not only focused on majorly targeting the amyloidogenic enzymes, BACE1 and γ-secretase complexes.

Acknowledgments

The authors thank Nathalie Jurisch-Yaksi for critical reading. Most figures were made through Servier Medical Art (http://​www.​servier.​com). The research of WA was financially supported by Vlaams Instituut voor biotechnologie (VIB), KU Leuven (GOA/11/009; IDO 12/020), Fonds voor Wetenschappelijk Onderzoek-Vlaanderen (G.A091.11), the federal government (IAP P7/16), the Hercules foundation (AKUL/09/037, AKUL/11/30, AKUL/13/39) and SAO/FRA (grant S#12012 and S#14017). A. P. holds a Ph.D. fellowship of the Fonds voor Wetenschappelijk Onderzoek-Vlaanderen.

Conflict of interest

The authors declare that they have no conflict of interest.
Open AccessThis article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.

Unsere Produktempfehlungen

e.Med Interdisziplinär

Kombi-Abonnement

Für Ihren Erfolg in Klinik und Praxis - Die beste Hilfe in Ihrem Arbeitsalltag

Mit e.Med Interdisziplinär erhalten Sie Zugang zu allen CME-Fortbildungen und Fachzeitschriften auf SpringerMedizin.de.

e.Med Neurologie & Psychiatrie

Kombi-Abonnement

Mit e.Med Neurologie & Psychiatrie erhalten Sie Zugang zu CME-Fortbildungen der Fachgebiete, den Premium-Inhalten der dazugehörigen Fachzeitschriften, inklusive einer gedruckten Zeitschrift Ihrer Wahl.

e.Med Neurologie

Kombi-Abonnement

Mit e.Med Neurologie erhalten Sie Zugang zu CME-Fortbildungen des Fachgebietes, den Premium-Inhalten der neurologischen Fachzeitschriften, inklusive einer gedruckten Neurologie-Zeitschrift Ihrer Wahl.

Literatur
2.
Zurück zum Zitat Alonso AC, Grundke-Iqbal I, Iqbal K (1996) Alzheimer’s disease hyperphosphorylated tau sequesters normal tau into tangles of filaments and disassembles microtubules. Nat Med 2(7):783–787PubMed Alonso AC, Grundke-Iqbal I, Iqbal K (1996) Alzheimer’s disease hyperphosphorylated tau sequesters normal tau into tangles of filaments and disassembles microtubules. Nat Med 2(7):783–787PubMed
3.
Zurück zum Zitat Annaert WG, Esselens C, Baert V, Boeve C, Snellings G, Cupers P, Craessaerts K, De Strooper B (2001) Interaction with telencephalin and the amyloid precursor protein predicts a ring structure for presenilins. Neuron 32(4):579–589PubMed Annaert WG, Esselens C, Baert V, Boeve C, Snellings G, Cupers P, Craessaerts K, De Strooper B (2001) Interaction with telencephalin and the amyloid precursor protein predicts a ring structure for presenilins. Neuron 32(4):579–589PubMed
4.
Zurück zum Zitat Aqul A, Liu B, Ramirez CM, Pieper AA, Estill SJ, Burns DK, Repa JJ, Turley SD, Dietschy JM (2011) Unesterified cholesterol accumulation in late endosomes/lysosomes causes neurodegeneration and is prevented by driving cholesterol export from this compartment. J Neurosci 31(25):9404–9413. doi:10.1523/JNEUROSCI.1317-11.2011 PubMedCentralPubMed Aqul A, Liu B, Ramirez CM, Pieper AA, Estill SJ, Burns DK, Repa JJ, Turley SD, Dietschy JM (2011) Unesterified cholesterol accumulation in late endosomes/lysosomes causes neurodegeneration and is prevented by driving cholesterol export from this compartment. J Neurosci 31(25):9404–9413. doi:10.​1523/​JNEUROSCI.​1317-11.​2011 PubMedCentralPubMed
5.
Zurück zum Zitat Arriagada PV, Growdon JH, Hedley-Whyte ET, Hyman BT (1992) Neurofibrillary tangles but not senile plaques parallel duration and severity of Alzheimer’s disease. Neurology 42(3 Pt 1):631–639PubMed Arriagada PV, Growdon JH, Hedley-Whyte ET, Hyman BT (1992) Neurofibrillary tangles but not senile plaques parallel duration and severity of Alzheimer’s disease. Neurology 42(3 Pt 1):631–639PubMed
6.
Zurück zum Zitat Baki L, Neve RL, Shao Z, Shioi J, Georgakopoulos A, Robakis NK (2008) Wild-type but not FAD mutant presenilin-1 prevents neuronal degeneration by promoting phosphatidylinositol 3-kinase neuroprotective signaling. J Neurosci 28(2):483–490. doi:10.1523/JNEUROSCI.4067-07.2008 PubMed Baki L, Neve RL, Shao Z, Shioi J, Georgakopoulos A, Robakis NK (2008) Wild-type but not FAD mutant presenilin-1 prevents neuronal degeneration by promoting phosphatidylinositol 3-kinase neuroprotective signaling. J Neurosci 28(2):483–490. doi:10.​1523/​JNEUROSCI.​4067-07.​2008 PubMed
8.
Zurück zum Zitat Ballatore C, Lee VM, Trojanowski JQ (2007) Tau-mediated neurodegeneration in Alzheimer’s disease and related disorders. Nat Rev Neurosci 8(9):663–672. doi:10.1038/nrn2194 PubMed Ballatore C, Lee VM, Trojanowski JQ (2007) Tau-mediated neurodegeneration in Alzheimer’s disease and related disorders. Nat Rev Neurosci 8(9):663–672. doi:10.​1038/​nrn2194 PubMed
9.
Zurück zum Zitat Berg TO, Fengsrud M, Stromhaug PE, Berg T, Seglen PO (1998) Isolation and characterization of rat liver amphisomes. Evidence for fusion of autophagosomes with both early and late endosomes. J Biol Chem 273(34):21883–21892PubMed Berg TO, Fengsrud M, Stromhaug PE, Berg T, Seglen PO (1998) Isolation and characterization of rat liver amphisomes. Evidence for fusion of autophagosomes with both early and late endosomes. J Biol Chem 273(34):21883–21892PubMed
11.
12.
Zurück zum Zitat Binder LI, Frankfurter A, Rebhun LI (1985) The distribution of tau in the mammalian central nervous system. J Cell Biol 101(4):1371–1378PubMed Binder LI, Frankfurter A, Rebhun LI (1985) The distribution of tau in the mammalian central nervous system. J Cell Biol 101(4):1371–1378PubMed
16.
Zurück zum Zitat Braak H, Alafuzoff I, Arzberger T, Kretzschmar H, Del Tredici K (2006) Staging of Alzheimer disease-associated neurofibrillary pathology using paraffin sections and immunocytochemistry. Acta Neuropathol 112(4):389–404. doi:10.1007/s00401-006-0127-z PubMedCentralPubMed Braak H, Alafuzoff I, Arzberger T, Kretzschmar H, Del Tredici K (2006) Staging of Alzheimer disease-associated neurofibrillary pathology using paraffin sections and immunocytochemistry. Acta Neuropathol 112(4):389–404. doi:10.​1007/​s00401-006-0127-z PubMedCentralPubMed
17.
Zurück zum Zitat Caglayan S, Takagi-Niidome S, Liao F, Carlo AS, Schmidt V, Burgert T, Kitago Y, Fuchtbauer EM, Fuchtbauer A, Holtzman DM, Takagi J, Willnow TE (2014) Lysosomal sorting of amyloid-beta by the SORLA receptor is impaired by a familial Alzheimer’s disease mutation. Sci Transl Med 6(223):223ra220. doi:10.1126/scitranslmed.3007747 Caglayan S, Takagi-Niidome S, Liao F, Carlo AS, Schmidt V, Burgert T, Kitago Y, Fuchtbauer EM, Fuchtbauer A, Holtzman DM, Takagi J, Willnow TE (2014) Lysosomal sorting of amyloid-beta by the SORLA receptor is impaired by a familial Alzheimer’s disease mutation. Sci Transl Med 6(223):223ra220. doi:10.​1126/​scitranslmed.​3007747
18.
Zurück zum Zitat Cairns NJ, Bigio EH, Mackenzie IR, Neumann M, Lee VM, Hatanpaa KJ, White CL 3rd, Schneider JA, Grinberg LT, Halliday G, Duyckaerts C, Lowe JS, Holm IE, Tolnay M, Okamoto K, Yokoo H, Murayama S, Woulfe J, Munoz DG, Dickson DW, Ince PG, Trojanowski JQ, Mann DM (2007) Neuropathologic diagnostic and nosologic criteria for frontotemporal lobar degeneration: consensus of the Consortium for Frontotemporal Lobar Degeneration. Acta Neuropathol 114(1):5–22. doi:10.1007/s00401-007-0237-2 PubMedCentralPubMed Cairns NJ, Bigio EH, Mackenzie IR, Neumann M, Lee VM, Hatanpaa KJ, White CL 3rd, Schneider JA, Grinberg LT, Halliday G, Duyckaerts C, Lowe JS, Holm IE, Tolnay M, Okamoto K, Yokoo H, Murayama S, Woulfe J, Munoz DG, Dickson DW, Ince PG, Trojanowski JQ, Mann DM (2007) Neuropathologic diagnostic and nosologic criteria for frontotemporal lobar degeneration: consensus of the Consortium for Frontotemporal Lobar Degeneration. Acta Neuropathol 114(1):5–22. doi:10.​1007/​s00401-007-0237-2 PubMedCentralPubMed
19.
Zurück zum Zitat Cataldo AM, Petanceska S, Terio NB, Peterhoff CM, Durham R, Mercken M, Mehta PD, Buxbaum J, Haroutunian V, Nixon RA (2004) Abeta localization in abnormal endosomes: association with earliest Abeta elevations in AD and Down syndrome. Neurobiol Aging 25(10):1263–1272. doi:10.1016/j.neurobiolaging.2004.02.027 PubMed Cataldo AM, Petanceska S, Terio NB, Peterhoff CM, Durham R, Mercken M, Mehta PD, Buxbaum J, Haroutunian V, Nixon RA (2004) Abeta localization in abnormal endosomes: association with earliest Abeta elevations in AD and Down syndrome. Neurobiol Aging 25(10):1263–1272. doi:10.​1016/​j.​neurobiolaging.​2004.​02.​027 PubMed
20.
Zurück zum Zitat Cataldo AM, Peterhoff CM, Schmidt SD, Terio NB, Duff K, Beard M, Mathews PM, Nixon RA (2004) Presenilin mutations in familial Alzheimer disease and transgenic mouse models accelerate neuronal lysosomal pathology. J Neuropathol Exp Neurol 63(8):821–830PubMed Cataldo AM, Peterhoff CM, Schmidt SD, Terio NB, Duff K, Beard M, Mathews PM, Nixon RA (2004) Presenilin mutations in familial Alzheimer disease and transgenic mouse models accelerate neuronal lysosomal pathology. J Neuropathol Exp Neurol 63(8):821–830PubMed
22.
Zurück zum Zitat Chavez-Gutierrez L, Bammens L, Benilova I, Vandersteen A, Benurwar M, Borgers M, Lismont S, Zhou L, Van Cleynenbreugel S, Esselmann H, Wiltfang J, Serneels L, Karran E, Gijsen H, Schymkowitz J, Rousseau F, Broersen K, De Strooper B (2012) The mechanism of gamma-Secretase dysfunction in familial Alzheimer disease. EMBO J 31(10):2261–2274. doi:10.1038/emboj.2012.79 PubMedCentralPubMed Chavez-Gutierrez L, Bammens L, Benilova I, Vandersteen A, Benurwar M, Borgers M, Lismont S, Zhou L, Van Cleynenbreugel S, Esselmann H, Wiltfang J, Serneels L, Karran E, Gijsen H, Schymkowitz J, Rousseau F, Broersen K, De Strooper B (2012) The mechanism of gamma-Secretase dysfunction in familial Alzheimer disease. EMBO J 31(10):2261–2274. doi:10.​1038/​emboj.​2012.​79 PubMedCentralPubMed
23.
Zurück zum Zitat Christensen DZ, Kraus SL, Flohr A, Cotel MC, Wirths O, Bayer TA (2008) Transient intraneuronal A beta rather than extracellular plaque pathology correlates with neuron loss in the frontal cortex of APP/PS1KI mice. Acta Neuropathol 116(6):647–655. doi:10.1007/s00401-008-0451-6 PubMed Christensen DZ, Kraus SL, Flohr A, Cotel MC, Wirths O, Bayer TA (2008) Transient intraneuronal A beta rather than extracellular plaque pathology correlates with neuron loss in the frontal cortex of APP/PS1KI mice. Acta Neuropathol 116(6):647–655. doi:10.​1007/​s00401-008-0451-6 PubMed
24.
Zurück zum Zitat Coen K, Flannagan RS, Baron S, Carraro-Lacroix LR, Wang D, Vermeire W, Michiels C, Munck S, Baert V, Sugita S, Wuytack F, Hiesinger PR, Grinstein S, Annaert W (2012) Lysosomal calcium homeostasis defects, not proton pump defects, cause endo-lysosomal dysfunction in PSEN-deficient cells. J Cell Biol 198(1):23–35. doi:10.1083/jcb.201201076 PubMedCentralPubMed Coen K, Flannagan RS, Baron S, Carraro-Lacroix LR, Wang D, Vermeire W, Michiels C, Munck S, Baert V, Sugita S, Wuytack F, Hiesinger PR, Grinstein S, Annaert W (2012) Lysosomal calcium homeostasis defects, not proton pump defects, cause endo-lysosomal dysfunction in PSEN-deficient cells. J Cell Biol 198(1):23–35. doi:10.​1083/​jcb.​201201076 PubMedCentralPubMed
25.
Zurück zum Zitat Dall’Armi C, Hurtado-Lorenzo A, Tian H, Morel E, Nezu A, Chan RB, Yu WH, Robinson KS, Yeku O, Small SA, Duff K, Frohman MA, Wenk MR, Yamamoto A, Di Paolo G (2010) The phospholipase D1 pathway modulates macroautophagy. Nat Commun 1:142. doi:10.1038/ncomms1144 PubMedCentralPubMed Dall’Armi C, Hurtado-Lorenzo A, Tian H, Morel E, Nezu A, Chan RB, Yu WH, Robinson KS, Yeku O, Small SA, Duff K, Frohman MA, Wenk MR, Yamamoto A, Di Paolo G (2010) The phospholipase D1 pathway modulates macroautophagy. Nat Commun 1:142. doi:10.​1038/​ncomms1144 PubMedCentralPubMed
26.
Zurück zum Zitat Damme M, Suntio T, Saftig P, Eskelinen EL (2014) Autophagy in neuronal cells: general principles and physiological and pathological functions. Acta Neuropathol. doi:10.1007/s00401-014-1361-4 Damme M, Suntio T, Saftig P, Eskelinen EL (2014) Autophagy in neuronal cells: general principles and physiological and pathological functions. Acta Neuropathol. doi:10.​1007/​s00401-014-1361-4
29.
31.
33.
34.
Zurück zum Zitat Dodson SE, Andersen OM, Karmali V, Fritz JJ, Cheng D, Peng J, Levey AI, Willnow TE, Lah JJ (2008) Loss of LR11/SORLA enhances early pathology in a mouse model of amyloidosis: evidence for a proximal role in Alzheimer’s disease. J Neurosci 28(48):12877–12886. doi:10.1523/JNEUROSCI.4582-08.2008 PubMedCentralPubMed Dodson SE, Andersen OM, Karmali V, Fritz JJ, Cheng D, Peng J, Levey AI, Willnow TE, Lah JJ (2008) Loss of LR11/SORLA enhances early pathology in a mouse model of amyloidosis: evidence for a proximal role in Alzheimer’s disease. J Neurosci 28(48):12877–12886. doi:10.​1523/​JNEUROSCI.​4582-08.​2008 PubMedCentralPubMed
35.
Zurück zum Zitat Dumanchin C, Czech C, Campion D, Cuif MH, Poyot T, Martin C, Charbonnier F, Goud B, Pradier L, Frebourg T (1999) Presenilins interact with Rab11, a small GTPase involved in the regulation of vesicular transport. Hum Mol Genet 8(7):1263–1269PubMed Dumanchin C, Czech C, Campion D, Cuif MH, Poyot T, Martin C, Charbonnier F, Goud B, Pradier L, Frebourg T (1999) Presenilins interact with Rab11, a small GTPase involved in the regulation of vesicular transport. Hum Mol Genet 8(7):1263–1269PubMed
37.
Zurück zum Zitat Esselens C, Oorschot V, Baert V, Raemaekers T, Spittaels K, Serneels L, Zheng H, Saftig P, De Strooper B, Klumperman J, Annaert W (2004) Presenilin 1 mediates the turnover of telencephalin in hippocampal neurons via an autophagic degradative pathway. J Cell Biol 166(7):1041–1054. doi:10.1083/jcb.200406060 PubMedCentralPubMed Esselens C, Oorschot V, Baert V, Raemaekers T, Spittaels K, Serneels L, Zheng H, Saftig P, De Strooper B, Klumperman J, Annaert W (2004) Presenilin 1 mediates the turnover of telencephalin in hippocampal neurons via an autophagic degradative pathway. J Cell Biol 166(7):1041–1054. doi:10.​1083/​jcb.​200406060 PubMedCentralPubMed
38.
Zurück zum Zitat Esselens C, Sannerud R, Gallardo R, Baert V, Kaden D, Serneels L, De Strooper B, Rousseau F, Multhaup G, Schymkowitz J, Langedijk JP, Annaert W (2012) Peptides based on the presenilin-APP binding domain inhibit APP processing and Abeta production through interfering with the APP transmembrane domain. FASEB J 26(9):3765–3778. doi:10.1096/fj.11-201368 PubMed Esselens C, Sannerud R, Gallardo R, Baert V, Kaden D, Serneels L, De Strooper B, Rousseau F, Multhaup G, Schymkowitz J, Langedijk JP, Annaert W (2012) Peptides based on the presenilin-APP binding domain inhibit APP processing and Abeta production through interfering with the APP transmembrane domain. FASEB J 26(9):3765–3778. doi:10.​1096/​fj.​11-201368 PubMed
40.
Zurück zum Zitat Filimonenko M, Stuffers S, Raiborg C, Yamamoto A, Malerod L, Fisher EM, Isaacs A, Brech A, Stenmark H, Simonsen A (2007) Functional multivesicular bodies are required for autophagic clearance of protein aggregates associated with neurodegenerative disease. J Cell Biol 179(3):485–500. doi:10.1083/jcb.200702115 PubMedCentralPubMed Filimonenko M, Stuffers S, Raiborg C, Yamamoto A, Malerod L, Fisher EM, Isaacs A, Brech A, Stenmark H, Simonsen A (2007) Functional multivesicular bodies are required for autophagic clearance of protein aggregates associated with neurodegenerative disease. J Cell Biol 179(3):485–500. doi:10.​1083/​jcb.​200702115 PubMedCentralPubMed
41.
Zurück zum Zitat Friedrich RP, Tepper K, Ronicke R, Soom M, Westermann M, Reymann K, Kaether C, Fandrich M (2010) Mechanism of amyloid plaque formation suggests an intracellular basis of Abeta pathogenicity. Proc Natl Acad Sci USA 107(5):1942–1947. doi:10.1073/pnas.0904532106 PubMedCentralPubMed Friedrich RP, Tepper K, Ronicke R, Soom M, Westermann M, Reymann K, Kaether C, Fandrich M (2010) Mechanism of amyloid plaque formation suggests an intracellular basis of Abeta pathogenicity. Proc Natl Acad Sci USA 107(5):1942–1947. doi:10.​1073/​pnas.​0904532106 PubMedCentralPubMed
44.
Zurück zum Zitat Ghossoub R, Lembo F, Rubio A, Gaillard CB, Bouchet J, Vitale N, Slavik J, Machala M, Zimmermann P (2014) Syntenin-ALIX exosome biogenesis and budding into multivesicular bodies are controlled by ARF6 and PLD2. Nat Commun 5:3477. doi:10.1038/ncomms4477 PubMed Ghossoub R, Lembo F, Rubio A, Gaillard CB, Bouchet J, Vitale N, Slavik J, Machala M, Zimmermann P (2014) Syntenin-ALIX exosome biogenesis and budding into multivesicular bodies are controlled by ARF6 and PLD2. Nat Commun 5:3477. doi:10.​1038/​ncomms4477 PubMed
45.
Zurück zum Zitat Gomez-Isla T, Hollister R, West H, Mui S, Growdon JH, Petersen RC, Parisi JE, Hyman BT (1997) Neuronal loss correlates with but exceeds neurofibrillary tangles in Alzheimer’s disease. Ann Neurol 41(1):17–24. doi:10.1002/ana.410410106 PubMed Gomez-Isla T, Hollister R, West H, Mui S, Growdon JH, Petersen RC, Parisi JE, Hyman BT (1997) Neuronal loss correlates with but exceeds neurofibrillary tangles in Alzheimer’s disease. Ann Neurol 41(1):17–24. doi:10.​1002/​ana.​410410106 PubMed
46.
Zurück zum Zitat Gotz J, Chen F, van Dorpe J, Nitsch RM (2001) Formation of neurofibrillary tangles in P301 l tau transgenic mice induced by Abeta 42 fibrils. Science 293(5534):1491–1495. doi:10.1126/science.1062097 PubMed Gotz J, Chen F, van Dorpe J, Nitsch RM (2001) Formation of neurofibrillary tangles in P301 l tau transgenic mice induced by Abeta 42 fibrils. Science 293(5534):1491–1495. doi:10.​1126/​science.​1062097 PubMed
50.
Zurück zum Zitat Hoover BR, Reed MN, Su J, Penrod RD, Kotilinek LA, Grant MK, Pitstick R, Carlson GA, Lanier LM, Yuan LL, Ashe KH, Liao D (2010) Tau mislocalization to dendritic spines mediates synaptic dysfunction independently of neurodegeneration. Neuron 68(6):1067–1081. doi:10.1016/j.neuron.2010.11.030 PubMedCentralPubMed Hoover BR, Reed MN, Su J, Penrod RD, Kotilinek LA, Grant MK, Pitstick R, Carlson GA, Lanier LM, Yuan LL, Ashe KH, Liao D (2010) Tau mislocalization to dendritic spines mediates synaptic dysfunction independently of neurodegeneration. Neuron 68(6):1067–1081. doi:10.​1016/​j.​neuron.​2010.​11.​030 PubMedCentralPubMed
52.
Zurück zum Zitat Inoue K, Rispoli J, Kaphzan H, Klann E, Chen EI, Kim J, Komatsu M, Abeliovich A (2012) Macroautophagy deficiency mediates age-dependent neurodegeneration through a phospho-tau pathway. Mol Neurodegener 7:48. doi:10.1186/1750-1326-7-48 PubMedCentralPubMed Inoue K, Rispoli J, Kaphzan H, Klann E, Chen EI, Kim J, Komatsu M, Abeliovich A (2012) Macroautophagy deficiency mediates age-dependent neurodegeneration through a phospho-tau pathway. Mol Neurodegener 7:48. doi:10.​1186/​1750-1326-7-48 PubMedCentralPubMed
54.
Zurück zum Zitat Itakura E, Mizushima N (2009) Atg14 and UVRAG: mutually exclusive subunits of mammalian Beclin 1-PI3K complexes. Autophagy 5(4):534–536PubMed Itakura E, Mizushima N (2009) Atg14 and UVRAG: mutually exclusive subunits of mammalian Beclin 1-PI3K complexes. Autophagy 5(4):534–536PubMed
55.
Zurück zum Zitat Ittner LM, Ke YD, Delerue F, Bi M, Gladbach A, van Eersel J, Wolfing H, Chieng BC, Christie MJ, Napier IA, Eckert A, Staufenbiel M, Hardeman E, Gotz J (2010) Dendritic function of tau mediates amyloid-beta toxicity in Alzheimer’s disease mouse models. Cell 142(3):387–397. doi:10.1016/j.cell.2010.06.036 PubMed Ittner LM, Ke YD, Delerue F, Bi M, Gladbach A, van Eersel J, Wolfing H, Chieng BC, Christie MJ, Napier IA, Eckert A, Staufenbiel M, Hardeman E, Gotz J (2010) Dendritic function of tau mediates amyloid-beta toxicity in Alzheimer’s disease mouse models. Cell 142(3):387–397. doi:10.​1016/​j.​cell.​2010.​06.​036 PubMed
58.
Zurück zum Zitat Jin LW, Shie FS, Maezawa I, Vincent I, Bird T (2004) Intracellular accumulation of amyloidogenic fragments of amyloid-beta precursor protein in neurons with Niemann-Pick type C defects is associated with endosomal abnormalities. Am J Pathol 164(3):975–985PubMedCentralPubMed Jin LW, Shie FS, Maezawa I, Vincent I, Bird T (2004) Intracellular accumulation of amyloidogenic fragments of amyloid-beta precursor protein in neurons with Niemann-Pick type C defects is associated with endosomal abnormalities. Am J Pathol 164(3):975–985PubMedCentralPubMed
61.
Zurück zum Zitat Kannanayakal TJ, Tao H, Vandre DD, Kuret J (2006) Casein kinase-1 isoforms differentially associate with neurofibrillary and granulovacuolar degeneration lesions. Acta Neuropathol 111(5):413–421. doi:10.1007/s00401-006-0049-9 PubMed Kannanayakal TJ, Tao H, Vandre DD, Kuret J (2006) Casein kinase-1 isoforms differentially associate with neurofibrillary and granulovacuolar degeneration lesions. Acta Neuropathol 111(5):413–421. doi:10.​1007/​s00401-006-0049-9 PubMed
62.
Zurück zum Zitat Khandelwal PJ, Herman AM, Hoe HS, Rebeck GW, Moussa CE (2011) Parkin mediates beclin-dependent autophagic clearance of defective mitochondria and ubiquitinated Abeta in AD models. Hum Mol Genet 20(11):2091–2102. doi:10.1093/hmg/ddr091 PubMedCentralPubMed Khandelwal PJ, Herman AM, Hoe HS, Rebeck GW, Moussa CE (2011) Parkin mediates beclin-dependent autophagic clearance of defective mitochondria and ubiquitinated Abeta in AD models. Hum Mol Genet 20(11):2091–2102. doi:10.​1093/​hmg/​ddr091 PubMedCentralPubMed
63.
Zurück zum Zitat Kihara A, Noda T, Ishihara N, Ohsumi Y (2001) Two distinct Vps34 phosphatidylinositol 3-kinase complexes function in autophagy and carboxypeptidase Y sorting in Saccharomyces cerevisiae. J Cell Biol 152(3):519–530PubMedCentralPubMed Kihara A, Noda T, Ishihara N, Ohsumi Y (2001) Two distinct Vps34 phosphatidylinositol 3-kinase complexes function in autophagy and carboxypeptidase Y sorting in Saccharomyces cerevisiae. J Cell Biol 152(3):519–530PubMedCentralPubMed
64.
Zurück zum Zitat Kim HJ, Zhong Q, Sheng ZH, Yoshimori T, Liang C, Jung JU (2012) Beclin-1-interacting autophagy protein Atg14L targets the SNARE-associated protein Snapin to coordinate endocytic trafficking. J Cell Sci 125(Pt 20):4740–4750. doi:10.1242/jcs.100339 PubMedCentralPubMed Kim HJ, Zhong Q, Sheng ZH, Yoshimori T, Liang C, Jung JU (2012) Beclin-1-interacting autophagy protein Atg14L targets the SNARE-associated protein Snapin to coordinate endocytic trafficking. J Cell Sci 125(Pt 20):4740–4750. doi:10.​1242/​jcs.​100339 PubMedCentralPubMed
67.
Zurück zum Zitat Kuma A, Hatano M, Matsui M, Yamamoto A, Nakaya H, Yoshimori T, Ohsumi Y, Tokuhisa T, Mizushima N (2004) The role of autophagy during the early neonatal starvation period. Nature 432(7020):1032–1036. doi:10.1038/nature03029 PubMed Kuma A, Hatano M, Matsui M, Yamamoto A, Nakaya H, Yoshimori T, Ohsumi Y, Tokuhisa T, Mizushima N (2004) The role of autophagy during the early neonatal starvation period. Nature 432(7020):1032–1036. doi:10.​1038/​nature03029 PubMed
69.
Zurück zum Zitat Lee JH, Yu WH, Kumar A, Lee S, Mohan PS, Peterhoff CM, Wolfe DM, Martinez-Vicente M, Massey AC, Sovak G, Uchiyama Y, Westaway D, Cuervo AM, Nixon RA (2010) Lysosomal proteolysis and autophagy require presenilin 1 and are disrupted by Alzheimer-related PS1 mutations. Cell 141(7):1146–1158. doi:10.1016/j.cell.2010.05.008 PubMedCentralPubMed Lee JH, Yu WH, Kumar A, Lee S, Mohan PS, Peterhoff CM, Wolfe DM, Martinez-Vicente M, Massey AC, Sovak G, Uchiyama Y, Westaway D, Cuervo AM, Nixon RA (2010) Lysosomal proteolysis and autophagy require presenilin 1 and are disrupted by Alzheimer-related PS1 mutations. Cell 141(7):1146–1158. doi:10.​1016/​j.​cell.​2010.​05.​008 PubMedCentralPubMed
70.
Zurück zum Zitat Leevers SJ, Vanhaesebroeck B, Waterfield MD (1999) Signalling through phosphoinositide 3-kinases: the lipids take centre stage. Curr Opin Cell Biol 11(2):219–225PubMed Leevers SJ, Vanhaesebroeck B, Waterfield MD (1999) Signalling through phosphoinositide 3-kinases: the lipids take centre stage. Curr Opin Cell Biol 11(2):219–225PubMed
71.
Zurück zum Zitat Leroy K, Boutajangout A, Authelet M, Woodgett JR, Anderton BH, Brion JP (2002) The active form of glycogen synthase kinase-3beta is associated with granulovacuolar degeneration in neurons in Alzheimer’s disease. Acta Neuropathol 103(2):91–99. doi:10.1007/s004010100435 PubMed Leroy K, Boutajangout A, Authelet M, Woodgett JR, Anderton BH, Brion JP (2002) The active form of glycogen synthase kinase-3beta is associated with granulovacuolar degeneration in neurons in Alzheimer’s disease. Acta Neuropathol 103(2):91–99. doi:10.​1007/​s004010100435 PubMed
72.
Zurück zum Zitat Liang C, Lee JS, Inn KS, Gack MU, Li Q, Roberts EA, Vergne I, Deretic V, Feng P, Akazawa C, Jung JU (2008) Beclin1-binding UVRAG targets the class C Vps complex to coordinate autophagosome maturation and endocytic trafficking. Nat Cell Biol 10(7):776–787. doi:10.1038/ncb1740 PubMedCentralPubMed Liang C, Lee JS, Inn KS, Gack MU, Li Q, Roberts EA, Vergne I, Deretic V, Feng P, Akazawa C, Jung JU (2008) Beclin1-binding UVRAG targets the class C Vps complex to coordinate autophagosome maturation and endocytic trafficking. Nat Cell Biol 10(7):776–787. doi:10.​1038/​ncb1740 PubMedCentralPubMed
75.
Zurück zum Zitat Liou W, Geuze HJ, Geelen MJ, Slot JW (1997) The autophagic and endocytic pathways converge at the nascent autophagic vacuoles. J Cell Biol 136(1):61–70PubMedCentralPubMed Liou W, Geuze HJ, Geelen MJ, Slot JW (1997) The autophagic and endocytic pathways converge at the nascent autophagic vacuoles. J Cell Biol 136(1):61–70PubMedCentralPubMed
76.
Zurück zum Zitat Lloyd-Evans E, Morgan AJ, He X, Smith DA, Elliot-Smith E, Sillence DJ, Churchill GC, Schuchman EH, Galione A, Platt FM (2008) Niemann-Pick disease type C1 is a sphingosine storage disease that causes deregulation of lysosomal calcium. Nat Med 14(11):1247–1255. doi:10.1038/nm.1876 PubMed Lloyd-Evans E, Morgan AJ, He X, Smith DA, Elliot-Smith E, Sillence DJ, Churchill GC, Schuchman EH, Galione A, Platt FM (2008) Niemann-Pick disease type C1 is a sphingosine storage disease that causes deregulation of lysosomal calcium. Nat Med 14(11):1247–1255. doi:10.​1038/​nm.​1876 PubMed
78.
Zurück zum Zitat Love S, Bridges LR, Case CP (1995) Neurofibrillary tangles in Niemann-Pick disease type C. Brain 118(Pt 1):119–129PubMed Love S, Bridges LR, Case CP (1995) Neurofibrillary tangles in Niemann-Pick disease type C. Brain 118(Pt 1):119–129PubMed
79.
Zurück zum Zitat Lue LF, Kuo YM, Roher AE, Brachova L, Shen Y, Sue L, Beach T, Kurth JH, Rydel RE, Rogers J (1999) Soluble amyloid beta peptide concentration as a predictor of synaptic change in Alzheimer’s disease. Am J Pathol 155(3):853–862PubMedCentralPubMed Lue LF, Kuo YM, Roher AE, Brachova L, Shen Y, Sue L, Beach T, Kurth JH, Rydel RE, Rogers J (1999) Soluble amyloid beta peptide concentration as a predictor of synaptic change in Alzheimer’s disease. Am J Pathol 155(3):853–862PubMedCentralPubMed
80.
Zurück zum Zitat Maejima I, Takahashi A, Omori H, Kimura T, Takabatake Y, Saitoh T, Yamamoto A, Hamasaki M, Noda T, Isaka Y, Yoshimori T (2013) Autophagy sequesters damaged lysosomes to control lysosomal biogenesis and kidney injury. EMBO J 32(17):2336–2347. doi:10.1038/emboj.2013.171 PubMedCentralPubMed Maejima I, Takahashi A, Omori H, Kimura T, Takabatake Y, Saitoh T, Yamamoto A, Hamasaki M, Noda T, Isaka Y, Yoshimori T (2013) Autophagy sequesters damaged lysosomes to control lysosomal biogenesis and kidney injury. EMBO J 32(17):2336–2347. doi:10.​1038/​emboj.​2013.​171 PubMedCentralPubMed
81.
Zurück zum Zitat Malnar M, Kosicek M, Lisica A, Posavec M, Krolo A, Njavro J, Omerbasic D, Tahirovic S, Hecimovic S (2012) Cholesterol-depletion corrects APP and BACE1 misstrafficking in NPC1-deficient cells. Biochim Biophys Acta 1822(8):1270–1283. doi:10.1016/j.bbadis.2012.04.002 PubMed Malnar M, Kosicek M, Lisica A, Posavec M, Krolo A, Njavro J, Omerbasic D, Tahirovic S, Hecimovic S (2012) Cholesterol-depletion corrects APP and BACE1 misstrafficking in NPC1-deficient cells. Biochim Biophys Acta 1822(8):1270–1283. doi:10.​1016/​j.​bbadis.​2012.​04.​002 PubMed
82.
86.
Zurück zum Zitat Matsunaga K, Saitoh T, Tabata K, Omori H, Satoh T, Kurotori N, Maejima I, Shirahama-Noda K, Ichimura T, Isobe T, Akira S, Noda T, Yoshimori T (2009) Two Beclin 1-binding proteins, Atg14L and Rubicon, reciprocally regulate autophagy at different stages. Nat Cell Biol 11(4):385–396. doi:10.1038/ncb1846 PubMed Matsunaga K, Saitoh T, Tabata K, Omori H, Satoh T, Kurotori N, Maejima I, Shirahama-Noda K, Ichimura T, Isobe T, Akira S, Noda T, Yoshimori T (2009) Two Beclin 1-binding proteins, Atg14L and Rubicon, reciprocally regulate autophagy at different stages. Nat Cell Biol 11(4):385–396. doi:10.​1038/​ncb1846 PubMed
87.
Zurück zum Zitat Mc Donald JM, Savva GM, Brayne C, Welzel AT, Forster G, Shankar GM, Selkoe DJ, Ince PG, Walsh DM (2010) The presence of sodium dodecyl sulphate-stable Abeta dimers is strongly associated with Alzheimer-type dementia. Brain 133(Pt 5):1328–1341. doi:10.1093/brain/awq065 PubMedCentralPubMed Mc Donald JM, Savva GM, Brayne C, Welzel AT, Forster G, Shankar GM, Selkoe DJ, Ince PG, Walsh DM (2010) The presence of sodium dodecyl sulphate-stable Abeta dimers is strongly associated with Alzheimer-type dementia. Brain 133(Pt 5):1328–1341. doi:10.​1093/​brain/​awq065 PubMedCentralPubMed
88.
Zurück zum Zitat McLean CA, Cherny RA, Fraser FW, Fuller SJ, Smith MJ, Beyreuther K, Bush AI, Masters CL (1999) Soluble pool of Abeta amyloid as a determinant of severity of neurodegeneration in Alzheimer’s disease. Ann Neurol 46(6):860–866PubMed McLean CA, Cherny RA, Fraser FW, Fuller SJ, Smith MJ, Beyreuther K, Bush AI, Masters CL (1999) Soluble pool of Abeta amyloid as a determinant of severity of neurodegeneration in Alzheimer’s disease. Ann Neurol 46(6):860–866PubMed
89.
Zurück zum Zitat Mecozzi VJ, Berman DE, Simoes S, Vetanovetz C, Awal MR, Patel VM, Schneider RT, Petsko GA, Ringe D, Small SA (2014) Pharmacological chaperones stabilize retromer to limit APP processing. Nat Chem Biol 10(6):443–449. doi:10.1038/nchembio.1508 PubMedCentralPubMed Mecozzi VJ, Berman DE, Simoes S, Vetanovetz C, Awal MR, Patel VM, Schneider RT, Petsko GA, Ringe D, Small SA (2014) Pharmacological chaperones stabilize retromer to limit APP processing. Nat Chem Biol 10(6):443–449. doi:10.​1038/​nchembio.​1508 PubMedCentralPubMed
91.
Zurück zum Zitat Mohamed A, Saavedra L, Di Pardo A, Sipione S, Posse de Chaves E (2012) Beta-amyloid inhibits protein prenylation and induces cholesterol sequestration by impairing SREBP-2 cleavage. J Neurosci 32(19):6490–6500. doi:10.1523/JNEUROSCI.0630-12.2012 PubMed Mohamed A, Saavedra L, Di Pardo A, Sipione S, Posse de Chaves E (2012) Beta-amyloid inhibits protein prenylation and induces cholesterol sequestration by impairing SREBP-2 cleavage. J Neurosci 32(19):6490–6500. doi:10.​1523/​JNEUROSCI.​0630-12.​2012 PubMed
93.
Zurück zum Zitat Morel E, Chamoun Z, Lasiecka ZM, Chan RB, Williamson RL, Vetanovetz C, Dall’Armi C, Simoes S, Point Du, Jour KS, McCabe BD, Small SA, Di Paolo G (2013) Phosphatidylinositol-3-phosphate regulates sorting and processing of amyloid precursor protein through the endosomal system. Nat Commun 4:2250. doi:10.1038/ncomms3250 PubMedCentralPubMed Morel E, Chamoun Z, Lasiecka ZM, Chan RB, Williamson RL, Vetanovetz C, Dall’Armi C, Simoes S, Point Du, Jour KS, McCabe BD, Small SA, Di Paolo G (2013) Phosphatidylinositol-3-phosphate regulates sorting and processing of amyloid precursor protein through the endosomal system. Nat Commun 4:2250. doi:10.​1038/​ncomms3250 PubMedCentralPubMed
96.
Zurück zum Zitat Neely Kayala KM, Dickinson GD, Minassian A, Walls KC, Green KN, Laferla FM (2012) Presenilin-null cells have altered two-pore calcium channel expression and lysosomal calcium: implications for lysosomal function. Brain Res 1489:8–16. doi:10.1016/j.brainres.2012.10.036 PubMed Neely Kayala KM, Dickinson GD, Minassian A, Walls KC, Green KN, Laferla FM (2012) Presenilin-null cells have altered two-pore calcium channel expression and lysosomal calcium: implications for lysosomal function. Brain Res 1489:8–16. doi:10.​1016/​j.​brainres.​2012.​10.​036 PubMed
98.
Zurück zum Zitat Nelson O, Tu H, Lei T, Bentahir M, de Strooper B, Bezprozvanny I (2007) Familial Alzheimer disease-linked mutations specifically disrupt Ca2+ leak function of presenilin 1. J Clin Invest 117(5):1230–1239. doi:10.1172/JCI30447 PubMedCentralPubMed Nelson O, Tu H, Lei T, Bentahir M, de Strooper B, Bezprozvanny I (2007) Familial Alzheimer disease-linked mutations specifically disrupt Ca2+ leak function of presenilin 1. J Clin Invest 117(5):1230–1239. doi:10.​1172/​JCI30447 PubMedCentralPubMed
99.
Zurück zum Zitat Nilsberth C, Westlind-Danielsson A, Eckman CB, Condron MM, Axelman K, Forsell C, Stenh C, Luthman J, Teplow DB, Younkin SG, Naslund J, Lannfelt L (2001) The ‘Arctic’ APP mutation (E693G) causes Alzheimer’s disease by enhanced Abeta protofibril formation. Nat Neurosci 4(9):887–893. doi:10.1038/nn0901-887 PubMed Nilsberth C, Westlind-Danielsson A, Eckman CB, Condron MM, Axelman K, Forsell C, Stenh C, Luthman J, Teplow DB, Younkin SG, Naslund J, Lannfelt L (2001) The ‘Arctic’ APP mutation (E693G) causes Alzheimer’s disease by enhanced Abeta protofibril formation. Nat Neurosci 4(9):887–893. doi:10.​1038/​nn0901-887 PubMed
100.
Zurück zum Zitat Nishikawa T, Takahashi T, Nakamori M, Yamazaki Y, Kurashige T, Nagano Y, Nishida Y, Izumi Y, Matsumoto M (2014) Phosphatidylinositol-4,5-bisphosphate is enriched in granulovacuolar degeneration bodies and neurofibrillary tangles. Neuropathol Appl Neurobiol. doi:10.1111/nan.12056 PubMedCentralPubMed Nishikawa T, Takahashi T, Nakamori M, Yamazaki Y, Kurashige T, Nagano Y, Nishida Y, Izumi Y, Matsumoto M (2014) Phosphatidylinositol-4,5-bisphosphate is enriched in granulovacuolar degeneration bodies and neurofibrillary tangles. Neuropathol Appl Neurobiol. doi:10.​1111/​nan.​12056 PubMedCentralPubMed
101.
Zurück zum Zitat Nixon RA, Wegiel J, Kumar A, Yu WH, Peterhoff C, Cataldo A, Cuervo AM (2005) Extensive involvement of autophagy in Alzheimer disease: an immuno-electron microscopy study. J Neuropathol Exp Neurol 64(2):113–122PubMed Nixon RA, Wegiel J, Kumar A, Yu WH, Peterhoff C, Cataldo A, Cuervo AM (2005) Extensive involvement of autophagy in Alzheimer disease: an immuno-electron microscopy study. J Neuropathol Exp Neurol 64(2):113–122PubMed
104.
Zurück zum Zitat Obara K, Sekito T, Ohsumi Y (2006) Assortment of phosphatidylinositol 3-kinase complexes—Atg14p directs association of complex I to the pre-autophagosomal structure in Saccharomyces cerevisiae. Mol Biol Cell 17(4):1527–1539. doi:10.1091/mbc.E05-09-0841 PubMedCentralPubMed Obara K, Sekito T, Ohsumi Y (2006) Assortment of phosphatidylinositol 3-kinase complexes—Atg14p directs association of complex I to the pre-autophagosomal structure in Saccharomyces cerevisiae. Mol Biol Cell 17(4):1527–1539. doi:10.​1091/​mbc.​E05-09-0841 PubMedCentralPubMed
105.
Zurück zum Zitat Okamoto K, Hirai S, Iizuka T, Yanagisawa T, Watanabe M (1991) Reexamination of granulovacuolar degeneration. Acta Neuropathol 82(5):340–345PubMed Okamoto K, Hirai S, Iizuka T, Yanagisawa T, Watanabe M (1991) Reexamination of granulovacuolar degeneration. Acta Neuropathol 82(5):340–345PubMed
106.
Zurück zum Zitat Panaretou C, Domin J, Cockcroft S, Waterfield MD (1997) Characterization of p150, an adaptor protein for the human phosphatidylinositol (PtdIns) 3-kinase. Substrate presentation by phosphatidylinositol transfer protein to the p150.Ptdins 3-kinase complex. J Biol Chem 272(4):2477–2485PubMed Panaretou C, Domin J, Cockcroft S, Waterfield MD (1997) Characterization of p150, an adaptor protein for the human phosphatidylinositol (PtdIns) 3-kinase. Substrate presentation by phosphatidylinositol transfer protein to the p150.Ptdins 3-kinase complex. J Biol Chem 272(4):2477–2485PubMed
107.
Zurück zum Zitat Pickford F, Masliah E, Britschgi M, Lucin K, Narasimhan R, Jaeger PA, Small S, Spencer B, Rockenstein E, Levine B, Wyss-Coray T (2008) The autophagy-related protein beclin 1 shows reduced expression in early Alzheimer disease and regulates amyloid beta accumulation in mice. J Clin Invest 118(6):2190–2199. doi:10.1172/JCI33585 PubMedCentralPubMed Pickford F, Masliah E, Britschgi M, Lucin K, Narasimhan R, Jaeger PA, Small S, Spencer B, Rockenstein E, Levine B, Wyss-Coray T (2008) The autophagy-related protein beclin 1 shows reduced expression in early Alzheimer disease and regulates amyloid beta accumulation in mice. J Clin Invest 118(6):2190–2199. doi:10.​1172/​JCI33585 PubMedCentralPubMed
109.
Zurück zum Zitat Polito VA, Li H, Martini-Stoica H, Wang B, Yang L, Xu Y, Swartzlander DB, Palmieri M, di Ronza A, Lee VM, Sardiello M, Ballabio A, Zheng H (2014) Selective clearance of aberrant tau proteins and rescue of neurotoxicity by transcription factor EB. EMBO Mol Med 6(9):1142–1160. doi:10.15252/emmm.201303671 PubMedCentralPubMed Polito VA, Li H, Martini-Stoica H, Wang B, Yang L, Xu Y, Swartzlander DB, Palmieri M, di Ronza A, Lee VM, Sardiello M, Ballabio A, Zheng H (2014) Selective clearance of aberrant tau proteins and rescue of neurotoxicity by transcription factor EB. EMBO Mol Med 6(9):1142–1160. doi:10.​15252/​emmm.​201303671 PubMedCentralPubMed
111.
Zurück zum Zitat Raemaekers T, Peric A, Baatsen P, Sannerud R, Declerck I, Baert V, Michiels C, Annaert W (2012) ARF6-mediated endosomal transport of Telencephalin affects dendritic filopodia-to-spine maturation. EMBO J 31(15):3252–3269. doi:10.1038/emboj.2012.182 PubMedCentralPubMed Raemaekers T, Peric A, Baatsen P, Sannerud R, Declerck I, Baert V, Michiels C, Annaert W (2012) ARF6-mediated endosomal transport of Telencephalin affects dendritic filopodia-to-spine maturation. EMBO J 31(15):3252–3269. doi:10.​1038/​emboj.​2012.​182 PubMedCentralPubMed
112.
Zurück zum Zitat Raiborg C, Schink KO, Stenmark H (2013) Class III phosphatidylinositol 3-kinase and its catalytic product PtdIns3P in regulation of endocytic membrane traffic. FEBS J 280(12):2730–2742. doi:10.1111/febs.12116 PubMed Raiborg C, Schink KO, Stenmark H (2013) Class III phosphatidylinositol 3-kinase and its catalytic product PtdIns3P in regulation of endocytic membrane traffic. FEBS J 280(12):2730–2742. doi:10.​1111/​febs.​12116 PubMed
115.
Zurück zum Zitat Refolo LM, Eckman C, Prada CM, Yager D, Sambamurti K, Mehta N, Hardy J, Younkin SG (1999) Antisense-induced reduction of presenilin 1 expression selectively increases the production of amyloid beta42 in transfected cells. J Neurochem 73(6):2383–2388PubMed Refolo LM, Eckman C, Prada CM, Yager D, Sambamurti K, Mehta N, Hardy J, Younkin SG (1999) Antisense-induced reduction of presenilin 1 expression selectively increases the production of amyloid beta42 in transfected cells. J Neurochem 73(6):2383–2388PubMed
116.
Zurück zum Zitat Repetto E, Yoon IS, Zheng H, Kang DE (2007) Presenilin 1 regulates epidermal growth factor receptor turnover and signaling in the endosomal-lysosomal pathway. J Biol Chem 282(43):31504–31516. doi:10.1074/jbc.M704273200 PubMed Repetto E, Yoon IS, Zheng H, Kang DE (2007) Presenilin 1 regulates epidermal growth factor receptor turnover and signaling in the endosomal-lysosomal pathway. J Biol Chem 282(43):31504–31516. doi:10.​1074/​jbc.​M704273200 PubMed
117.
Zurück zum Zitat Roberson ED, Scearce-Levie K, Palop JJ, Yan F, Cheng IH, Wu T, Gerstein H, Yu GQ, Mucke L (2007) Reducing endogenous tau ameliorates amyloid beta-induced deficits in an Alzheimer’s disease mouse model. Science 316(5825):750–754. doi:10.1126/science.1141736 PubMed Roberson ED, Scearce-Levie K, Palop JJ, Yan F, Cheng IH, Wu T, Gerstein H, Yu GQ, Mucke L (2007) Reducing endogenous tau ameliorates amyloid beta-induced deficits in an Alzheimer’s disease mouse model. Science 316(5825):750–754. doi:10.​1126/​science.​1141736 PubMed
118.
Zurück zum Zitat Ruck A, Attonito J, Garces KT, Nunez L, Palmisano NJ, Rubel Z, Bai Z, Nguyen KC, Sun L, Grant BD, Hall DH, Melendez A (2011) The Atg6/Vps30/Beclin 1 ortholog BEC-1 mediates endocytic retrograde transport in addition to autophagy in C. elegans. Autophagy 7(4):386–400PubMedCentralPubMed Ruck A, Attonito J, Garces KT, Nunez L, Palmisano NJ, Rubel Z, Bai Z, Nguyen KC, Sun L, Grant BD, Hall DH, Melendez A (2011) The Atg6/Vps30/Beclin 1 ortholog BEC-1 mediates endocytic retrograde transport in addition to autophagy in C. elegans. Autophagy 7(4):386–400PubMedCentralPubMed
119.
Zurück zum Zitat Runz H, Rietdorf J, Tomic I, de Bernard M, Beyreuther K, Pepperkok R, Hartmann T (2002) Inhibition of intracellular cholesterol transport alters presenilin localization and amyloid precursor protein processing in neuronal cells. J Neurosci 22(5):1679–1689PubMed Runz H, Rietdorf J, Tomic I, de Bernard M, Beyreuther K, Pepperkok R, Hartmann T (2002) Inhibition of intracellular cholesterol transport alters presenilin localization and amyloid precursor protein processing in neuronal cells. J Neurosci 22(5):1679–1689PubMed
120.
Zurück zum Zitat Russell RC, Tian Y, Yuan H, Park HW, Chang YY, Kim J, Kim H, Neufeld TP, Dillin A, Guan KL (2013) ULK1 induces autophagy by phosphorylating Beclin-1 and activating VPS34 lipid kinase. Nat Cell Biol 15(7):741–750. doi:10.1038/ncb2757 PubMed Russell RC, Tian Y, Yuan H, Park HW, Chang YY, Kim J, Kim H, Neufeld TP, Dillin A, Guan KL (2013) ULK1 induces autophagy by phosphorylating Beclin-1 and activating VPS34 lipid kinase. Nat Cell Biol 15(7):741–750. doi:10.​1038/​ncb2757 PubMed
122.
Zurück zum Zitat Sahlin C, Lord A, Magnusson K, Englund H, Almeida CG, Greengard P, Nyberg F, Gouras GK, Lannfelt L, Nilsson LN (2007) The Arctic Alzheimer mutation favors intracellular amyloid-beta production by making amyloid precursor protein less available to alpha-secretase. J Neurochem 101(3):854–862. doi:10.1111/j.1471-4159.2006.04443.x PubMed Sahlin C, Lord A, Magnusson K, Englund H, Almeida CG, Greengard P, Nyberg F, Gouras GK, Lannfelt L, Nilsson LN (2007) The Arctic Alzheimer mutation favors intracellular amyloid-beta production by making amyloid precursor protein less available to alpha-secretase. J Neurochem 101(3):854–862. doi:10.​1111/​j.​1471-4159.​2006.​04443.​x PubMed
123.
Zurück zum Zitat Saito T, Suemoto T, Brouwers N, Sleegers K, Funamoto S, Mihira N, Matsuba Y, Yamada K, Nilsson P, Takano J, Nishimura M, Iwata N, Van Broeckhoven C, Ihara Y, Saido TC (2011) Potent amyloidogenicity and pathogenicity of Abeta43. Nat Neurosci 14(8):1023–1032. doi:10.1038/nn.2858 PubMed Saito T, Suemoto T, Brouwers N, Sleegers K, Funamoto S, Mihira N, Matsuba Y, Yamada K, Nilsson P, Takano J, Nishimura M, Iwata N, Van Broeckhoven C, Ihara Y, Saido TC (2011) Potent amyloidogenicity and pathogenicity of Abeta43. Nat Neurosci 14(8):1023–1032. doi:10.​1038/​nn.​2858 PubMed
124.
Zurück zum Zitat Saitoh T, Fujita N, Jang MH, Uematsu S, Yang BG, Satoh T, Omori H, Noda T, Yamamoto N, Komatsu M, Tanaka K, Kawai T, Tsujimura T, Takeuchi O, Yoshimori T, Akira S (2008) Loss of the autophagy protein Atg16L1 enhances endotoxin-induced IL-1beta production. Nature 456(7219):264–268. doi:10.1038/nature07383 PubMed Saitoh T, Fujita N, Jang MH, Uematsu S, Yang BG, Satoh T, Omori H, Noda T, Yamamoto N, Komatsu M, Tanaka K, Kawai T, Tsujimura T, Takeuchi O, Yoshimori T, Akira S (2008) Loss of the autophagy protein Atg16L1 enhances endotoxin-induced IL-1beta production. Nature 456(7219):264–268. doi:10.​1038/​nature07383 PubMed
126.
Zurück zum Zitat Sannerud R, Declerck I, Peric A, Raemaekers T, Menendez G, Zhou L, Veerle B, Coen K, Munck S, De Strooper B, Schiavo G, Annaert W (2011) ADP ribosylation factor 6 (ARF6) controls amyloid precursor protein (APP) processing by mediating the endosomal sorting of BACE1. Proc Natl Acad Sci USA 108(34):E559–E568. doi:10.1073/pnas.1100745108 PubMedCentralPubMed Sannerud R, Declerck I, Peric A, Raemaekers T, Menendez G, Zhou L, Veerle B, Coen K, Munck S, De Strooper B, Schiavo G, Annaert W (2011) ADP ribosylation factor 6 (ARF6) controls amyloid precursor protein (APP) processing by mediating the endosomal sorting of BACE1. Proc Natl Acad Sci USA 108(34):E559–E568. doi:10.​1073/​pnas.​1100745108 PubMedCentralPubMed
127.
Zurück zum Zitat Saura CA, Choi SY, Beglopoulos V, Malkani S, Zhang D, Shankaranarayana Rao BS, Chattarji S, Kelleher RJ 3rd, Kandel ER, Duff K, Kirkwood A, Shen J (2004) Loss of presenilin function causes impairments of memory and synaptic plasticity followed by age-dependent neurodegeneration. Neuron 42(1):23–36PubMed Saura CA, Choi SY, Beglopoulos V, Malkani S, Zhang D, Shankaranarayana Rao BS, Chattarji S, Kelleher RJ 3rd, Kandel ER, Duff K, Kirkwood A, Shen J (2004) Loss of presenilin function causes impairments of memory and synaptic plasticity followed by age-dependent neurodegeneration. Neuron 42(1):23–36PubMed
128.
Zurück zum Zitat Sawamura N, Gong JS, Garver WS, Heidenreich RA, Ninomiya H, Ohno K, Yanagisawa K, Michikawa M (2001) Site-specific phosphorylation of tau accompanied by activation of mitogen-activated protein kinase (MAPK) in brains of Niemann-Pick type C mice. J Biol Chem 276(13):10314–10319. doi:10.1074/jbc.M009733200 PubMed Sawamura N, Gong JS, Garver WS, Heidenreich RA, Ninomiya H, Ohno K, Yanagisawa K, Michikawa M (2001) Site-specific phosphorylation of tau accompanied by activation of mitogen-activated protein kinase (MAPK) in brains of Niemann-Pick type C mice. J Biol Chem 276(13):10314–10319. doi:10.​1074/​jbc.​M009733200 PubMed
129.
Zurück zum Zitat Schu PV, Takegawa K, Fry MJ, Stack JH, Waterfield MD, Emr SD (1993) Phosphatidylinositol 3-kinase encoded by yeast VPS34 gene essential for protein sorting. Science 260(5104):88–91PubMed Schu PV, Takegawa K, Fry MJ, Stack JH, Waterfield MD, Emr SD (1993) Phosphatidylinositol 3-kinase encoded by yeast VPS34 gene essential for protein sorting. Science 260(5104):88–91PubMed
132.
Zurück zum Zitat Settembre C, Di Malta C, Polito VA, Garcia Arencibia M, Vetrini F, Erdin S, Erdin SU, Huynh T, Medina D, Colella P, Sardiello M, Rubinsztein DC, Ballabio A (2011) TFEB links autophagy to lysosomal biogenesis. Science 332(6036):1429–1433. doi:10.1126/science.1204592 PubMedCentralPubMed Settembre C, Di Malta C, Polito VA, Garcia Arencibia M, Vetrini F, Erdin S, Erdin SU, Huynh T, Medina D, Colella P, Sardiello M, Rubinsztein DC, Ballabio A (2011) TFEB links autophagy to lysosomal biogenesis. Science 332(6036):1429–1433. doi:10.​1126/​science.​1204592 PubMedCentralPubMed
133.
Zurück zum Zitat Seubert P, Vigo-Pelfrey C, Esch F, Lee M, Dovey H, Davis D, Sinha S, Schlossmacher M, Whaley J, Swindlehurst C et al (1992) Isolation and quantification of soluble Alzheimer’s beta-peptide from biological fluids. Nature 359(6393):325–327. doi:10.1038/359325a0 PubMed Seubert P, Vigo-Pelfrey C, Esch F, Lee M, Dovey H, Davis D, Sinha S, Schlossmacher M, Whaley J, Swindlehurst C et al (1992) Isolation and quantification of soluble Alzheimer’s beta-peptide from biological fluids. Nature 359(6393):325–327. doi:10.​1038/​359325a0 PubMed
134.
135.
Zurück zum Zitat Small SA, Kent K, Pierce A, Leung C, Kang MS, Okada H, Honig L, Vonsattel JP, Kim TW (2005) Model-guided microarray implicates the retromer complex in Alzheimer’s disease. Ann Neurol 58(6):909–919. doi:10.1002/ana.20667 PubMed Small SA, Kent K, Pierce A, Leung C, Kang MS, Okada H, Honig L, Vonsattel JP, Kim TW (2005) Model-guided microarray implicates the retromer complex in Alzheimer’s disease. Ann Neurol 58(6):909–919. doi:10.​1002/​ana.​20667 PubMed
136.
Zurück zum Zitat Sou YS, Waguri S, Iwata J, Ueno T, Fujimura T, Hara T, Sawada N, Yamada A, Mizushima N, Uchiyama Y, Kominami E, Tanaka K, Komatsu M (2008) The Atg8 conjugation system is indispensable for proper development of autophagic isolation membranes in mice. Mol Biol Cell 19(11):4762–4775. doi:10.1091/mbc.E08-03-0309 PubMedCentralPubMed Sou YS, Waguri S, Iwata J, Ueno T, Fujimura T, Hara T, Sawada N, Yamada A, Mizushima N, Uchiyama Y, Kominami E, Tanaka K, Komatsu M (2008) The Atg8 conjugation system is indispensable for proper development of autophagic isolation membranes in mice. Mol Biol Cell 19(11):4762–4775. doi:10.​1091/​mbc.​E08-03-0309 PubMedCentralPubMed
137.
Zurück zum Zitat Spampanato C, Feeney E, Li L, Cardone M, Lim JA, Annunziata F, Zare H, Polishchuk R, Puertollano R, Parenti G, Ballabio A, Raben N (2013) Transcription factor EB (TFEB) is a new therapeutic target for Pompe disease. EMBO Mol Med 5(5):691–706. doi:10.1002/emmm.201202176 PubMedCentralPubMed Spampanato C, Feeney E, Li L, Cardone M, Lim JA, Annunziata F, Zare H, Polishchuk R, Puertollano R, Parenti G, Ballabio A, Raben N (2013) Transcription factor EB (TFEB) is a new therapeutic target for Pompe disease. EMBO Mol Med 5(5):691–706. doi:10.​1002/​emmm.​201202176 PubMedCentralPubMed
139.
Zurück zum Zitat Spasic D, Tolia A, Dillen K, Baert V, De Strooper B, Vrijens S, Annaert W (2006) Presenilin-1 maintains a nine-transmembrane topology throughout the secretory pathway. J Biol Chem 281(36):26569–26577. doi:10.1074/jbc.M600592200 PubMed Spasic D, Tolia A, Dillen K, Baert V, De Strooper B, Vrijens S, Annaert W (2006) Presenilin-1 maintains a nine-transmembrane topology throughout the secretory pathway. J Biol Chem 281(36):26569–26577. doi:10.​1074/​jbc.​M600592200 PubMed
140.
Zurück zum Zitat Sun Q, Fan W, Chen K, Ding X, Chen S, Zhong Q (2008) Identification of Barkor as a mammalian autophagy-specific factor for Beclin 1 and class III phosphatidylinositol 3-kinase. Proc Natl Acad Sci USA 105(49):19211–19216. doi:10.1073/pnas.0810452105 PubMedCentralPubMed Sun Q, Fan W, Chen K, Ding X, Chen S, Zhong Q (2008) Identification of Barkor as a mammalian autophagy-specific factor for Beclin 1 and class III phosphatidylinositol 3-kinase. Proc Natl Acad Sci USA 105(49):19211–19216. doi:10.​1073/​pnas.​0810452105 PubMedCentralPubMed
143.
Zurück zum Zitat Szatmari Z, Kis V, Lippai M, Hegedus K, Farago T, Lorincz P, Tanaka T, Juhasz G, Sass M (2014) Rab11 facilitates cross-talk between autophagy and endosomal pathway through regulation of Hook localization. Mol Biol Cell 25(4):522–531. doi:10.1091/mbc.E13-10-0574 PubMedCentralPubMed Szatmari Z, Kis V, Lippai M, Hegedus K, Farago T, Lorincz P, Tanaka T, Juhasz G, Sass M (2014) Rab11 facilitates cross-talk between autophagy and endosomal pathway through regulation of Hook localization. Mol Biol Cell 25(4):522–531. doi:10.​1091/​mbc.​E13-10-0574 PubMedCentralPubMed
144.
Zurück zum Zitat Takahashi RH, Almeida CG, Kearney PF, Yu F, Lin MT, Milner TA, Gouras GK (2004) Oligomerization of Alzheimer’s beta-amyloid within processes and synapses of cultured neurons and brain. J Neurosci 24(14):3592–3599. doi:10.1523/JNEUROSCI.5167-03.2004 PubMed Takahashi RH, Almeida CG, Kearney PF, Yu F, Lin MT, Milner TA, Gouras GK (2004) Oligomerization of Alzheimer’s beta-amyloid within processes and synapses of cultured neurons and brain. J Neurosci 24(14):3592–3599. doi:10.​1523/​JNEUROSCI.​5167-03.​2004 PubMed
145.
Zurück zum Zitat Thal DR, Del Tredici K, Ludolph AC, Hoozemans JJ, Rozemuller AJ, Braak H, Knippschild U (2011) Stages of granulovacuolar degeneration: their relation to Alzheimer’s disease and chronic stress response. Acta Neuropathol 122(5):577–589. doi:10.1007/s00401-011-0871-6 PubMed Thal DR, Del Tredici K, Ludolph AC, Hoozemans JJ, Rozemuller AJ, Braak H, Knippschild U (2011) Stages of granulovacuolar degeneration: their relation to Alzheimer’s disease and chronic stress response. Acta Neuropathol 122(5):577–589. doi:10.​1007/​s00401-011-0871-6 PubMed
146.
Zurück zum Zitat Theuns J, Remacle J, Killick R, Corsmit E, Vennekens K, Huylebroeck D, Cruts M, Van Broeckhoven C (2003) Alzheimer-associated C allele of the promoter polymorphism −22C > T causes a critical neuron-specific decrease of presenilin 1 expression. Hum Mol Genet 12(8):869–877PubMed Theuns J, Remacle J, Killick R, Corsmit E, Vennekens K, Huylebroeck D, Cruts M, Van Broeckhoven C (2003) Alzheimer-associated C allele of the promoter polymorphism −22C > T causes a critical neuron-specific decrease of presenilin 1 expression. Hum Mol Genet 12(8):869–877PubMed
147.
Zurück zum Zitat Thimiri Govinda Raj DB, Ghesquiere B, Tharkeshwar AK, Coen K, Derua R, Vanderschaeghe D, Rysman E, Bagadi M, Baatsen P, De Strooper B, Waelkens E, Borghs G, Callewaert N, Swinnen J, Gevaert K, Annaert W (2011) A novel strategy for the comprehensive analysis of the biomolecular composition of isolated plasma membranes. Mol Syst Biol 7:541. doi:10.1038/msb.2011.74 PubMedCentralPubMed Thimiri Govinda Raj DB, Ghesquiere B, Tharkeshwar AK, Coen K, Derua R, Vanderschaeghe D, Rysman E, Bagadi M, Baatsen P, De Strooper B, Waelkens E, Borghs G, Callewaert N, Swinnen J, Gevaert K, Annaert W (2011) A novel strategy for the comprehensive analysis of the biomolecular composition of isolated plasma membranes. Mol Syst Biol 7:541. doi:10.​1038/​msb.​2011.​74 PubMedCentralPubMed
148.
Zurück zum Zitat Thoresen SB, Pedersen NM, Liestol K, Stenmark H (2010) A phosphatidylinositol 3-kinase class III sub-complex containing VPS15, VPS34, Beclin 1, UVRAG and BIF-1 regulates cytokinesis and degradative endocytic traffic. Exp Cell Res 316(20):3368–3378. doi:10.1016/j.yexcr.2010.07.008 PubMed Thoresen SB, Pedersen NM, Liestol K, Stenmark H (2010) A phosphatidylinositol 3-kinase class III sub-complex containing VPS15, VPS34, Beclin 1, UVRAG and BIF-1 regulates cytokinesis and degradative endocytic traffic. Exp Cell Res 316(20):3368–3378. doi:10.​1016/​j.​yexcr.​2010.​07.​008 PubMed
149.
Zurück zum Zitat Tokutake T, Kasuga K, Yajima R, Sekine Y, Tezuka T, Nishizawa M, Ikeuchi T (2012) Hyperphosphorylation of Tau induced by naturally secreted amyloid-beta at nanomolar concentrations is modulated by insulin-dependent Akt-GSK3beta signaling pathway. J Biol Chem 287(42):35222–35233. doi:10.1074/jbc.M112.348300 PubMedCentralPubMed Tokutake T, Kasuga K, Yajima R, Sekine Y, Tezuka T, Nishizawa M, Ikeuchi T (2012) Hyperphosphorylation of Tau induced by naturally secreted amyloid-beta at nanomolar concentrations is modulated by insulin-dependent Akt-GSK3beta signaling pathway. J Biol Chem 287(42):35222–35233. doi:10.​1074/​jbc.​M112.​348300 PubMedCentralPubMed
150.
Zurück zum Zitat Tomiyama T, Matsuyama S, Iso H, Umeda T, Takuma H, Ohnishi K, Ishibashi K, Teraoka R, Sakama N, Yamashita T, Nishitsuji K, Ito K, Shimada H, Lambert MP, Klein WL, Mori H (2010) A mouse model of amyloid beta oligomers: their contribution to synaptic alteration, abnormal tau phosphorylation, glial activation, and neuronal loss in vivo. J Neurosci 30(14):4845–4856. doi:10.1523/JNEUROSCI.5825-09.2010 PubMed Tomiyama T, Matsuyama S, Iso H, Umeda T, Takuma H, Ohnishi K, Ishibashi K, Teraoka R, Sakama N, Yamashita T, Nishitsuji K, Ito K, Shimada H, Lambert MP, Klein WL, Mori H (2010) A mouse model of amyloid beta oligomers: their contribution to synaptic alteration, abnormal tau phosphorylation, glial activation, and neuronal loss in vivo. J Neurosci 30(14):4845–4856. doi:10.​1523/​JNEUROSCI.​5825-09.​2010 PubMed
151.
Zurück zum Zitat Treusch S, Hamamichi S, Goodman JL, Matlack KE, Chung CY, Baru V, Shulman JM, Parrado A, Bevis BJ, Valastyan JS, Han H, Lindhagen-Persson M, Reiman EM, Evans DA, Bennett DA, Olofsson A, DeJager PL, Tanzi RE, Caldwell KA, Caldwell GA, Lindquist S (2011) Functional links between Abeta toxicity, endocytic trafficking, and Alzheimer’s disease risk factors in yeast. Science 334(6060):1241–1245. doi:10.1126/science.1213210 PubMedCentralPubMed Treusch S, Hamamichi S, Goodman JL, Matlack KE, Chung CY, Baru V, Shulman JM, Parrado A, Bevis BJ, Valastyan JS, Han H, Lindhagen-Persson M, Reiman EM, Evans DA, Bennett DA, Olofsson A, DeJager PL, Tanzi RE, Caldwell KA, Caldwell GA, Lindquist S (2011) Functional links between Abeta toxicity, endocytic trafficking, and Alzheimer’s disease risk factors in yeast. Science 334(6060):1241–1245. doi:10.​1126/​science.​1213210 PubMedCentralPubMed
152.
Zurück zum Zitat Tsunemi T, Ashe TD, Morrison BE, Soriano KR, Au J, Roque RA, Lazarowski ER, Damian VA, Masliah E, La Spada AR (2012) PGC-1alpha rescues Huntington’s disease proteotoxicity by preventing oxidative stress and promoting TFEB function. Sci Transl Med 4(142):142ra197. doi:10.1126/scitranslmed.3003799 Tsunemi T, Ashe TD, Morrison BE, Soriano KR, Au J, Roque RA, Lazarowski ER, Damian VA, Masliah E, La Spada AR (2012) PGC-1alpha rescues Huntington’s disease proteotoxicity by preventing oxidative stress and promoting TFEB function. Sci Transl Med 4(142):142ra197. doi:10.​1126/​scitranslmed.​3003799
153.
154.
Zurück zum Zitat Udayar V, Buggia-Prevot V, Guerreiro RL, Siegel G, Rambabu N, Soohoo AL, Ponnusamy M, Siegenthaler B, Bali J, Simons M, Ries J, Puthenveedu MA, Hardy J, Thinakaran G, Rajendran L (2013) A paired RNAi and RabGAP overexpression screen identifies Rab11 as a regulator of beta-amyloid production. Cell Rep 5(6):1536–1551. doi:10.1016/j.celrep.2013.12.005 PubMedCentralPubMed Udayar V, Buggia-Prevot V, Guerreiro RL, Siegel G, Rambabu N, Soohoo AL, Ponnusamy M, Siegenthaler B, Bali J, Simons M, Ries J, Puthenveedu MA, Hardy J, Thinakaran G, Rajendran L (2013) A paired RNAi and RabGAP overexpression screen identifies Rab11 as a regulator of beta-amyloid production. Cell Rep 5(6):1536–1551. doi:10.​1016/​j.​celrep.​2013.​12.​005 PubMedCentralPubMed
155.
Zurück zum Zitat Umeda T, Tomiyama T, Sakama N, Tanaka S, Lambert MP, Klein WL, Mori H (2011) Intraneuronal amyloid beta oligomers cause cell death via endoplasmic reticulum stress, endosomal/lysosomal leakage, and mitochondrial dysfunction in vivo. J Neurosci Res 89(7):1031–1042. doi:10.1002/jnr.22640 PubMed Umeda T, Tomiyama T, Sakama N, Tanaka S, Lambert MP, Klein WL, Mori H (2011) Intraneuronal amyloid beta oligomers cause cell death via endoplasmic reticulum stress, endosomal/lysosomal leakage, and mitochondrial dysfunction in vivo. J Neurosci Res 89(7):1031–1042. doi:10.​1002/​jnr.​22640 PubMed
156.
Zurück zum Zitat Vanier MT, Millat G (2003) Niemann-Pick disease type C. Clin Genet 64(4):269–281PubMed Vanier MT, Millat G (2003) Niemann-Pick disease type C. Clin Genet 64(4):269–281PubMed
158.
Zurück zum Zitat Volinia S, Dhand R, Vanhaesebroeck B, MacDougall LK, Stein R, Zvelebil MJ, Domin J, Panaretou C, Waterfield MD (1995) A human phosphatidylinositol 3-kinase complex related to the yeast Vps34p-Vps15p protein sorting system. EMBO J 14(14):3339–3348PubMedCentralPubMed Volinia S, Dhand R, Vanhaesebroeck B, MacDougall LK, Stein R, Zvelebil MJ, Domin J, Panaretou C, Waterfield MD (1995) A human phosphatidylinositol 3-kinase complex related to the yeast Vps34p-Vps15p protein sorting system. EMBO J 14(14):3339–3348PubMedCentralPubMed
159.
Zurück zum Zitat Wahlster L, Arimon M, Nasser-Ghodsi N, Post KL, Serrano-Pozo A, Uemura K, Berezovska O (2013) Presenilin-1 adopts pathogenic conformation in normal aging and in sporadic Alzheimer’s disease. Acta Neuropathol 125(2):187–199. doi:10.1007/s00401-012-1065-6 PubMedCentralPubMed Wahlster L, Arimon M, Nasser-Ghodsi N, Post KL, Serrano-Pozo A, Uemura K, Berezovska O (2013) Presenilin-1 adopts pathogenic conformation in normal aging and in sporadic Alzheimer’s disease. Acta Neuropathol 125(2):187–199. doi:10.​1007/​s00401-012-1065-6 PubMedCentralPubMed
160.
Zurück zum Zitat Walsh DM, Klyubin I, Fadeeva JV, Cullen WK, Anwyl R, Wolfe MS, Rowan MJ, Selkoe DJ (2002) Naturally secreted oligomers of amyloid beta protein potently inhibit hippocampal long-term potentiation in vivo. Nature 416(6880):535–539. doi:10.1038/416535a PubMed Walsh DM, Klyubin I, Fadeeva JV, Cullen WK, Anwyl R, Wolfe MS, Rowan MJ, Selkoe DJ (2002) Naturally secreted oligomers of amyloid beta protein potently inhibit hippocampal long-term potentiation in vivo. Nature 416(6880):535–539. doi:10.​1038/​416535a PubMed
162.
Zurück zum Zitat Wen L, Tang FL, Hong Y, Luo SW, Wang CL, He W, Shen C, Jung JU, Xiong F, Lee DH, Zhang QG, Brann D, Kim TW, Yan R, Mei L, Xiong WC (2011) VPS35 haploinsufficiency increases Alzheimer’s disease neuropathology. J Cell Biol 195(5):765–779. doi:10.1083/jcb.201105109 PubMedCentralPubMed Wen L, Tang FL, Hong Y, Luo SW, Wang CL, He W, Shen C, Jung JU, Xiong F, Lee DH, Zhang QG, Brann D, Kim TW, Yan R, Mei L, Xiong WC (2011) VPS35 haploinsufficiency increases Alzheimer’s disease neuropathology. J Cell Biol 195(5):765–779. doi:10.​1083/​jcb.​201105109 PubMedCentralPubMed
163.
164.
Zurück zum Zitat Wilson CA, Murphy DD, Giasson BI, Zhang B, Trojanowski JQ, Lee VM (2004) Degradative organelles containing mislocalized alpha-and beta-synuclein proliferate in presenilin-1 null neurons. J Cell Biol 165(3):335–346. doi:10.1083/jcb.200403061 PubMedCentralPubMed Wilson CA, Murphy DD, Giasson BI, Zhang B, Trojanowski JQ, Lee VM (2004) Degradative organelles containing mislocalized alpha-and beta-synuclein proliferate in presenilin-1 null neurons. J Cell Biol 165(3):335–346. doi:10.​1083/​jcb.​200403061 PubMedCentralPubMed
166.
167.
Zurück zum Zitat Xiong H, Callaghan D, Jones A, Walker DG, Lue LF, Beach TG, Sue LI, Woulfe J, Xu H, Stanimirovic DB, Zhang W (2008) Cholesterol retention in Alzheimer’s brain is responsible for high beta- and gamma-secretase activities and Abeta production. Neurobiol Dis 29(3):422–437. doi:10.1016/j.nbd.2007.10.005 PubMedCentralPubMed Xiong H, Callaghan D, Jones A, Walker DG, Lue LF, Beach TG, Sue LI, Woulfe J, Xu H, Stanimirovic DB, Zhang W (2008) Cholesterol retention in Alzheimer’s brain is responsible for high beta- and gamma-secretase activities and Abeta production. Neurobiol Dis 29(3):422–437. doi:10.​1016/​j.​nbd.​2007.​10.​005 PubMedCentralPubMed
168.
Zurück zum Zitat Yamazaki Y, Matsubara T, Takahashi T, Kurashige T, Dohi E, Hiji M, Nagano Y, Yamawaki T, Matsumoto M (2011) Granulovacuolar degenerations appear in relation to hippocampal phosphorylated tau accumulation in various neurodegenerative disorders. PLoS One 6(11):e26996. doi:10.1371/journal.pone.0026996 PubMedCentralPubMed Yamazaki Y, Matsubara T, Takahashi T, Kurashige T, Dohi E, Hiji M, Nagano Y, Yamawaki T, Matsumoto M (2011) Granulovacuolar degenerations appear in relation to hippocampal phosphorylated tau accumulation in various neurodegenerative disorders. PLoS One 6(11):e26996. doi:10.​1371/​journal.​pone.​0026996 PubMedCentralPubMed
169.
Zurück zum Zitat Yang AJ, Chandswangbhuvana D, Margol L, Glabe CG (1998) Loss of endosomal/lysosomal membrane impermeability is an early event in amyloid Abeta1-42 pathogenesis. J Neurosci Res 52(6):691–698PubMed Yang AJ, Chandswangbhuvana D, Margol L, Glabe CG (1998) Loss of endosomal/lysosomal membrane impermeability is an early event in amyloid Abeta1-42 pathogenesis. J Neurosci Res 52(6):691–698PubMed
170.
Zurück zum Zitat Yang DS, Stavrides P, Mohan PS, Kaushik S, Kumar A, Ohno M, Schmidt SD, Wesson D, Bandyopadhyay U, Jiang Y, Pawlik M, Peterhoff CM, Yang AJ, Wilson DA, St George-Hyslop P, Westaway D, Mathews PM, Levy E, Cuervo AM, Nixon RA (2011) Reversal of autophagy dysfunction in the TgCRND8 mouse model of Alzheimer’s disease ameliorates amyloid pathologies and memory deficits. Brain 134(Pt 1):258–277. doi:10.1093/brain/awq341 PubMedCentralPubMed Yang DS, Stavrides P, Mohan PS, Kaushik S, Kumar A, Ohno M, Schmidt SD, Wesson D, Bandyopadhyay U, Jiang Y, Pawlik M, Peterhoff CM, Yang AJ, Wilson DA, St George-Hyslop P, Westaway D, Mathews PM, Levy E, Cuervo AM, Nixon RA (2011) Reversal of autophagy dysfunction in the TgCRND8 mouse model of Alzheimer’s disease ameliorates amyloid pathologies and memory deficits. Brain 134(Pt 1):258–277. doi:10.​1093/​brain/​awq341 PubMedCentralPubMed
172.
Zurück zum Zitat Yu WH, Cuervo AM, Kumar A, Peterhoff CM, Schmidt SD, Lee JH, Mohan PS, Mercken M, Farmery MR, Tjernberg LO, Jiang Y, Duff K, Uchiyama Y, Naslund J, Mathews PM, Cataldo AM, Nixon RA (2005) Macroautophagy–a novel Beta-amyloid peptide-generating pathway activated in Alzheimer’s disease. J Cell Biol 171(1):87–98. doi:10.1083/jcb.200505082 PubMedCentralPubMed Yu WH, Cuervo AM, Kumar A, Peterhoff CM, Schmidt SD, Lee JH, Mohan PS, Mercken M, Farmery MR, Tjernberg LO, Jiang Y, Duff K, Uchiyama Y, Naslund J, Mathews PM, Cataldo AM, Nixon RA (2005) Macroautophagy–a novel Beta-amyloid peptide-generating pathway activated in Alzheimer’s disease. J Cell Biol 171(1):87–98. doi:10.​1083/​jcb.​200505082 PubMedCentralPubMed
173.
174.
Zurück zum Zitat Zeng X, Overmeyer JH, Maltese WA (2006) Functional specificity of the mammalian Beclin-Vps34 PI 3-kinase complex in macroautophagy versus endocytosis and lysosomal enzyme trafficking. J Cell Sci 119(Pt 2):259–270. doi:10.1242/jcs.02735 PubMed Zeng X, Overmeyer JH, Maltese WA (2006) Functional specificity of the mammalian Beclin-Vps34 PI 3-kinase complex in macroautophagy versus endocytosis and lysosomal enzyme trafficking. J Cell Sci 119(Pt 2):259–270. doi:10.​1242/​jcs.​02735 PubMed
177.
Zurück zum Zitat Zhou X, Wang L, Hasegawa H, Amin P, Han BX, Kaneko S, He Y, Wang F (2010) Deletion of PIK3C3/Vps34 in sensory neurons causes rapid neurodegeneration by disrupting the endosomal but not the autophagic pathway. Proc Natl Acad Sci USA 107(20):9424–9429. doi:10.1073/pnas.0914725107 PubMedCentralPubMed Zhou X, Wang L, Hasegawa H, Amin P, Han BX, Kaneko S, He Y, Wang F (2010) Deletion of PIK3C3/Vps34 in sensory neurons causes rapid neurodegeneration by disrupting the endosomal but not the autophagic pathway. Proc Natl Acad Sci USA 107(20):9424–9429. doi:10.​1073/​pnas.​0914725107 PubMedCentralPubMed
Metadaten
Titel
Early etiology of Alzheimer’s disease: tipping the balance toward autophagy or endosomal dysfunction?
verfasst von
Aleksandar Peric
Wim Annaert
Publikationsdatum
01.03.2015
Verlag
Springer Berlin Heidelberg
Erschienen in
Acta Neuropathologica / Ausgabe 3/2015
Print ISSN: 0001-6322
Elektronische ISSN: 1432-0533
DOI
https://doi.org/10.1007/s00401-014-1379-7

Weitere Artikel der Ausgabe 3/2015

Acta Neuropathologica 3/2015 Zur Ausgabe

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Niedriger diastolischer Blutdruck erhöht Risiko für schwere kardiovaskuläre Komplikationen

25.04.2024 Hypotonie Nachrichten

Wenn unter einer medikamentösen Hochdrucktherapie der diastolische Blutdruck in den Keller geht, steigt das Risiko für schwere kardiovaskuläre Ereignisse: Darauf deutet eine Sekundäranalyse der SPRINT-Studie hin.

Frühe Alzheimertherapie lohnt sich

25.04.2024 AAN-Jahrestagung 2024 Nachrichten

Ist die Tau-Last noch gering, scheint der Vorteil von Lecanemab besonders groß zu sein. Und beginnen Erkrankte verzögert mit der Behandlung, erreichen sie nicht mehr die kognitive Leistung wie bei einem früheren Start. Darauf deuten neue Analysen der Phase-3-Studie Clarity AD.

Viel Bewegung in der Parkinsonforschung

25.04.2024 Parkinson-Krankheit Nachrichten

Neue arznei- und zellbasierte Ansätze, Frühdiagnose mit Bewegungssensoren, Rückenmarkstimulation gegen Gehblockaden – in der Parkinsonforschung tut sich einiges. Auf dem Deutschen Parkinsonkongress ging es auch viel um technische Innovationen.

Demenzkranke durch Antipsychotika vielfach gefährdet

23.04.2024 Demenz Nachrichten

Wenn Demenzkranke aufgrund von Symptomen wie Agitation oder Aggressivität mit Antipsychotika behandelt werden, sind damit offenbar noch mehr Risiken verbunden als bislang angenommen.

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.