Skip to main content
Erschienen in: Archives of Dermatological Research 2/2007

01.05.2007 | Review Article

CD83: an update on functions and prospects of the maturation marker of dendritic cells

verfasst von: Alexander T. Prechtel, Alexander Steinkasserer

Erschienen in: Archives of Dermatological Research | Ausgabe 2/2007

Einloggen, um Zugang zu erhalten

Abstract

CD83 is one of the most characteristic cell surface markers for fully matured dendritic cells (DCs). In their function as antigen presenting cells they induce T-cell mediated immune responses. In this review we provide an overview on well described and proposed functions of this molecule as well as on very recent insights and new hypothesis. Already the CD83 messenger RNA processing differs remarkably from the processing of other cellular mRNAs: instead of the usual TAP mRNA export pathway, the CD83 mRNA is exported by the specific CRM1-mediated pathway, utilized only by a minority of cellular mRNAs. On the protein level, two different isoforms of CD83 exist: a membrane-bound and a soluble form. The isoforms are generated by different subsets of cells, including DCs, T-cells and B-cells, and also differ in their biological function. While the membrane-bound CD83 is of immune stimulatory capacity, activates T-cells and is important for the generation of thymocytes, the soluble CD83 has the opposite effect and has an immune inhibitory capacity. Due to its immune inhibitory function, CD83 has great potential for treatment of autoimmune diseases, for organ transplantations, and for immunotherapy, just to name a few examples. Moreover, some viruses prevent recognition by the host’s immune system by specifically targeting CD83 surface expression.
Literatur
1.
Zurück zum Zitat Al-Alwan MM, Liwski RS, Haeryfar SM, Baldridge WH, Hoskin DW, Rowden G, West KA (2003) Cutting edge: dendritic cell actin cytoskeletal polarization during immunological synapse formation is highly antigen-dependent. J Immunol 171(9):4479–4483PubMed Al-Alwan MM, Liwski RS, Haeryfar SM, Baldridge WH, Hoskin DW, Rowden G, West KA (2003) Cutting edge: dendritic cell actin cytoskeletal polarization during immunological synapse formation is highly antigen-dependent. J Immunol 171(9):4479–4483PubMed
2.
Zurück zum Zitat Al-Alwan MM, Rowden G, Lee TD, West KA (2001) The dendritic cell cytoskeleton is critical for the formation of the immunological synapse. J Immunol 166(3):1452–1456PubMed Al-Alwan MM, Rowden G, Lee TD, West KA (2001) The dendritic cell cytoskeleton is critical for the formation of the immunological synapse. J Immunol 166(3):1452–1456PubMed
3.
Zurück zum Zitat Aliprantis AO, Yang RB, Mark MR, Suggett S, Devaux B, Radolf JD, Klimpel GR, Godowski P, Zychlinsky A (1999) Cell activation and apoptosis by bacterial lipoproteins through toll-like receptor-2. Science 285(5428):736–739PubMed Aliprantis AO, Yang RB, Mark MR, Suggett S, Devaux B, Radolf JD, Klimpel GR, Godowski P, Zychlinsky A (1999) Cell activation and apoptosis by bacterial lipoproteins through toll-like receptor-2. Science 285(5428):736–739PubMed
4.
Zurück zum Zitat Antic D, Keene JD (1997) Embryonic lethal abnormal visual RNA-binding proteins involved in growth, differentiation, and posttranscriptional gene expression. Am J Hum Genet 61(2):273–278PubMed Antic D, Keene JD (1997) Embryonic lethal abnormal visual RNA-binding proteins involved in growth, differentiation, and posttranscriptional gene expression. Am J Hum Genet 61(2):273–278PubMed
5.
Zurück zum Zitat Ardavin C (1997) Thymic dendritic cells. Immunol Today 18(7):350–361PubMed Ardavin C (1997) Thymic dendritic cells. Immunol Today 18(7):350–361PubMed
6.
Zurück zum Zitat Arrode G, Boccaccio C, Abastado JP, Davrinche C (2002) Cross-presentation of human cytomegalovirus pp65 (UL83) to CD8+ T cells is regulated by virus-induced, soluble-mediator-dependent maturation of dendritic cells. J Virol 76(1):142–150PubMed Arrode G, Boccaccio C, Abastado JP, Davrinche C (2002) Cross-presentation of human cytomegalovirus pp65 (UL83) to CD8+ T cells is regulated by virus-induced, soluble-mediator-dependent maturation of dendritic cells. J Virol 76(1):142–150PubMed
7.
Zurück zum Zitat Bakheet T, Williams BR, Khabar KS (2003) ARED 2.0: an update of AU-rich element mRNA database. Nucleic Acids Res 31(1):421–423PubMed Bakheet T, Williams BR, Khabar KS (2003) ARED 2.0: an update of AU-rich element mRNA database. Nucleic Acids Res 31(1):421–423PubMed
8.
Zurück zum Zitat Banchereau J, Steinman RM (1998) Dendritic cells and the control of immunity. Nature 392(6673):245–252PubMed Banchereau J, Steinman RM (1998) Dendritic cells and the control of immunity. Nature 392(6673):245–252PubMed
9.
Zurück zum Zitat Becker Y (2003) Immunological and regulatory functions of uninfected and virus infected immature and mature subtypes of dendritic cells—a review. Virus Genes 26(2):119–130PubMed Becker Y (2003) Immunological and regulatory functions of uninfected and virus infected immature and mature subtypes of dendritic cells—a review. Virus Genes 26(2):119–130PubMed
10.
Zurück zum Zitat Bednenko J, Cingolani G, Gerace L (2003) Nucleocytoplasmic transport: navigating the channel. Traffic 4(3):127–135PubMed Bednenko J, Cingolani G, Gerace L (2003) Nucleocytoplasmic transport: navigating the channel. Traffic 4(3):127–135PubMed
11.
Zurück zum Zitat Berchtold S, Jones T, Muhl-Zurbes P, Sheer D, Schuler G, Steinkasserer A (1999) The human dendritic cell marker CD83 maps to chromosome 6p23. Ann Hum Genet 63(Pt 2):181–183PubMed Berchtold S, Jones T, Muhl-Zurbes P, Sheer D, Schuler G, Steinkasserer A (1999) The human dendritic cell marker CD83 maps to chromosome 6p23. Ann Hum Genet 63(Pt 2):181–183PubMed
12.
Zurück zum Zitat Berchtold S, Muhl-Zurbes P, Heufler C, Winklehner P, Schuler G, Steinkasserer A (1999) Cloning, recombinant expression and biochemical characterization of the murine CD83 molecule which is specifically upregulated during dendritic cell maturation. FEBS Lett 461(3):211–216PubMed Berchtold S, Muhl-Zurbes P, Heufler C, Winklehner P, Schuler G, Steinkasserer A (1999) Cloning, recombinant expression and biochemical characterization of the murine CD83 molecule which is specifically upregulated during dendritic cell maturation. FEBS Lett 461(3):211–216PubMed
13.
Zurück zum Zitat Berchtold S, Muhl-Zurbes P, Maczek E, Golka A, Schuler G, Steinkasserer A (2002) Cloning and characterization of the promoter region of the human CD83 gene. Immunobiology 205(3):231–246PubMed Berchtold S, Muhl-Zurbes P, Maczek E, Golka A, Schuler G, Steinkasserer A (2002) Cloning and characterization of the promoter region of the human CD83 gene. Immunobiology 205(3):231–246PubMed
14.
Zurück zum Zitat Bevec D, Hauber J (1997) Eukaryotic initiation factor 5A activity and HIV-1 Rev function. Biol Signals 6(3):124–133PubMed Bevec D, Hauber J (1997) Eukaryotic initiation factor 5A activity and HIV-1 Rev function. Biol Signals 6(3):124–133PubMed
15.
Zurück zum Zitat Brennan CM, Steitz JA (2001) HuR and mRNA stability. Cell Mol Life Sci 58(2):266–277PubMed Brennan CM, Steitz JA (2001) HuR and mRNA stability. Cell Mol Life Sci 58(2):266–277PubMed
16.
Zurück zum Zitat Brightbill HD, Libraty DH, Krutzik SR, Yang RB, Belisle JT, Bleharski JR, Maitland M, Norgard MV, Plevy SE, Smale ST, Brennan PJ, Bloom BR, Godowski PJ, Modlin RL (1999) Host defense mechanisms triggered by microbial lipoproteins through toll-like receptors. Science 285(5428):732–736PubMed Brightbill HD, Libraty DH, Krutzik SR, Yang RB, Belisle JT, Bleharski JR, Maitland M, Norgard MV, Plevy SE, Smale ST, Brennan PJ, Bloom BR, Godowski PJ, Modlin RL (1999) Host defense mechanisms triggered by microbial lipoproteins through toll-like receptors. Science 285(5428):732–736PubMed
17.
Zurück zum Zitat Burns S, Thrasher AJ (2004) Dendritic cells: the bare bones of immunity. Curr Biol 14(22):R965–R967PubMed Burns S, Thrasher AJ (2004) Dendritic cells: the bare bones of immunity. Curr Biol 14(22):R965–R967PubMed
18.
Zurück zum Zitat Cao W, Lee SH, Lu J (2005) CD83 is preformed inside monocytes, macrophages and dendritic cells, but it is only stably expressed on activated dendritic cells. Biochem J 385(Pt 1):85–93PubMed Cao W, Lee SH, Lu J (2005) CD83 is preformed inside monocytes, macrophages and dendritic cells, but it is only stably expressed on activated dendritic cells. Biochem J 385(Pt 1):85–93PubMed
19.
Zurück zum Zitat Cella M, Salio M, Sakakibara Y, Langen H, Julkunen I, Lanzavecchia A (1999) Maturation, activation, and protection of dendritic cells induced by double-stranded RNA. J Exp Med 189(5):821–829PubMed Cella M, Salio M, Sakakibara Y, Langen H, Julkunen I, Lanzavecchia A (1999) Maturation, activation, and protection of dendritic cells induced by double-stranded RNA. J Exp Med 189(5):821–829PubMed
20.
Zurück zum Zitat Chen CY, Shyu AB (1995) AU-rich elements: characterization and importance in mRNA degradation. Trends Biochem Sci 20(11):465–470PubMed Chen CY, Shyu AB (1995) AU-rich elements: characterization and importance in mRNA degradation. Trends Biochem Sci 20(11):465–470PubMed
21.
Zurück zum Zitat Davis DM, Dustin ML (2004) What is the importance of the immunological synapse? Trends Immunol 25(6):323–327PubMed Davis DM, Dustin ML (2004) What is the importance of the immunological synapse? Trends Immunol 25(6):323–327PubMed
22.
Zurück zum Zitat Dilioglou S, Cruse JM, Lewis RE (2003) Function of CD80 and CD86 on monocyte- and stem cell-derived dendritic cells. Exp Mol Pathol 75(3):217–227PubMed Dilioglou S, Cruse JM, Lewis RE (2003) Function of CD80 and CD86 on monocyte- and stem cell-derived dendritic cells. Exp Mol Pathol 75(3):217–227PubMed
23.
Zurück zum Zitat Dudziak D, Nimmerjahn F, Bornkamm GW, Laux G (2005) Alternative splicing generates putative soluble CD83 proteins that inhibit T cell proliferation. J Immunol 174(11):6672–6676PubMed Dudziak D, Nimmerjahn F, Bornkamm GW, Laux G (2005) Alternative splicing generates putative soluble CD83 proteins that inhibit T cell proliferation. J Immunol 174(11):6672–6676PubMed
24.
Zurück zum Zitat Dudziak D, Kieser A, Dirmeier U, Nimmerjahn F, Berchtold S, Steinkasserer A, Marschall G, Hammerschmidt W, Laux G, Bornkamm GW (2003) Latent membrane protein 1 of Epstein–Barr virus induces CD83 by the NF-{kappa}B signaling pathway. J Virol 77(15):8290–8298PubMed Dudziak D, Kieser A, Dirmeier U, Nimmerjahn F, Berchtold S, Steinkasserer A, Marschall G, Hammerschmidt W, Laux G, Bornkamm GW (2003) Latent membrane protein 1 of Epstein–Barr virus induces CD83 by the NF-{kappa}B signaling pathway. J Virol 77(15):8290–8298PubMed
25.
Zurück zum Zitat Dustin ML, Cooper JA (2000) The immunological synapse and the actin cytoskeleton: molecular hardware for T cell signaling. Nat Immunol 1(1):23–29PubMed Dustin ML, Cooper JA (2000) The immunological synapse and the actin cytoskeleton: molecular hardware for T cell signaling. Nat Immunol 1(1):23–29PubMed
26.
Zurück zum Zitat Elfgang C, Rosorius O, Hofer L, Jaksche H, Hauber J, Bevec D (1999) Evidence for specific nucleocytoplasmic transport pathways used by leucine-rich nuclear export signals. Proc Natl Acad Sci USA 96(11):6229–6234PubMed Elfgang C, Rosorius O, Hofer L, Jaksche H, Hauber J, Bevec D (1999) Evidence for specific nucleocytoplasmic transport pathways used by leucine-rich nuclear export signals. Proc Natl Acad Sci USA 96(11):6229–6234PubMed
27.
Zurück zum Zitat Elliott DJ, Stutz F, Lescure A, Rosbash M (1994) mRNA nuclear export. Curr Opin Genet Dev 4(2):305–309PubMed Elliott DJ, Stutz F, Lescure A, Rosbash M (1994) mRNA nuclear export. Curr Opin Genet Dev 4(2):305–309PubMed
28.
Zurück zum Zitat Fahrenkrog B, Aebi U (2003) The nuclear pore complex: nucleocytoplasmic transport and beyond. Nat Rev Mol Cell Biol 4(10):757–766PubMed Fahrenkrog B, Aebi U (2003) The nuclear pore complex: nucleocytoplasmic transport and beyond. Nat Rev Mol Cell Biol 4(10):757–766PubMed
29.
Zurück zum Zitat Fan XC, Steitz JA (1998) HNS, a nuclear-cytoplasmic shuttling sequence in HuR. Proc Natl Acad Sci USA 95(26):15293–15298PubMed Fan XC, Steitz JA (1998) HNS, a nuclear-cytoplasmic shuttling sequence in HuR. Proc Natl Acad Sci USA 95(26):15293–15298PubMed
30.
Zurück zum Zitat Flores-Romo L (2001) In vivo maturation and migration of dendritic cells. Immunology 102(3):255–262PubMed Flores-Romo L (2001) In vivo maturation and migration of dendritic cells. Immunology 102(3):255–262PubMed
31.
Zurück zum Zitat Fries B, Heukeshoven J, Hauber I, Gruttner C, Stocking C, Kehlenbach RH, Hauber J, Chemnitz J (2007) Analysis of nucleocytoplasmic trafficking of the HuR ligand APRIL and its influence on CD83 expression. J Biol Chem (in press) Fries B, Heukeshoven J, Hauber I, Gruttner C, Stocking C, Kehlenbach RH, Hauber J, Chemnitz J (2007) Analysis of nucleocytoplasmic trafficking of the HuR ligand APRIL and its influence on CD83 expression. J Biol Chem (in press)
32.
Zurück zum Zitat Fujimoto Y, Tedder TF (2006) CD83: a regulatory molecule of the immune system with great potential for therapeutic application. J Med Dent Sci 53(2):85–91PubMed Fujimoto Y, Tedder TF (2006) CD83: a regulatory molecule of the immune system with great potential for therapeutic application. J Med Dent Sci 53(2):85–91PubMed
33.
Zurück zum Zitat Fujimoto Y, Tu L, Miller AS, Bock C, Fujimoto M, Doyle C, Steeber DA, Tedder TF (2002) CD83 expression influences CD4+ T cell development in the thymus. Cell 108(6):755–767PubMed Fujimoto Y, Tu L, Miller AS, Bock C, Fujimoto M, Doyle C, Steeber DA, Tedder TF (2002) CD83 expression influences CD4+ T cell development in the thymus. Cell 108(6):755–767PubMed
34.
Zurück zum Zitat Garcia-Martinez LF, Appleby MW, Staehling-Hampton K, Andrews DM, Chen Y, McEuen M, Tang P, Rhinehart RL, Proll S, Paeper B, Brunkow ME, Grandea AG III, Howard ED, Walker DE, Charmley P, Jonas M, Shaw S, Latham JA, Ramsdell F (2004) A novel mutation in CD83 results in the development of a unique population of CD4+ T cells. J Immunol 173(5):2995–3001PubMed Garcia-Martinez LF, Appleby MW, Staehling-Hampton K, Andrews DM, Chen Y, McEuen M, Tang P, Rhinehart RL, Proll S, Paeper B, Brunkow ME, Grandea AG III, Howard ED, Walker DE, Charmley P, Jonas M, Shaw S, Latham JA, Ramsdell F (2004) A novel mutation in CD83 results in the development of a unique population of CD4+ T cells. J Immunol 173(5):2995–3001PubMed
35.
Zurück zum Zitat Gold R, Linington C, Lassmann H (2006) Understanding pathogenesis and therapy of multiple sclerosis via animal models: 70 years of merits and culprits in experimental autoimmune encephalomyelitis research. Brain 129(Pt 8):1953–1971PubMed Gold R, Linington C, Lassmann H (2006) Understanding pathogenesis and therapy of multiple sclerosis via animal models: 70 years of merits and culprits in experimental autoimmune encephalomyelitis research. Brain 129(Pt 8):1953–1971PubMed
36.
Zurück zum Zitat Guhaniyogi J, Brewer G (2001) Regulation of mRNA stability in mammalian cells. Gene 265(1–2):11–23PubMed Guhaniyogi J, Brewer G (2001) Regulation of mRNA stability in mammalian cells. Gene 265(1–2):11–23PubMed
37.
Zurück zum Zitat Gunn MD (2003) Chemokine mediated control of dendritic cell migration and function. Semin Immunol 15(5):271–276PubMed Gunn MD (2003) Chemokine mediated control of dendritic cell migration and function. Semin Immunol 15(5):271–276PubMed
38.
Zurück zum Zitat Hirano N, Butler MO, Xia Z, Ansen S, von Bergwelt-Baildon MS, Neuberg D, Freeman GJ, Nadler LM (2006) Engagement of CD83 ligand induces prolonged expansion of CD8+ T cells and preferential enrichment for antigen specificity. Blood 107(4):1528–1536PubMed Hirano N, Butler MO, Xia Z, Ansen S, von Bergwelt-Baildon MS, Neuberg D, Freeman GJ, Nadler LM (2006) Engagement of CD83 ligand induces prolonged expansion of CD8+ T cells and preferential enrichment for antigen specificity. Blood 107(4):1528–1536PubMed
39.
Zurück zum Zitat Hock BD, O’Donnell JL, Taylor K, Steinkasserer A, McKenzie JL, Rothwell AG, Summers KL (2006) Levels of the soluble forms of CD80, CD86, and CD83 are elevated in the synovial fluid of rheumatoid arthritis patients. Tissue Antigens 67(1):57–60PubMed Hock BD, O’Donnell JL, Taylor K, Steinkasserer A, McKenzie JL, Rothwell AG, Summers KL (2006) Levels of the soluble forms of CD80, CD86, and CD83 are elevated in the synovial fluid of rheumatoid arthritis patients. Tissue Antigens 67(1):57–60PubMed
40.
Zurück zum Zitat Hock BD, Haring LF, Steinkasserer A, Taylor KG, Patton WN, McKenzie JL (2004) The soluble form of CD83 is present at elevated levels in a number of hematological malignancies. Leuk Res 28(3):237–241PubMed Hock BD, Haring LF, Steinkasserer A, Taylor KG, Patton WN, McKenzie JL (2004) The soluble form of CD83 is present at elevated levels in a number of hematological malignancies. Leuk Res 28(3):237–241PubMed
41.
Zurück zum Zitat Hock BD, Kato M, McKenzie JL, Hart DNJ (2001) A soluble form of CD83 is released from activated dendritic cells and B lymphocytes, and is detectable in normal human sera. Int Immunol 13(7):959–967PubMed Hock BD, Kato M, McKenzie JL, Hart DNJ (2001) A soluble form of CD83 is released from activated dendritic cells and B lymphocytes, and is detectable in normal human sera. Int Immunol 13(7):959–967PubMed
42.
Zurück zum Zitat Iking-Konert C, Wagner C, Denefleh B, Hug F, Schneider M, Andrassy K, Hansch GM (2002) Up-regulation of the dendritic cell marker CD83 on polymorphonuclear neutrophils (PMN): divergent expression in acute bacterial infections and chronic inflammatory disease. Clin Exp Immunol 130(3):501–508PubMed Iking-Konert C, Wagner C, Denefleh B, Hug F, Schneider M, Andrassy K, Hansch GM (2002) Up-regulation of the dendritic cell marker CD83 on polymorphonuclear neutrophils (PMN): divergent expression in acute bacterial infections and chronic inflammatory disease. Clin Exp Immunol 130(3):501–508PubMed
43.
Zurück zum Zitat Kaye J, Hsu ML, Sauron ME, Jameson SC, Gascoigne NR, Hedrick SM (1989) Selective development of CD4+ T cells in transgenic mice expressing a class II MHC-restricted antigen receptor. Nature 341(6244):746–749PubMed Kaye J, Hsu ML, Sauron ME, Jameson SC, Gascoigne NR, Hedrick SM (1989) Selective development of CD4+ T cells in transgenic mice expressing a class II MHC-restricted antigen receptor. Nature 341(6244):746–749PubMed
44.
Zurück zum Zitat Keene JD (1999) Why is Hu where? Shuttling of early-response-gene messenger RNA subsets. Proc Natl Acad Sci USA 96(1):5–7PubMed Keene JD (1999) Why is Hu where? Shuttling of early-response-gene messenger RNA subsets. Proc Natl Acad Sci USA 96(1):5–7PubMed
45.
Zurück zum Zitat King PH, Levine TD, Fremeau RT Jr, Keene JD (1994) Mammalian homologs of Drosophila ELAV localized to a neuronal subset can bind in vitro to the 3’ UTR of mRNA encoding the Id transcriptional repressor. J Neurosci 14(4):1943–1952PubMed King PH, Levine TD, Fremeau RT Jr, Keene JD (1994) Mammalian homologs of Drosophila ELAV localized to a neuronal subset can bind in vitro to the 3’ UTR of mRNA encoding the Id transcriptional repressor. J Neurosci 14(4):1943–1952PubMed
46.
Zurück zum Zitat Klagge IM, Schneider-Schaulies S (1999) Virus interactions with dendritic cells. J Gen Virol 80(4):823–833PubMed Klagge IM, Schneider-Schaulies S (1999) Virus interactions with dendritic cells. J Gen Virol 80(4):823–833PubMed
47.
Zurück zum Zitat Kotzor N, Lechmann M, Zinser E, Steinkasserer A (2004) The soluble form of CD83 dramatically changes the cytoskeleton of dendritic cells. Immunobiology 209(1–2):129–140PubMed Kotzor N, Lechmann M, Zinser E, Steinkasserer A (2004) The soluble form of CD83 dramatically changes the cytoskeleton of dendritic cells. Immunobiology 209(1–2):129–140PubMed
48.
Zurück zum Zitat Kozlow EJ, Wilson GL, Fox CH, Kehrl JH (1993) Subtractive cDNA cloning of a novel member of the Ig gene superfamily expressed at high levels in activated B lymphocytes. Blood 81(2):454–461PubMed Kozlow EJ, Wilson GL, Fox CH, Kehrl JH (1993) Subtractive cDNA cloning of a novel member of the Ig gene superfamily expressed at high levels in activated B lymphocytes. Blood 81(2):454–461PubMed
49.
Zurück zum Zitat Kruse M, Rosorius O, Kratzer F, Bevec D, Kuhnt C, Steinkasserer A, Schuler G, Hauber J (2000) Inhibition of CD83 cell surface expression during dendritic cell maturation by interference with nuclear export of CD83 mRNA. J Exp Med 191(9):1581–1590PubMed Kruse M, Rosorius O, Kratzer F, Bevec D, Kuhnt C, Steinkasserer A, Schuler G, Hauber J (2000) Inhibition of CD83 cell surface expression during dendritic cell maturation by interference with nuclear export of CD83 mRNA. J Exp Med 191(9):1581–1590PubMed
50.
Zurück zum Zitat Kruse M, Rosorius O, Kratzer F, Stelz G, Kuhnt C, Schuler G, Hauber J, Steinkasserer A (2000) Mature dendritic cells infected with herpes simplex virus type 1 exhibit inhibited T-cell stimulatory capacity. J Virol 74(15):7127–7136PubMed Kruse M, Rosorius O, Kratzer F, Stelz G, Kuhnt C, Schuler G, Hauber J, Steinkasserer A (2000) Mature dendritic cells infected with herpes simplex virus type 1 exhibit inhibited T-cell stimulatory capacity. J Virol 74(15):7127–7136PubMed
51.
Zurück zum Zitat Lanzavecchia A, Sallusto F (2001) Antigen decoding by T lymphocytes: from synapses to fate determination. Nat Immunol 2(6):487–492PubMed Lanzavecchia A, Sallusto F (2001) Antigen decoding by T lymphocytes: from synapses to fate determination. Nat Immunol 2(6):487–492PubMed
52.
Zurück zum Zitat Lanzavecchia A, Sallusto F (2001) Regulation of T cell immunity by dendritic cells. Cell 106(3):263–266PubMed Lanzavecchia A, Sallusto F (2001) Regulation of T cell immunity by dendritic cells. Cell 106(3):263–266PubMed
53.
Zurück zum Zitat Lechmann M, Kotzor N, Zinser E, Prechtel AT, Sticht H, Steinkasserer A (2005) CD83 is a dimer: comparative analysis of monomeric and dimeric isoforms. Biochem Biophys Res Commun 329(1):132–139PubMed Lechmann M, Kotzor N, Zinser E, Prechtel AT, Sticht H, Steinkasserer A (2005) CD83 is a dimer: comparative analysis of monomeric and dimeric isoforms. Biochem Biophys Res Commun 329(1):132–139PubMed
54.
Zurück zum Zitat Lechmann M, Kremmer E, Sticht H, Steinkasserer A (2002) Overexpression, purification, and biochemical characterization of the extracellular human CD83 domain and generation of monoclonal antibodies. Protein Exp Purif 24(3):445–452 Lechmann M, Kremmer E, Sticht H, Steinkasserer A (2002) Overexpression, purification, and biochemical characterization of the extracellular human CD83 domain and generation of monoclonal antibodies. Protein Exp Purif 24(3):445–452
55.
Zurück zum Zitat Lechmann M, Krooshoop DJEB, Dudziak D, Kremmer E, Kuhnt C, Figdor CG, Schuler G, Steinkasserer A (2001) The extracellular domain of CD83 inhibits dendritic cell-mediated T cell stimulation and binds to a ligand on dendritic cells. J Exp Med 194(12):1813–1821PubMed Lechmann M, Krooshoop DJEB, Dudziak D, Kremmer E, Kuhnt C, Figdor CG, Schuler G, Steinkasserer A (2001) The extracellular domain of CD83 inhibits dendritic cell-mediated T cell stimulation and binds to a ligand on dendritic cells. J Exp Med 194(12):1813–1821PubMed
56.
Zurück zum Zitat Lekkerkerker AN, van Kooyk Y, Geijtenbeek TB (2006) Viral piracy: HIV-1 targets dendritic cells for transmission. Curr HIV Res 4(2):169–176PubMed Lekkerkerker AN, van Kooyk Y, Geijtenbeek TB (2006) Viral piracy: HIV-1 targets dendritic cells for transmission. Curr HIV Res 4(2):169–176PubMed
57.
Zurück zum Zitat Lin CL, Suri RM, Rahdon RA, Austyn JM, Roake JA (1998) Dendritic cell chemotaxis and transendothelial migration are induced by distinct chemokines and are regulated on maturation. Eur J Immunol 28(12):4114–4122PubMed Lin CL, Suri RM, Rahdon RA, Austyn JM, Roake JA (1998) Dendritic cell chemotaxis and transendothelial migration are induced by distinct chemokines and are regulated on maturation. Eur J Immunol 28(12):4114–4122PubMed
58.
Zurück zum Zitat Matzinger P, Guerder S (1989) Does T-cell tolerance require a dedicated antigen-presenting cell? Nature 338(6210):74–76PubMed Matzinger P, Guerder S (1989) Does T-cell tolerance require a dedicated antigen-presenting cell? Nature 338(6210):74–76PubMed
59.
Zurück zum Zitat McKinsey TA, Chu ZL, Tedder TF, Ballard DW (2000) Transcription factor NF-[kappa]B regulates inducible CD83 gene expression in activated T lymphocytes. Mol Immunol 37(12–13):783–788PubMed McKinsey TA, Chu ZL, Tedder TF, Ballard DW (2000) Transcription factor NF-[kappa]B regulates inducible CD83 gene expression in activated T lymphocytes. Mol Immunol 37(12–13):783–788PubMed
60.
Zurück zum Zitat Mellman I, Steinman RM (2001) Dendritic cells: specialized and regulated antigen processing machines. Cell 106(3):255–258PubMed Mellman I, Steinman RM (2001) Dendritic cells: specialized and regulated antigen processing machines. Cell 106(3):255–258PubMed
61.
Zurück zum Zitat Mitchell P, Tollervey D (2001) mRNA turnover. Curr Opin Cell Biol 13(3):320–325PubMed Mitchell P, Tollervey D (2001) mRNA turnover. Curr Opin Cell Biol 13(3):320–325PubMed
62.
Zurück zum Zitat Muthumani K, Hwang DS, Choo AY, Mayilvahanan S, Dayes NS, Thieu KP, Weiner DB (2005) HIV-1 Vpr inhibits the maturation and activation of macrophages and dendritic cells in vitro. Int Immunol 17(2):103–116PubMed Muthumani K, Hwang DS, Choo AY, Mayilvahanan S, Dayes NS, Thieu KP, Weiner DB (2005) HIV-1 Vpr inhibits the maturation and activation of macrophages and dendritic cells in vitro. Int Immunol 17(2):103–116PubMed
63.
Zurück zum Zitat Oehler L, Majdic O, Pickl WF, Stockl J, Riedl E, Drach J, Rappersberger K, Geissler K, Knapp W (1998) Neutrophil granulocyte-committed cells can be driven to acquire dendritic cell characteristics. J Exp Med 187(7):1019–1028PubMed Oehler L, Majdic O, Pickl WF, Stockl J, Riedl E, Drach J, Rappersberger K, Geissler K, Knapp W (1998) Neutrophil granulocyte-committed cells can be driven to acquire dendritic cell characteristics. J Exp Med 187(7):1019–1028PubMed
64.
Zurück zum Zitat Ohta Y, Landis E, Boulay T, Phillips RB, Collet B, Secombes CJ, Flajnik MF, Hansen JD (2004) Homologs of CD83 from elasmobranch and teleost fish. J Immunol 173(7):4553–4560PubMed Ohta Y, Landis E, Boulay T, Phillips RB, Collet B, Secombes CJ, Flajnik MF, Hansen JD (2004) Homologs of CD83 from elasmobranch and teleost fish. J Immunol 173(7):4553–4560PubMed
65.
Zurück zum Zitat Pardoll DM (2002) Spinning molecular immunology into successful immunotherapy. Nat Rev Immunol 2(4):227–238PubMed Pardoll DM (2002) Spinning molecular immunology into successful immunotherapy. Nat Rev Immunol 2(4):227–238PubMed
66.
Zurück zum Zitat Park MH, Lee YB, Joe YA (1997) Hypusine is essential for eukaryotic cell proliferation. Biol Signals 6(3):115–123PubMed Park MH, Lee YB, Joe YA (1997) Hypusine is essential for eukaryotic cell proliferation. Biol Signals 6(3):115–123PubMed
67.
Zurück zum Zitat Park MH, Wolff EC, Folk JE (1993) Hypusine: its post-translational formation in eukaryotic initiation factor 5A and its potential role in cellular regulation. Biofactors 4(2):95–104PubMed Park MH, Wolff EC, Folk JE (1993) Hypusine: its post-translational formation in eukaryotic initiation factor 5A and its potential role in cellular regulation. Biofactors 4(2):95–104PubMed
68.
Zurück zum Zitat Prechtel AT, Chemnitz J, Schirmer S, Ehlers C, Langbein-Detsch I, Stulke J, Dabauvalle MC, Kehlenbach RH, Hauber J (2006) Expression of CD83 is regulated by HuR via a novel cis-active coding region RNA element. J Biol Chem 281(16):10912–10925PubMed Prechtel AT, Chemnitz J, Schirmer S, Ehlers C, Langbein-Detsch I, Stulke J, Dabauvalle MC, Kehlenbach RH, Hauber J (2006) Expression of CD83 is regulated by HuR via a novel cis-active coding region RNA element. J Biol Chem 281(16):10912–10925PubMed
69.
Zurück zum Zitat Prechtel AT, Turza NM, Kobelt DJ, Eisemann JI, Coffin RS, McGrath Y, Hacker C, Ju X, Zenke M, Steinkasserer A (2005) Infection of mature dendritic cells with herpes simplex virus type 1 dramatically reduces lymphoid chemokine-mediated migration. J Gen Virol 86(Pt 6):1645–1657PubMed Prechtel AT, Turza NM, Kobelt DJ, Eisemann JI, Coffin RS, McGrath Y, Hacker C, Ju X, Zenke M, Steinkasserer A (2005) Infection of mature dendritic cells with herpes simplex virus type 1 dramatically reduces lymphoid chemokine-mediated migration. J Gen Virol 86(Pt 6):1645–1657PubMed
70.
Zurück zum Zitat Prechtel AT, Turza NM, Theodoridis AA, Kummer M, Steinkasserer A (2006) Small interfering RNA (siRNA) delivery into monocyte-derived dendritic cells by electroporation. J Immunol Methods 311(1–2):139–152PubMed Prechtel AT, Turza NM, Theodoridis AA, Kummer M, Steinkasserer A (2006) Small interfering RNA (siRNA) delivery into monocyte-derived dendritic cells by electroporation. J Immunol Methods 311(1–2):139–152PubMed
71.
Zurück zum Zitat Raftery MJ, Schwab M, Eibert SM, Samstag Y, Walczak H, Schonrich G (2001) Targeting the function of mature dendritic cells by human cytomegalovirus: a multilayered viral defense strategy. Immunity 15(6):997–1009PubMed Raftery MJ, Schwab M, Eibert SM, Samstag Y, Walczak H, Schonrich G (2001) Targeting the function of mature dendritic cells by human cytomegalovirus: a multilayered viral defense strategy. Immunity 15(6):997–1009PubMed
72.
Zurück zum Zitat Randolph GJ (2001) Dendritic cell migration to lymph nodes: cytokines, chemokines, and lipid mediators. Semin Immunol 13(5):267–274PubMed Randolph GJ (2001) Dendritic cell migration to lymph nodes: cytokines, chemokines, and lipid mediators. Semin Immunol 13(5):267–274PubMed
73.
Zurück zum Zitat Randolph GJ, Sanchez-Schmitz G, Angeli V (2005) Factors and signals that govern the migration of dendritic cells via lymphatics: recent advances. Springer Semin Immunopathol 26(3):273–287PubMed Randolph GJ, Sanchez-Schmitz G, Angeli V (2005) Factors and signals that govern the migration of dendritic cells via lymphatics: recent advances. Springer Semin Immunopathol 26(3):273–287PubMed
74.
Zurück zum Zitat Reed R, Cheng H (2005) TREX, SR proteins and export of mRNA. Curr Opin Cell Biol 17(3):269–273PubMed Reed R, Cheng H (2005) TREX, SR proteins and export of mRNA. Curr Opin Cell Biol 17(3):269–273PubMed
75.
Zurück zum Zitat Reed R, Magni K (2001) A new view of mRNA export: separating the wheat from the chaff. Nat Cell Biol 3(9):E201–E204PubMed Reed R, Magni K (2001) A new view of mRNA export: separating the wheat from the chaff. Nat Cell Biol 3(9):E201–E204PubMed
76.
Zurück zum Zitat Ridge JP, Di Rosa F, Matzinger P (1998) A conditioned dendritic cell can be a temporal bridge between a CD4+ T-helper and a T-killer cell. Nature 393(6684):474–478PubMed Ridge JP, Di Rosa F, Matzinger P (1998) A conditioned dendritic cell can be a temporal bridge between a CD4+ T-helper and a T-killer cell. Nature 393(6684):474–478PubMed
77.
Zurück zum Zitat Rinaldo CR Jr, Piazza P (2004) Virus infection of dendritic cells: portal for host invasion and host defense. Trends Microbiol 12(7):337–345PubMed Rinaldo CR Jr, Piazza P (2004) Virus infection of dendritic cells: portal for host invasion and host defense. Trends Microbiol 12(7):337–345PubMed
78.
Zurück zum Zitat Rodriguez MS, Dargemont C, Stutz F (2004) Nuclear export of RNA. Biol Cell 96(8):639–655PubMed Rodriguez MS, Dargemont C, Stutz F (2004) Nuclear export of RNA. Biol Cell 96(8):639–655PubMed
79.
Zurück zum Zitat Rosorius O, Reichart B, Kratzer F, Heger P, Dabauvalle MC, Hauber J (1999) Nuclear pore localization and nucleocytoplasmic transport of eIF-5A: evidence for direct interaction with the export receptor CRM1. J Cell Sci 112(Pt 14):2369–2380PubMed Rosorius O, Reichart B, Kratzer F, Heger P, Dabauvalle MC, Hauber J (1999) Nuclear pore localization and nucleocytoplasmic transport of eIF-5A: evidence for direct interaction with the export receptor CRM1. J Cell Sci 112(Pt 14):2369–2380PubMed
80.
Zurück zum Zitat Salio M, Cella M, Suter M, Lanzavecchia A (1999) Inhibition of dendritic cell maturation by herpes simplex virus. Eur J Immunol 29(10):3245–3253PubMed Salio M, Cella M, Suter M, Lanzavecchia A (1999) Inhibition of dendritic cell maturation by herpes simplex virus. Eur J Immunol 29(10):3245–3253PubMed
81.
Zurück zum Zitat Sallusto F, Schaerli P, Loetscher P, Schaniel C, Lenig D, Mackay CR, Qin S, Lanzavecchia A (1998) Rapid and coordinated switch in chemokine receptor expression during dendritic cell maturation. Eur J Immunol 28(9):2760–2769PubMed Sallusto F, Schaerli P, Loetscher P, Schaniel C, Lenig D, Mackay CR, Qin S, Lanzavecchia A (1998) Rapid and coordinated switch in chemokine receptor expression during dendritic cell maturation. Eur J Immunol 28(9):2760–2769PubMed
82.
Zurück zum Zitat Sallusto F, Lanzavecchia A (2002) The instructive role of dendritic cells on T-cell responses. Arthritis Res 4(Suppl 3):S127–S132PubMed Sallusto F, Lanzavecchia A (2002) The instructive role of dendritic cells on T-cell responses. Arthritis Res 4(Suppl 3):S127–S132PubMed
83.
Zurück zum Zitat Scholler N, Hayden-Ledbetter M, Hellstrom KE, Hellstrom I, Ledbetter JA (2001) CD83 is a sialic acid-binding Ig-like lectin (Siglec) adhesion receptor that binds monocytes and a subset of activated CD8+ T cells. J Immunol 166(6):3865–3872PubMed Scholler N, Hayden-Ledbetter M, Hellstrom KE, Hellstrom I, Ledbetter JA (2001) CD83 is a sialic acid-binding Ig-like lectin (Siglec) adhesion receptor that binds monocytes and a subset of activated CD8+ T cells. J Immunol 166(6):3865–3872PubMed
84.
Zurück zum Zitat Scholler N, Hayden-Ledbetter M, Dahlin A, Hellstrom I, Hellstrom KE, Ledbetter JA (2002) Cutting edge: CD83 regulates the development of cellular immunity. J Immunol 168(6):2599–2602PubMed Scholler N, Hayden-Ledbetter M, Dahlin A, Hellstrom I, Hellstrom KE, Ledbetter JA (2002) Cutting edge: CD83 regulates the development of cellular immunity. J Immunol 168(6):2599–2602PubMed
85.
Zurück zum Zitat Senechal B, Boruchov AM, Reagan JL, Hart DN, Young JW (2004) Infection of mature monocyte-derived dendritic cells with human cytomegalovirus inhibits stimulation of T-cell proliferation via the release of soluble CD83. Blood 103(11):4207–4215PubMed Senechal B, Boruchov AM, Reagan JL, Hart DN, Young JW (2004) Infection of mature monocyte-derived dendritic cells with human cytomegalovirus inhibits stimulation of T-cell proliferation via the release of soluble CD83. Blood 103(11):4207–4215PubMed
86.
Zurück zum Zitat Shutt DC, Daniels KJ, Carolan EJ, Hill AC, Soll DR (2000) Changes in the motility, morphology, and F-actin architecture of human dendritic cells in an in vitro model of dendritic cell development. Cell Motil Cytoskeleton 46(3):200–221PubMed Shutt DC, Daniels KJ, Carolan EJ, Hill AC, Soll DR (2000) Changes in the motility, morphology, and F-actin architecture of human dendritic cells in an in vitro model of dendritic cell development. Cell Motil Cytoskeleton 46(3):200–221PubMed
87.
Zurück zum Zitat Sorg UR, Morse TM, Patton WN, Hock BD, Angus HB, Robinson BA, Colls BM, Hart DN (1997) Hodgkin’s cells express CD83, a dendritic cell lineage associated antigen. Pathology 29(3):294–299PubMed Sorg UR, Morse TM, Patton WN, Hock BD, Angus HB, Robinson BA, Colls BM, Hart DN (1997) Hodgkin’s cells express CD83, a dendritic cell lineage associated antigen. Pathology 29(3):294–299PubMed
88.
Zurück zum Zitat Sozzani S, Allavena P, D’Amico G, Luini W, Bianchi G, Kataura M, Imai T, Yoshie O, Bonecchi R, Mantovani A (1998) Differential regulation of chemokine receptors during dendritic cell maturation: a model for their trafficking properties. J Immunol 161(3):1083–1086PubMed Sozzani S, Allavena P, D’Amico G, Luini W, Bianchi G, Kataura M, Imai T, Yoshie O, Bonecchi R, Mantovani A (1998) Differential regulation of chemokine receptors during dendritic cell maturation: a model for their trafficking properties. J Immunol 161(3):1083–1086PubMed
89.
Zurück zum Zitat Sozzani S, Allavena P, Vecchi A, Mantovani A (2000) Chemokines and dendritic cell traffic. J Clin Immunol 20(3):151–160PubMed Sozzani S, Allavena P, Vecchi A, Mantovani A (2000) Chemokines and dendritic cell traffic. J Clin Immunol 20(3):151–160PubMed
90.
Zurück zum Zitat Steinman RM (2000) DC-SIGN: a guide to some mysteries of dendritic cells. Cell 100(5):491–494PubMed Steinman RM (2000) DC-SIGN: a guide to some mysteries of dendritic cells. Cell 100(5):491–494PubMed
91.
Zurück zum Zitat Steinman RM (1991) The dendritic cell system and its role in immunogenicity. Annu Rev Immunol 9:271–296PubMed Steinman RM (1991) The dendritic cell system and its role in immunogenicity. Annu Rev Immunol 9:271–296PubMed
92.
Zurück zum Zitat Suntharalingam M, Wente SR (2003) Peering through the pore: nuclear pore complex structure, assembly, and function. Dev Cell 4(6):775–789PubMed Suntharalingam M, Wente SR (2003) Peering through the pore: nuclear pore complex structure, assembly, and function. Dev Cell 4(6):775–789PubMed
93.
Zurück zum Zitat Thurner B, Roder C, Dieckmann D, Heuer M, Kruse M, Glaser A, Keikavoussi P, Kampgen E, Bender A, Schuler G (1999) Generation of large numbers of fully mature and stable dendritic cells from leukapheresis products for clinical application. J Immunol Methods 223(1):1–15PubMed Thurner B, Roder C, Dieckmann D, Heuer M, Kruse M, Glaser A, Keikavoussi P, Kampgen E, Bender A, Schuler G (1999) Generation of large numbers of fully mature and stable dendritic cells from leukapheresis products for clinical application. J Immunol Methods 223(1):1–15PubMed
94.
Zurück zum Zitat Toka FN, Suvas S, Rouse BT (2004) CD4+ CD25+ T cells regulate vaccine-generated primary and memory CD8+ T-cell responses against Herpes simplex virus type 1. J Virol 78(23):13082–13089PubMed Toka FN, Suvas S, Rouse BT (2004) CD4+ CD25+ T cells regulate vaccine-generated primary and memory CD8+ T-cell responses against Herpes simplex virus type 1. J Virol 78(23):13082–13089PubMed
95.
Zurück zum Zitat Twist CJ, Beier DR, Disteche CM, Edelhoff S, Tedder TF (1998) The mouse Cd83 gene: structure, domain organization, and chromosome localization. Immunogenetics 48(6):383–393PubMed Twist CJ, Beier DR, Disteche CM, Edelhoff S, Tedder TF (1998) The mouse Cd83 gene: structure, domain organization, and chromosome localization. Immunogenetics 48(6):383–393PubMed
96.
Zurück zum Zitat Vicente-Manzanares M, Sancho D, Yanez-Mo M, Sanchez-Madrid F (2002) The leukocyte cytoskeleton in cell migration and immune interactions. Int Rev Cytol 216:233–289PubMedCrossRef Vicente-Manzanares M, Sancho D, Yanez-Mo M, Sanchez-Madrid F (2002) The leukocyte cytoskeleton in cell migration and immune interactions. Int Rev Cytol 216:233–289PubMedCrossRef
97.
Zurück zum Zitat Vinciguerra P, Stutz F (2004) mRNA export: an assembly line from genes to nuclear pores. Curr Opin Cell Biol 16(3):285–292PubMed Vinciguerra P, Stutz F (2004) mRNA export: an assembly line from genes to nuclear pores. Curr Opin Cell Biol 16(3):285–292PubMed
98.
Zurück zum Zitat Weissman D, Li Y, Ananworanich J, Zhou LJ, Adelsberger J, Tedder TF, Baseler M, Fauci AS (1995) Three populations of cells with dendritic morphology exist in peripheral blood, only one of which is infectable with human immunodeficiency virus type 1. Proc Natl Acad Sci USA 92(3):826–830PubMed Weissman D, Li Y, Ananworanich J, Zhou LJ, Adelsberger J, Tedder TF, Baseler M, Fauci AS (1995) Three populations of cells with dendritic morphology exist in peripheral blood, only one of which is infectable with human immunodeficiency virus type 1. Proc Natl Acad Sci USA 92(3):826–830PubMed
99.
Zurück zum Zitat Wilflingseder D, Mullauer B, Schramek H, Banki Z, Pruenster M, Dierich MP, Stoiber H (2004) HIV-1-induced migration of monocyte-derived dendritic cells is associated with differential activation of MAPK pathways. J Immunol 173(12):7497–7505PubMed Wilflingseder D, Mullauer B, Schramek H, Banki Z, Pruenster M, Dierich MP, Stoiber H (2004) HIV-1-induced migration of monocyte-derived dendritic cells is associated with differential activation of MAPK pathways. J Immunol 173(12):7497–7505PubMed
100.
Zurück zum Zitat Wilson GM, Brewer G (1999) Identification and characterization of proteins binding A + U-rich elements. Methods 17(1):74–83PubMed Wilson GM, Brewer G (1999) Identification and characterization of proteins binding A + U-rich elements. Methods 17(1):74–83PubMed
101.
Zurück zum Zitat Wilusz CJ, Wormington M, Peltz SW (2001) The cap-to-tail guide to mRNA turnover. Nat Rev Mol Cell Biol 2(4):237–246PubMed Wilusz CJ, Wormington M, Peltz SW (2001) The cap-to-tail guide to mRNA turnover. Nat Rev Mol Cell Biol 2(4):237–246PubMed
102.
Zurück zum Zitat Wolenski M, Cramer SO, Ehrlich S, Steeg C, Fleischer B, von Bonin A (2003) Enhanced activation of CD83-positive T cells. Scand J Immunol 58(3):306–311PubMed Wolenski M, Cramer SO, Ehrlich S, Steeg C, Fleischer B, von Bonin A (2003) Enhanced activation of CD83-positive T cells. Scand J Immunol 58(3):306–311PubMed
103.
Zurück zum Zitat Yang S, Yang Y, Raycraft J, Zhang H, Kanan S, Guo Y, Ronai Z, Hellstrom I, Hellstrom KE (2004) Melanoma cells transfected to express CD83 induce antitumor immunity that can be increased by also engaging CD137. Proc Natl Acad Sci 101(14):4990–4995PubMed Yang S, Yang Y, Raycraft J, Zhang H, Kanan S, Guo Y, Ronai Z, Hellstrom I, Hellstrom KE (2004) Melanoma cells transfected to express CD83 induce antitumor immunity that can be increased by also engaging CD137. Proc Natl Acad Sci 101(14):4990–4995PubMed
104.
Zurück zum Zitat Zhou LJ, Schwarting R, Smith HM, Tedder TF (1992) A novel cell-surface molecule expressed by human interdigitating reticulum cells, Langerhans cells, and activated lymphocytes is a new member of the Ig superfamily. J Immunol 149(2):735–742PubMed Zhou LJ, Schwarting R, Smith HM, Tedder TF (1992) A novel cell-surface molecule expressed by human interdigitating reticulum cells, Langerhans cells, and activated lymphocytes is a new member of the Ig superfamily. J Immunol 149(2):735–742PubMed
105.
Zurück zum Zitat Zhou LJ, Tedder TF (1996) CD14+ blood monocytes can differentiate into functionally mature CD83+ dendritic cells. Proc Natl Acad Sci USA 93(6):2588–2592PubMed Zhou LJ, Tedder TF (1996) CD14+ blood monocytes can differentiate into functionally mature CD83+ dendritic cells. Proc Natl Acad Sci USA 93(6):2588–2592PubMed
106.
Zurück zum Zitat Zhou LJ, Tedder TF (1995) Human blood dendritic cells selectively express CD83, a member of the immunoglobulin superfamily. J Immunol 154(8):3821–3835PubMed Zhou LJ, Tedder TF (1995) Human blood dendritic cells selectively express CD83, a member of the immunoglobulin superfamily. J Immunol 154(8):3821–3835PubMed
107.
Zurück zum Zitat Zhou LJ, Tedder TF (1995) A distinct pattern of cytokine gene expression by human CD83+ blood dendritic cells. Blood 86(9):3295–3301PubMed Zhou LJ, Tedder TF (1995) A distinct pattern of cytokine gene expression by human CD83+ blood dendritic cells. Blood 86(9):3295–3301PubMed
108.
Zurück zum Zitat Zinser E, Lechmann M, Golka A, Hock B, Steinkasserer A (2006) Determination of the inhibitory activity and biological half-live of soluble CD83: comparison of wild type and mutant isoforms. Immunobiology 211(6–8):449–453PubMed Zinser E, Lechmann M, Golka A, Hock B, Steinkasserer A (2006) Determination of the inhibitory activity and biological half-live of soluble CD83: comparison of wild type and mutant isoforms. Immunobiology 211(6–8):449–453PubMed
109.
Zurück zum Zitat Zinser E, Lechmann M, Golka A, Lutz MB, Steinkasserer A (2004) Prevention and treatment of experimental autoimmune encephalomyelitis by soluble CD83. J Exp Med 200(3):345–351PubMed Zinser E, Lechmann M, Golka A, Lutz MB, Steinkasserer A (2004) Prevention and treatment of experimental autoimmune encephalomyelitis by soluble CD83. J Exp Med 200(3):345–351PubMed
110.
Zurück zum Zitat Zinser E, Turza N, Steinkasserer A (2004) CNI-1493 mediated suppression of dendritic cell activation in vitro and in vivo. Immunobiology 209(1–2):89–97PubMed Zinser E, Turza N, Steinkasserer A (2004) CNI-1493 mediated suppression of dendritic cell activation in vitro and in vivo. Immunobiology 209(1–2):89–97PubMed
Metadaten
Titel
CD83: an update on functions and prospects of the maturation marker of dendritic cells
verfasst von
Alexander T. Prechtel
Alexander Steinkasserer
Publikationsdatum
01.05.2007
Verlag
Springer-Verlag
Erschienen in
Archives of Dermatological Research / Ausgabe 2/2007
Print ISSN: 0340-3696
Elektronische ISSN: 1432-069X
DOI
https://doi.org/10.1007/s00403-007-0743-z

Weitere Artikel der Ausgabe 2/2007

Archives of Dermatological Research 2/2007 Zur Ausgabe

Leitlinien kompakt für die Dermatologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Hirsutismus bei PCOS: Laser- und Lichttherapien helfen

26.04.2024 Hirsutismus Nachrichten

Laser- und Lichtbehandlungen können bei Frauen mit polyzystischem Ovarialsyndrom (PCOS) den übermäßigen Haarwuchs verringern und das Wohlbefinden verbessern – bei alleiniger Anwendung oder in Kombination mit Medikamenten.

Bei schweren Reaktionen auf Insektenstiche empfiehlt sich eine spezifische Immuntherapie

Insektenstiche sind bei Erwachsenen die häufigsten Auslöser einer Anaphylaxie. Einen wirksamen Schutz vor schweren anaphylaktischen Reaktionen bietet die allergenspezifische Immuntherapie. Jedoch kommt sie noch viel zu selten zum Einsatz.

Auf diese Krankheiten bei Geflüchteten sollten Sie vorbereitet sein

22.04.2024 DGIM 2024 Nachrichten

Um Menschen nach der Flucht aus einem Krisengebiet bestmöglich medizinisch betreuen zu können, ist es gut zu wissen, welche Erkrankungen im jeweiligen Herkunftsland häufig sind. Dabei hilft eine Internetseite der CDC (Centers for Disease Control and Prevention).

Kein Abstrich bei chronischen Wunden ohne Entzündungszeichen!

16.04.2024 DGIM 2024 Nachrichten

Den Reflex, eine oberflächliche chronische Hautwunde ohne Entzündungszeichen in jedem Fall abzustreichen, sollte man nach einer neuen „Klug-entscheiden“-Empfehlung unterdrücken.

Update Dermatologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.