Skip to main content
Erschienen in: Graefe's Archive for Clinical and Experimental Ophthalmology 3/2015

01.03.2015 | Miscellaneous

Identification and biometry of horizontal extraocular muscle tendons using optical coherence tomography

verfasst von: Guillermo Salcedo-Villanueva, Miguel Paciuc-Beja, Mariana Harasawa, Raul Velez-Montoya, Jeffrey L. Olson, Scott C. Oliver, Naresh Mandava, Hugo Quiroz-Mercado

Erschienen in: Graefe's Archive for Clinical and Experimental Ophthalmology | Ausgabe 3/2015

Einloggen, um Zugang zu erhalten

Abstract

Purpose

To purpose if this study was to determine whether the horizontal rectus muscle tendons (HRMTs) can be observed using anterior segment optical coherence tomography (AS-OCT) and to determine the repeatability of its measurements. Also, this study aimed to observe and measure the different external ocular structures at the level of the horizontal rectus muscle (HRM) insertion.

Methods

This was a retrospective, observational, descriptive and comparative study. Images were obtained utilizing the RTVue 100 CAM system. Eyes were analyzed at the three and nine o’clock position. Scans were performed for three different locations: the limbus, the ciliary body and the equator. All scans were analyzed by two graders, separately and blinded. Measurements were performed for: HRMT length; HRM thickness; conjunctival epithelium thickness; conjunctiva and Tenon’s capsule thickness; scleral thickness; and external ocular thickness.

Results

Results were obtained from twenty eyes of ten volunteers. The conjunctival epithelium thickness was 52.33 μm, the total conjunctiva/Tenon’s capsule thickness was 313.54 μm, the medial rectus (MR) thickness was 136.63 μm and the lateral rectus (LR) thickness was 181.65 μm. The MR tendon length was 1,426.88 μm, the LR tendon length was 1,433.65 μm, the scleral thickness was 489.91 μm and the total external ocular structure thickness was 785.17 μm. Intra-observer reproducibility (intraclass correlation coefficient [ICC]) for tendon length was 0.993 for grader #1, 0.989 for grader #2; the muscle thickness ICC was 0.990 for grader #1 and 0.981 for grader #2. The inter-observer reproducibility ICC for tendon length was 0.557; the ICC for muscle thickness was 0.834.

Conclusions

It is possible to visualize and measure HRMTs using AS-OCT. Measurements of the HRM, as well as the surrounding external ocular tissues, can be achieved.
Literatur
1.
Zurück zum Zitat Huang D, Swanson EA, Lin CP et al (1991) Optical coherence tomography. Science 254:1178–1181CrossRefPubMed Huang D, Swanson EA, Lin CP et al (1991) Optical coherence tomography. Science 254:1178–1181CrossRefPubMed
2.
Zurück zum Zitat Sull AC, Vuong LN, Price LL et al (2010) Comparison of spectral/fourier domain optical coherence tomography instruments for assessment of normal macular thickness. Retina 30:235–245CrossRefPubMedCentralPubMed Sull AC, Vuong LN, Price LL et al (2010) Comparison of spectral/fourier domain optical coherence tomography instruments for assessment of normal macular thickness. Retina 30:235–245CrossRefPubMedCentralPubMed
3.
Zurück zum Zitat Leitgeb R, Hitzenberg C, Fercher A (2003) Performance of fourier domain vs. time domain optical coherence tomography. Opt Express 11:889–894CrossRefPubMed Leitgeb R, Hitzenberg C, Fercher A (2003) Performance of fourier domain vs. time domain optical coherence tomography. Opt Express 11:889–894CrossRefPubMed
4.
Zurück zum Zitat de Boer JF, Cense B, Park BH et al (2003) Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography. Opt Lett 28:2067–2069CrossRefPubMed de Boer JF, Cense B, Park BH et al (2003) Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography. Opt Lett 28:2067–2069CrossRefPubMed
5.
Zurück zum Zitat Spaide RF, Koizumi H, Pozzoni MC (2008) Enhanced depth imaging spectral domain optical coherence tomography. Am J Ophthalmol 146:496–500CrossRefPubMed Spaide RF, Koizumi H, Pozzoni MC (2008) Enhanced depth imaging spectral domain optical coherence tomography. Am J Ophthalmol 146:496–500CrossRefPubMed
6.
Zurück zum Zitat Branchini L, Regatieri CV, Flores-Moreno I et al (2012) Reproducibility of choroidal thickness measurements across three spectral domain OCT systems. Ophthalmology 119:119–123CrossRefPubMedCentralPubMed Branchini L, Regatieri CV, Flores-Moreno I et al (2012) Reproducibility of choroidal thickness measurements across three spectral domain OCT systems. Ophthalmology 119:119–123CrossRefPubMedCentralPubMed
7.
Zurück zum Zitat Radhakrishnan S, Rollins AM, Roth JE et al (2001) Real-time optical coherence tomography of the anterior segment at 1310 nm. Arch Ophthalmol 119:1179–1185CrossRefPubMed Radhakrishnan S, Rollins AM, Roth JE et al (2001) Real-time optical coherence tomography of the anterior segment at 1310 nm. Arch Ophthalmol 119:1179–1185CrossRefPubMed
8.
Zurück zum Zitat Huang D, Li Y, Radhakrishnan S (2004) Optical coherence tomography of the anterior segment of the eye. Ophthalmol Clin North Am 17:1–6CrossRefPubMed Huang D, Li Y, Radhakrishnan S (2004) Optical coherence tomography of the anterior segment of the eye. Ophthalmol Clin North Am 17:1–6CrossRefPubMed
9.
Zurück zum Zitat Hoerauf H, Wirbelauer C, Scholz C et al (2000) Slit-lamp-adapted optical coherence tomography of the anterior segment. Graefes Arch Clin Exp Ophthalmol 238:8–18CrossRefPubMed Hoerauf H, Wirbelauer C, Scholz C et al (2000) Slit-lamp-adapted optical coherence tomography of the anterior segment. Graefes Arch Clin Exp Ophthalmol 238:8–18CrossRefPubMed
10.
Zurück zum Zitat Wirbelauer C, Karandish A, Haberle H, Pham DT (2005) Noncontact goniometry with optical coherence tomography. Arch Ophthalmol 123:179–185CrossRefPubMed Wirbelauer C, Karandish A, Haberle H, Pham DT (2005) Noncontact goniometry with optical coherence tomography. Arch Ophthalmol 123:179–185CrossRefPubMed
11.
Zurück zum Zitat Radhakrishnan S, Huang D, Smith SD (2005) Optical coherence tomography imaging of the anterior chamber angle. Ophthalmol Clin North Am 18:375–381CrossRefPubMed Radhakrishnan S, Huang D, Smith SD (2005) Optical coherence tomography imaging of the anterior chamber angle. Ophthalmol Clin North Am 18:375–381CrossRefPubMed
12.
Zurück zum Zitat Ramos JLB, Li Y, Huang D (2009) Clinical and research applications of anterior segment optical coherence tomography - a review. Clin Exp Ophthalmol 37:81–89CrossRef Ramos JLB, Li Y, Huang D (2009) Clinical and research applications of anterior segment optical coherence tomography - a review. Clin Exp Ophthalmol 37:81–89CrossRef
13.
Zurück zum Zitat Hoerauf H, Gordes RS, Scholz C et al (2000) First experimental and clinical results with trans-scleral optical coherence tomography. Ophthalmic Surg Lasers 31:218–222PubMed Hoerauf H, Gordes RS, Scholz C et al (2000) First experimental and clinical results with trans-scleral optical coherence tomography. Ophthalmic Surg Lasers 31:218–222PubMed
14.
Zurück zum Zitat Liu X, Wang F, Xiao Y, Ye X, Hou L (2011) Measurement of the limbus-insertion distance in adult strabismus patients with anterior segment optical coherence tomography. Invest Ophthalmol Vis Sci 52:8370–8373CrossRefPubMed Liu X, Wang F, Xiao Y, Ye X, Hou L (2011) Measurement of the limbus-insertion distance in adult strabismus patients with anterior segment optical coherence tomography. Invest Ophthalmol Vis Sci 52:8370–8373CrossRefPubMed
15.
Zurück zum Zitat Park KA, Lee JY, Oh SY (2014) Reproducibility of horizontal extraocular muscle insertion distance in anterior segment optical coherence tomography and the effect of head position. J AAPOS 18:15–20CrossRefPubMed Park KA, Lee JY, Oh SY (2014) Reproducibility of horizontal extraocular muscle insertion distance in anterior segment optical coherence tomography and the effect of head position. J AAPOS 18:15–20CrossRefPubMed
16.
Zurück zum Zitat McGraw KO, Wong SP (1996) Forming inferences about some intraclass correlations coefficients. Psychol Methods 1:30–46, Correction;1(4): 390CrossRef McGraw KO, Wong SP (1996) Forming inferences about some intraclass correlations coefficients. Psychol Methods 1:30–46, Correction;1(4): 390CrossRef
17.
18.
Zurück zum Zitat Sevel D (1986) The origins and insertions of extraocular muscles: development, histologic features, and clinical significance. Trans Am Ophthalmol Soc 84:488–526PubMedCentralPubMed Sevel D (1986) The origins and insertions of extraocular muscles: development, histologic features, and clinical significance. Trans Am Ophthalmol Soc 84:488–526PubMedCentralPubMed
19.
Zurück zum Zitat Demer JL, Clark RA, Kono R et al (2002) A 12-year, prospective study of extraocular muscle imaging in complex strabismus. J AAPOS 6:337–347CrossRefPubMed Demer JL, Clark RA, Kono R et al (2002) A 12-year, prospective study of extraocular muscle imaging in complex strabismus. J AAPOS 6:337–347CrossRefPubMed
20.
Zurück zum Zitat Tamburrelli C, Salgarello T, Vaiano AS et al (2003) Ultrasound of the horizontal rectus muscle insertion sites: implications in preoperative assessment of strabismus. Invest Ophthalmol Vis Sci 44:618–622CrossRefPubMed Tamburrelli C, Salgarello T, Vaiano AS et al (2003) Ultrasound of the horizontal rectus muscle insertion sites: implications in preoperative assessment of strabismus. Invest Ophthalmol Vis Sci 44:618–622CrossRefPubMed
21.
Zurück zum Zitat Solarte CE, Smith DR, Buncic R, Tehrani NN, Kraft SP (2008) Evaluation of vertical rectus muscles using ultrasound biomicrospcopy. J AAPOS 12:128–131CrossRefPubMed Solarte CE, Smith DR, Buncic R, Tehrani NN, Kraft SP (2008) Evaluation of vertical rectus muscles using ultrasound biomicrospcopy. J AAPOS 12:128–131CrossRefPubMed
22.
Zurück zum Zitat Porter JD, Barker RS, Ragusa RJ, Brueckner JK (1995) Extraocular muscles: basic and clinical aspects of structure and function. Surv Ophthalmol 39:451–484CrossRefPubMed Porter JD, Barker RS, Ragusa RJ, Brueckner JK (1995) Extraocular muscles: basic and clinical aspects of structure and function. Surv Ophthalmol 39:451–484CrossRefPubMed
23.
Zurück zum Zitat Oh SY, Poukens V, Demer JL (2001) Quantitative analysis of rectus extraocular muscle layers in monkey and humans. Invest Ophthalmol Vis Sci 42:10–16PubMed Oh SY, Poukens V, Demer JL (2001) Quantitative analysis of rectus extraocular muscle layers in monkey and humans. Invest Ophthalmol Vis Sci 42:10–16PubMed
24.
Zurück zum Zitat Kono R, Poukens V, Demer SJ (2005) Superior oblique muscle layers in monkey and humans. Invest Ophthalmol Vis Sci 46:2790–2799CrossRefPubMed Kono R, Poukens V, Demer SJ (2005) Superior oblique muscle layers in monkey and humans. Invest Ophthalmol Vis Sci 46:2790–2799CrossRefPubMed
25.
Zurück zum Zitat Demer JL, Oh SY, Poukens V (2000) Evidence for active control of rectus extraocular muscle pulleys. Invest Ophthalmol Vis Sci 41:1280–1290PubMed Demer JL, Oh SY, Poukens V (2000) Evidence for active control of rectus extraocular muscle pulleys. Invest Ophthalmol Vis Sci 41:1280–1290PubMed
26.
Zurück zum Zitat Ruskell GL, Kjellevold Haugen IB, Bruenech JR, van del Werf F (2005) Double insertions of extraocular muscles in human and the pulley theory. J Anat 206:295–306CrossRefPubMedCentralPubMed Ruskell GL, Kjellevold Haugen IB, Bruenech JR, van del Werf F (2005) Double insertions of extraocular muscles in human and the pulley theory. J Anat 206:295–306CrossRefPubMedCentralPubMed
27.
Zurück zum Zitat Demer JL, Miller JM, Poukens V et al (1995) Evidence for fibrovascular pulleys of the recti extraocular muscles. Invest Ophthalmol Vis Sci 36:1125–1136PubMed Demer JL, Miller JM, Poukens V et al (1995) Evidence for fibrovascular pulleys of the recti extraocular muscles. Invest Ophthalmol Vis Sci 36:1125–1136PubMed
28.
Zurück zum Zitat Feng Y, Simpson TL (2008) Corneal, limbal, and conjunctival epithelial thickness from optical coherence tomography. Optom Vis Sci 85:E880–E883CrossRefPubMed Feng Y, Simpson TL (2008) Corneal, limbal, and conjunctival epithelial thickness from optical coherence tomography. Optom Vis Sci 85:E880–E883CrossRefPubMed
29.
Zurück zum Zitat Zhang X, Li Q, Liu B et al (2011) In vivo cross-sectional observation and thickness measurement of bulbar conjunctiva using optical coherence tomography. Invest Ophthalmol Vis Sci 52:7787–7791CrossRefPubMed Zhang X, Li Q, Liu B et al (2011) In vivo cross-sectional observation and thickness measurement of bulbar conjunctiva using optical coherence tomography. Invest Ophthalmol Vis Sci 52:7787–7791CrossRefPubMed
30.
Zurück zum Zitat Feng Y, Simpson TL (2005) Comparison of human central cornea and limbus in vivo using optical coherence tomography. Optom Vis Sci 82:416–419CrossRefPubMed Feng Y, Simpson TL (2005) Comparison of human central cornea and limbus in vivo using optical coherence tomography. Optom Vis Sci 82:416–419CrossRefPubMed
Metadaten
Titel
Identification and biometry of horizontal extraocular muscle tendons using optical coherence tomography
verfasst von
Guillermo Salcedo-Villanueva
Miguel Paciuc-Beja
Mariana Harasawa
Raul Velez-Montoya
Jeffrey L. Olson
Scott C. Oliver
Naresh Mandava
Hugo Quiroz-Mercado
Publikationsdatum
01.03.2015
Verlag
Springer Berlin Heidelberg
Erschienen in
Graefe's Archive for Clinical and Experimental Ophthalmology / Ausgabe 3/2015
Print ISSN: 0721-832X
Elektronische ISSN: 1435-702X
DOI
https://doi.org/10.1007/s00417-014-2862-5

Weitere Artikel der Ausgabe 3/2015

Graefe's Archive for Clinical and Experimental Ophthalmology 3/2015 Zur Ausgabe

Neu im Fachgebiet Augenheilkunde

Update Augenheilkunde

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.