Skip to main content
Erschienen in: European Journal of Applied Physiology 9/2017

10.07.2017 | Original Article

The metabolic costs of walking and running up a 30-degree incline: implications for vertical kilometer foot races

verfasst von: Amanda Louise Ryan Ortiz, Nicola Giovanelli, Rodger Kram

Erschienen in: European Journal of Applied Physiology | Ausgabe 9/2017

Einloggen, um Zugang zu erhalten

Abstract

Purpose

Vertical kilometer (VK) races, in which runners gain 1000 m of elevation in <5000 m of distance, are becoming popular. However, few studies on steep uphill running (>25°) exist. Previously, we determined that ~30° is the optimal angle for uphill running, costing the least amount of metabolic energy for a specific vertical velocity. To inform the training and strategy of VK racers, we quantified the metabolic cost of walking and running at various velocities up a 30° incline.

Methods

At 30°, 11 experienced runners (7 M, 4 F, 30.8 ± 7.9 years, 1.71 ± 0.08 m, 66.7 ± 9.4 kg) walked and ran for 5-min trials with 5-min rest between. Starting at 0.3 ms−1, we increased treadmill velocity by 0.1 ms−1 for each trial until subjects could not maintain the set velocity. We measured oxygen uptake (ml O2 kg−1 min−1) and metabolic power (W kg−1 = metabolic energy per unit time per unit body mass) and calculated metabolic costs of walking (C w) and running (C r) per unit distance (J kg−1 m−1).

Results

Oxygen uptake and metabolic power increased linearly with velocity. Between 0.3 and 0.7 ms−1, C w < C r. At 0.8 ms−1 there was no difference and extrapolation suggests that at faster velocities, running likely costs less than walking.

Conclusion

On a 30° incline, metabolic power increases linearly with velocity. At speeds slower than 0.7 ms−1, walking requires less metabolic power than running (W kg−1) suggesting most VK racers should walk rather than run.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
Zurück zum Zitat Brockway JM (1987) Derivation of formulae used to calculate energy expenditure in man. Human Nutr Clin Nutr 41:463–471 Brockway JM (1987) Derivation of formulae used to calculate energy expenditure in man. Human Nutr Clin Nutr 41:463–471
Zurück zum Zitat Daniels J, Gilbert J (1979) Oxygen power: performance tables for distance runners. Published by the authors Daniels J, Gilbert J (1979) Oxygen power: performance tables for distance runners. Published by the authors
Zurück zum Zitat Farrell PA, Wilmore JH, Coyle EF, Billing JE, Costill DL (1979) Plasma lactate accumulation and distance running performance. Med Sci Sports 11:338–344PubMed Farrell PA, Wilmore JH, Coyle EF, Billing JE, Costill DL (1979) Plasma lactate accumulation and distance running performance. Med Sci Sports 11:338–344PubMed
Zurück zum Zitat Gottschall JS, Kram R (2005) Ground reaction forces during downhill and uphill running. J Biomech 38 (3):445–452CrossRef Gottschall JS, Kram R (2005) Ground reaction forces during downhill and uphill running. J Biomech 38 (3):445–452CrossRef
Zurück zum Zitat Giovanelli N, Ortiz A, Henninger K, Kram R (2015) Energetics of vertical kilometer foot races; is steeper cheaper? J Appl Physiol 120:370–375CrossRef Giovanelli N, Ortiz A, Henninger K, Kram R (2015) Energetics of vertical kilometer foot races; is steeper cheaper? J Appl Physiol 120:370–375CrossRef
Zurück zum Zitat Hoogkamer W, Taboga P, Kram R (2014) Applying the cost of generating force hypothesis to uphill running. PeerJ 2:e482CrossRef Hoogkamer W, Taboga P, Kram R (2014) Applying the cost of generating force hypothesis to uphill running. PeerJ 2:e482CrossRef
Zurück zum Zitat Jones A (2006) The physiology of the world record holder for the women’s marathon. Int J Sports Sci Coach 1:101–116CrossRef Jones A (2006) The physiology of the world record holder for the women’s marathon. Int J Sports Sci Coach 1:101–116CrossRef
Zurück zum Zitat Joyner MJ (1991) Modeling: optimal marathon performance on the basis of physiological factor. J Appl Physiol 70:683–687CrossRef Joyner MJ (1991) Modeling: optimal marathon performance on the basis of physiological factor. J Appl Physiol 70:683–687CrossRef
Zurück zum Zitat Léger L, Mercier D (1984) Gross energy cost of horizontal treadmill and track running. Sports Med 1:270–277CrossRef Léger L, Mercier D (1984) Gross energy cost of horizontal treadmill and track running. Sports Med 1:270–277CrossRef
Zurück zum Zitat Lucia A, Esteve-Lanao J, Oliván J, Gómez-Gallego F, San Juan AF, Santiago C, Foster C (2006) Physiological characteristics of the best Eritrean runners—exceptional running economy. Appl Physiol Nutr Metab 31:530–540CrossRef Lucia A, Esteve-Lanao J, Oliván J, Gómez-Gallego F, San Juan AF, Santiago C, Foster C (2006) Physiological characteristics of the best Eritrean runners—exceptional running economy. Appl Physiol Nutr Metab 31:530–540CrossRef
Zurück zum Zitat Minetti AE, Moia C, Roi GS, Susta D, Ferretti G (2002) Energy cost of walking and running at extreme uphill and downhill slopes. J Appl Physiol 93:1039–1046CrossRef Minetti AE, Moia C, Roi GS, Susta D, Ferretti G (2002) Energy cost of walking and running at extreme uphill and downhill slopes. J Appl Physiol 93:1039–1046CrossRef
Zurück zum Zitat Morgan DW, Bransford DR, Costill DL, Daniels JT, Howley ET, Krahenbuhl GS (1995) Variation in the aerobic demand of running among trained and untrained subjects. Med Sci Sport Exer 27:404–409CrossRef Morgan DW, Bransford DR, Costill DL, Daniels JT, Howley ET, Krahenbuhl GS (1995) Variation in the aerobic demand of running among trained and untrained subjects. Med Sci Sport Exer 27:404–409CrossRef
Zurück zum Zitat Padulo J, Annino G, Migliaccio GM, D'Ottavio S, Tihanyi J (2012) Kinematics of running at different slopes and speeds. J Strength Conditioning Res 26:1331–1339CrossRef Padulo J, Annino G, Migliaccio GM, D'Ottavio S, Tihanyi J (2012) Kinematics of running at different slopes and speeds. J Strength Conditioning Res 26:1331–1339CrossRef
Zurück zum Zitat Voloshina AS, Ferris DP (2015) Biomechanics and energetics of running on uneven terrain. J Exp Biol 218:711–719CrossRef Voloshina AS, Ferris DP (2015) Biomechanics and energetics of running on uneven terrain. J Exp Biol 218:711–719CrossRef
Zurück zum Zitat Weston AR, Mbambo Z, Myburgh KH (2000) Running economy of African and Caucasian distance runners. Med Sci Sport Exer 32:1130–1134CrossRef Weston AR, Mbambo Z, Myburgh KH (2000) Running economy of African and Caucasian distance runners. Med Sci Sport Exer 32:1130–1134CrossRef
Zurück zum Zitat Zamparo P, Perini R, Orizio C, Sacher M, Ferretti G (1992) The energy cost of walking or running on sand. Eur J Appl Physiol 65:183–187CrossRef Zamparo P, Perini R, Orizio C, Sacher M, Ferretti G (1992) The energy cost of walking or running on sand. Eur J Appl Physiol 65:183–187CrossRef
Metadaten
Titel
The metabolic costs of walking and running up a 30-degree incline: implications for vertical kilometer foot races
verfasst von
Amanda Louise Ryan Ortiz
Nicola Giovanelli
Rodger Kram
Publikationsdatum
10.07.2017
Verlag
Springer Berlin Heidelberg
Erschienen in
European Journal of Applied Physiology / Ausgabe 9/2017
Print ISSN: 1439-6319
Elektronische ISSN: 1439-6327
DOI
https://doi.org/10.1007/s00421-017-3677-y

Weitere Artikel der Ausgabe 9/2017

European Journal of Applied Physiology 9/2017 Zur Ausgabe