Skip to main content
Erschienen in: European Journal of Applied Physiology 10/2019

06.09.2019 | Original Article

Unexplained exertional intolerance associated with impaired systemic oxygen extraction

verfasst von: Kathryn H. Melamed, Mário Santos, Rudolf K. F. Oliveira, Mariana Faria Urbina, Donna Felsenstein, Alexander R. Opotowsky, Aaron B. Waxman, David M. Systrom

Erschienen in: European Journal of Applied Physiology | Ausgabe 10/2019

Einloggen, um Zugang zu erhalten

Abstract

Purpose

The clinical investigation of exertional intolerance generally focuses on cardiopulmonary diseases, while peripheral factors are often overlooked. We hypothesize that a subset of patients exists whose predominant exercise limitation is due to abnormal systemic oxygen extraction (SOE).

Methods

We reviewed invasive cardiopulmonary exercise test (iCPET) results of 313 consecutive patients presenting with unexplained exertional intolerance. An exercise limit due to poor SOE was defined as peak exercise (Ca-vO2)/[Hb] ≤ 0.8 and VO2max < 80% predicted in the absence of a cardiac or pulmonary mechanical limit. Those with peak (Ca-vO2)/[Hb] > 0.8, VO2max ≥ 80%, and no cardiac or pulmonary limit were considered otherwise normal. The otherwise normal group was divided into hyperventilators (HV) and normals (NL). Hyperventilation was defined as peak PaCO2 < [1.5 × HCO3 + 6].

Results

Prevalence of impaired SOE as the sole cause of exertional intolerance was 12.5% (32/257). At peak exercise, poor SOE and HV had less acidemic arterial blood compared to NL (pHa = 7.39 ± 0.05 vs. 7.38 ± 0.05 vs. 7.32 ± 0.02, p < 0.001), which was explained by relative hypocapnia (PaCO2 = 29.9 ± 5.4 mmHg vs. 31.6 ± 5.4 vs. 37.5 ± 3.4, p < 0.001). For a subset of poor SOE, this relative alkalemia, also seen in mixed venous blood, was associated with a normal PvO2 nadir (28 ± 2 mmHg vs. 26 ± 4, p = 0.627) but increased SvO2 at peak exercise (44.1 ± 5.2% vs. 31.4 ± 7.0, p < 0.001).

Conclusions

We identified a cohort of patients whose exercise limitation is due only to systemic oxygen extraction, due to either an intrinsic abnormality of skeletal muscle mitochondrion, limb muscle microcirculatory dysregulation, or hyperventilation and left shift the oxyhemoglobin dissociation curve.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
Zurück zum Zitat Aaker A, Laughlin MH (2002) Diaphragm arterioles are less responsive to alpha1-adrenergic constriction than gastrocnemius arterioles. J Appl Physiol 92(5):1808–1816PubMedCrossRef Aaker A, Laughlin MH (2002) Diaphragm arterioles are less responsive to alpha1-adrenergic constriction than gastrocnemius arterioles. J Appl Physiol 92(5):1808–1816PubMedCrossRef
Zurück zum Zitat Aaron EA, Johnson BD, Seow CK, Dempsey JA (1992) Oxygen cost of exercise hyperpnea: measurement. J Appl Physiol 72(5):1810–1817PubMedCrossRef Aaron EA, Johnson BD, Seow CK, Dempsey JA (1992) Oxygen cost of exercise hyperpnea: measurement. J Appl Physiol 72(5):1810–1817PubMedCrossRef
Zurück zum Zitat Abudiab MM, Redfield MM, Melenovsky V, Olson TP, Kass DA, Johnson BD, Borlaug BA (2013) Cardiac output response to exercise in relation to metabolic demand in heart failure with preserved ejection fraction. Eur J Heart Fail 15(7):776–785PubMedPubMedCentralCrossRef Abudiab MM, Redfield MM, Melenovsky V, Olson TP, Kass DA, Johnson BD, Borlaug BA (2013) Cardiac output response to exercise in relation to metabolic demand in heart failure with preserved ejection fraction. Eur J Heart Fail 15(7):776–785PubMedPubMedCentralCrossRef
Zurück zum Zitat Albert MS, Dell RB, Winters RW (1967) Quantitative displacement of acid–base equilibrium in metabolic acidosis. Ann Intern Med 66(2):312–322PubMedCrossRef Albert MS, Dell RB, Winters RW (1967) Quantitative displacement of acid–base equilibrium in metabolic acidosis. Ann Intern Med 66(2):312–322PubMedCrossRef
Zurück zum Zitat Amann M, Blain GM, Proctor LT, Sebranek JJ, Pegelow DF, Dempsey JA (2010) Group III and IV muscle afferents contribute to ventilatory and cardiovascular response to rhythmic exercise in humans. J Appl Physiol 109(4):966–976PubMedPubMedCentralCrossRef Amann M, Blain GM, Proctor LT, Sebranek JJ, Pegelow DF, Dempsey JA (2010) Group III and IV muscle afferents contribute to ventilatory and cardiovascular response to rhythmic exercise in humans. J Appl Physiol 109(4):966–976PubMedPubMedCentralCrossRef
Zurück zum Zitat Arena R, Meyers J, Aslam SS, Varughese EB, Peberdy MA (2003) Technical considerations related to the minute ventilation/carbon dioxide output slope in patients with heart failure. Chest 124(2):720–727PubMedCrossRef Arena R, Meyers J, Aslam SS, Varughese EB, Peberdy MA (2003) Technical considerations related to the minute ventilation/carbon dioxide output slope in patients with heart failure. Chest 124(2):720–727PubMedCrossRef
Zurück zum Zitat Argov Z, Bank WJ, Maris J, Peterson P, Chance B (1987) Bioenergetic heterogeneity of human mitochondrial myopathies: phosphorus magnetic resonance spectroscopy study. Neurology 37(2):257–262PubMedCrossRef Argov Z, Bank WJ, Maris J, Peterson P, Chance B (1987) Bioenergetic heterogeneity of human mitochondrial myopathies: phosphorus magnetic resonance spectroscopy study. Neurology 37(2):257–262PubMedCrossRef
Zurück zum Zitat Arnold DL, Taylor DJ, Radda GK (1985) Investigation of human mitochondrial myopathies by phosphorus magnetic resonance spectroscopy. Ann Neurol 18(2):189–196PubMedCrossRef Arnold DL, Taylor DJ, Radda GK (1985) Investigation of human mitochondrial myopathies by phosphorus magnetic resonance spectroscopy. Ann Neurol 18(2):189–196PubMedCrossRef
Zurück zum Zitat Bested AC, Marshall LM (2015) Review of myalgic encephalomyelitis/chronic fatigue syndrome: an evidenced-based approach to diagnosis and management by clinicians. Rev Environ Health 30(4):223–249PubMedCrossRef Bested AC, Marshall LM (2015) Review of myalgic encephalomyelitis/chronic fatigue syndrome: an evidenced-based approach to diagnosis and management by clinicians. Rev Environ Health 30(4):223–249PubMedCrossRef
Zurück zum Zitat Bhella PS, Prasad A, Heinicke K, Hastings JL, Arbab-Zadeh A, Adams-Huet B, Pacini EL, Shibata S, Palmer MD, Newcomer BR, Levine BD (2011) Abnormal haemodynamic response to exercise in heart failure with preserved ejection fraction. Eur J Heart Fail 13(12):1296–1304PubMedPubMedCentralCrossRef Bhella PS, Prasad A, Heinicke K, Hastings JL, Arbab-Zadeh A, Adams-Huet B, Pacini EL, Shibata S, Palmer MD, Newcomer BR, Levine BD (2011) Abnormal haemodynamic response to exercise in heart failure with preserved ejection fraction. Eur J Heart Fail 13(12):1296–1304PubMedPubMedCentralCrossRef
Zurück zum Zitat Boerrigter BG, Waxman AB, Westerhof N, Vonk-Noordegraaf A, Systrom DM (2014) Measuring central pulmonary pressures during exercise in COPD: how to cope with respiratory effects. Eur Respir J 43(5):1316–1325PubMedCrossRef Boerrigter BG, Waxman AB, Westerhof N, Vonk-Noordegraaf A, Systrom DM (2014) Measuring central pulmonary pressures during exercise in COPD: how to cope with respiratory effects. Eur Respir J 43(5):1316–1325PubMedCrossRef
Zurück zum Zitat Borlaug BA, Nishimura RA, Sorajja P, Lam CSP, Redfield MM (2010) Exercise hemodynamics enhance diagnosis of early heart failure with preserved ejection fraction. Circ Heart Fail 3(5):588–595PubMedPubMedCentralCrossRef Borlaug BA, Nishimura RA, Sorajja P, Lam CSP, Redfield MM (2010) Exercise hemodynamics enhance diagnosis of early heart failure with preserved ejection fraction. Circ Heart Fail 3(5):588–595PubMedPubMedCentralCrossRef
Zurück zum Zitat Bravo DM, Gimenes AC, Nascimento RB, Ferreira EV, Siqueira AC, Meda ED, Neder JA, Nery LE (2012) Skeletal muscle reoxygenation after high-intensity exercise in mitochondrial myopathy. Eur J Appl Physiol 112(5):1763–1771PubMedCrossRef Bravo DM, Gimenes AC, Nascimento RB, Ferreira EV, Siqueira AC, Meda ED, Neder JA, Nery LE (2012) Skeletal muscle reoxygenation after high-intensity exercise in mitochondrial myopathy. Eur J Appl Physiol 112(5):1763–1771PubMedCrossRef
Zurück zum Zitat Brudin T (1975) Temperature of mixed venous blood during exercise. Scand J Clin Lab Invest 35(6):539–543CrossRef Brudin T (1975) Temperature of mixed venous blood during exercise. Scand J Clin Lab Invest 35(6):539–543CrossRef
Zurück zum Zitat Calbet JA, Boushel R (2015) Assessment of cardiac output with transpulmonary thermodilution during exercise in humans. J Appl Physiol 118(1):1–10PubMedCrossRef Calbet JA, Boushel R (2015) Assessment of cardiac output with transpulmonary thermodilution during exercise in humans. J Appl Physiol 118(1):1–10PubMedCrossRef
Zurück zum Zitat Carrick-Ranson G, Hastings JL, Bhella PS, Fujimoto N, Shibata S, Palmer MD, Boyd K, Livingston S, Dijk E, Levine BD (2014) The effect of lifelong exercise dose on cardiovascular function during exercise. J Appl Physiol 116(7):736–745PubMedPubMedCentralCrossRef Carrick-Ranson G, Hastings JL, Bhella PS, Fujimoto N, Shibata S, Palmer MD, Boyd K, Livingston S, Dijk E, Levine BD (2014) The effect of lifelong exercise dose on cardiovascular function during exercise. J Appl Physiol 116(7):736–745PubMedPubMedCentralCrossRef
Zurück zum Zitat Chin LM, Heigenhauser GJ, Paterson DH, Kowalchuk JM (2010) Pulmonary O2 uptake and leg blood flow kinetics during moderate exercise are slowed by hyperventilation-induced hypocapnic alkalosis. J Appl Physiol 108(6):1641–1650PubMedPubMedCentralCrossRef Chin LM, Heigenhauser GJ, Paterson DH, Kowalchuk JM (2010) Pulmonary O2 uptake and leg blood flow kinetics during moderate exercise are slowed by hyperventilation-induced hypocapnic alkalosis. J Appl Physiol 108(6):1641–1650PubMedPubMedCentralCrossRef
Zurück zum Zitat Chin LM, Heigenhauser GJ, Paterson DH, Kowalchuk JM (2013) Effect of voluntary hyperventilation with supplemental CO2 on pulmonary O2 uptake and leg blood flow kinetics during moderate-intensity exercise. Exp Physiol 98(12):1668–1682PubMedCrossRef Chin LM, Heigenhauser GJ, Paterson DH, Kowalchuk JM (2013) Effect of voluntary hyperventilation with supplemental CO2 on pulmonary O2 uptake and leg blood flow kinetics during moderate-intensity exercise. Exp Physiol 98(12):1668–1682PubMedCrossRef
Zurück zum Zitat Chinnery PF, Johnson MA, Wardell TM, Singh-Kler R, Hayes C, Brown DT, Taylor RW, Bindoff LA, Turnbull DM (2000) The epidemiology of pathogenic mitochondrial DNA mutations. Ann Neurol 48(2):188–193PubMedCrossRef Chinnery PF, Johnson MA, Wardell TM, Singh-Kler R, Hayes C, Brown DT, Taylor RW, Bindoff LA, Turnbull DM (2000) The epidemiology of pathogenic mitochondrial DNA mutations. Ann Neurol 48(2):188–193PubMedCrossRef
Zurück zum Zitat Dhakal BP, Malhotra R, Murphy RM, Pappagianopoulos PP, Baggish AL, Weiner RB, Houstis NE, Eisman AS, Hough SS, Lewis GD (2015) Mechanisms of exercise intolerance in heart failure with preserved ejection fraction: the role of abnormal peripheral oxygen extraction. Circ Heart Fail 8(2):286–294PubMedCrossRef Dhakal BP, Malhotra R, Murphy RM, Pappagianopoulos PP, Baggish AL, Weiner RB, Houstis NE, Eisman AS, Hough SS, Lewis GD (2015) Mechanisms of exercise intolerance in heart failure with preserved ejection fraction: the role of abnormal peripheral oxygen extraction. Circ Heart Fail 8(2):286–294PubMedCrossRef
Zurück zum Zitat Eldridge FL (1994) Central integration of mechanisms in exercise hyperpnea. Med Sci Sports Exerc 26(3):319–327PubMedCrossRef Eldridge FL (1994) Central integration of mechanisms in exercise hyperpnea. Med Sci Sports Exerc 26(3):319–327PubMedCrossRef
Zurück zum Zitat Elliot DL, Buist NR, Goldberg L, Kennaway NG, Powell BR, Kuehl KS (1989) Metabolic myopathies: evaluation by graded exercise testing. Medicine (Baltimore) 68(3):163–172CrossRef Elliot DL, Buist NR, Goldberg L, Kennaway NG, Powell BR, Kuehl KS (1989) Metabolic myopathies: evaluation by graded exercise testing. Medicine (Baltimore) 68(3):163–172CrossRef
Zurück zum Zitat Evans AB, Tsai LW, Oelberg DA, Kazemi H, Systrom DM (1998) Skeletal muscle ECF pH error signal for exercise ventilatory control. J Appl Physiol 84(1):90–96PubMedCrossRef Evans AB, Tsai LW, Oelberg DA, Kazemi H, Systrom DM (1998) Skeletal muscle ECF pH error signal for exercise ventilatory control. J Appl Physiol 84(1):90–96PubMedCrossRef
Zurück zum Zitat Flaherty KR, Wald J, Weisman IM, Zeballos RJ, Schork MA, Blaivas M, Rubenfire M, Martinez FJ (2001) Unexplained exertional limitation: characterization of patients with a mitochondrial myopathy. Am J Respir Crit Care Med 164(3):425–432PubMedCrossRef Flaherty KR, Wald J, Weisman IM, Zeballos RJ, Schork MA, Blaivas M, Rubenfire M, Martinez FJ (2001) Unexplained exertional limitation: characterization of patients with a mitochondrial myopathy. Am J Respir Crit Care Med 164(3):425–432PubMedCrossRef
Zurück zum Zitat Gimenes AC, Neder JA, Dal Corso S, Nogueira CR, Nápolis L, Mello MT, Bulle AS, Nery LE (2011) Relationship between work rate and oxygen uptake in mitochondrial myopathy during ramp-incremental exercise. Braz J Med Biol Res 44(4):354–360PubMedCrossRef Gimenes AC, Neder JA, Dal Corso S, Nogueira CR, Nápolis L, Mello MT, Bulle AS, Nery LE (2011) Relationship between work rate and oxygen uptake in mitochondrial myopathy during ramp-incremental exercise. Braz J Med Biol Res 44(4):354–360PubMedCrossRef
Zurück zum Zitat Greaney JL, Schwartz CE, Edwards DG, Fadel PJ, Farquhar WB (2013) The neural interaction between the arterial baroreflex and muscle metaboreflex is preserved in older men. Exp Physiol 98(10):1422–1431PubMedCrossRef Greaney JL, Schwartz CE, Edwards DG, Fadel PJ, Farquhar WB (2013) The neural interaction between the arterial baroreflex and muscle metaboreflex is preserved in older men. Exp Physiol 98(10):1422–1431PubMedCrossRef
Zurück zum Zitat Groves BM, Reeves JT, Sutton JR, Wagner PD, Cymerman A, Malconian MK, Rock PB, Young PM, Houston CS (1987) Operation everest II: elevated high-altitude pulmonary resistance unresponsive to oxygen. J Appl Physiol 63(2):521–530PubMedCrossRef Groves BM, Reeves JT, Sutton JR, Wagner PD, Cymerman A, Malconian MK, Rock PB, Young PM, Houston CS (1987) Operation everest II: elevated high-altitude pulmonary resistance unresponsive to oxygen. J Appl Physiol 63(2):521–530PubMedCrossRef
Zurück zum Zitat Guazzi M, Reina G, Tumminello G, Guazzi MD (2005) Exercise ventilation inefficiency and the cardiovascular mortality in heart failure: the critical independent prognostic value of the arterial CO2 partial pressure. Eur Heart J 26(5):472–480PubMedCrossRef Guazzi M, Reina G, Tumminello G, Guazzi MD (2005) Exercise ventilation inefficiency and the cardiovascular mortality in heart failure: the critical independent prognostic value of the arterial CO2 partial pressure. Eur Heart J 26(5):472–480PubMedCrossRef
Zurück zum Zitat Hansen JE (1989) Arterial bood gas. Clin in Chest Med 10(2):227–237 Hansen JE (1989) Arterial bood gas. Clin in Chest Med 10(2):227–237
Zurück zum Zitat Hansen JE, Sue DY, Wasserman K (1984) Predicted values for clinical exercise testing. Am Rev Respir Dis 129(2):S49–S55PubMedCrossRef Hansen JE, Sue DY, Wasserman K (1984) Predicted values for clinical exercise testing. Am Rev Respir Dis 129(2):S49–S55PubMedCrossRef
Zurück zum Zitat Hayashi N, Ishihara M, Tanaka A, Yoshida T (1999) Impeding O(2) unloading in muscle delays oxygen uptake repsonse to exercise onset in humans. Am J Physiol 277(5):R1274–1281PubMed Hayashi N, Ishihara M, Tanaka A, Yoshida T (1999) Impeding O(2) unloading in muscle delays oxygen uptake repsonse to exercise onset in humans. Am J Physiol 277(5):R1274–1281PubMed
Zurück zum Zitat Haykowsky MJ, Brubaker PH, John JM, Stewart KP, Morgan TM, Kitzman DW (2011) Determinants of exercise intolerance in elderly heart failure patients with preserved ejection fraction. J Am Coll Cardiol 58(3):265–274PubMedPubMedCentralCrossRef Haykowsky MJ, Brubaker PH, John JM, Stewart KP, Morgan TM, Kitzman DW (2011) Determinants of exercise intolerance in elderly heart failure patients with preserved ejection fraction. J Am Coll Cardiol 58(3):265–274PubMedPubMedCentralCrossRef
Zurück zum Zitat Heinicke K, Taivassalo T, Wyrick P, Wood H, Babb TG, Haller RG (2011) Exertional dyspnea in mitochondrial myopathy: clinical features and physiological mechanisms. Am J Physiol Regul Integr Comp Physiol 301(4):R873–R884PubMedPubMedCentralCrossRef Heinicke K, Taivassalo T, Wyrick P, Wood H, Babb TG, Haller RG (2011) Exertional dyspnea in mitochondrial myopathy: clinical features and physiological mechanisms. Am J Physiol Regul Integr Comp Physiol 301(4):R873–R884PubMedPubMedCentralCrossRef
Zurück zum Zitat Jensen TD, Kazemi-Esfarjani P, Skomorowska E, Vissing J (2002) A forearm exercise screening test for mitochondrial myopathy. Neurology 58(10):1533–1538PubMedCrossRef Jensen TD, Kazemi-Esfarjani P, Skomorowska E, Vissing J (2002) A forearm exercise screening test for mitochondrial myopathy. Neurology 58(10):1533–1538PubMedCrossRef
Zurück zum Zitat Kaufman MP (2010) Control of breathing during dynamic exercise by thin fiber muscle afferents. J Appl Physiol 109(4):947–948PubMedCrossRef Kaufman MP (2010) Control of breathing during dynamic exercise by thin fiber muscle afferents. J Appl Physiol 109(4):947–948PubMedCrossRef
Zurück zum Zitat Kowalchuk JM, Heigenhauser GJ, Lindinger MI, Sutton JR, Jones NL (1988) Factors influences hydrogen ion concentration in muscle after intense exercise. J Appl Physiol 65(5):2080–2089PubMedCrossRef Kowalchuk JM, Heigenhauser GJ, Lindinger MI, Sutton JR, Jones NL (1988) Factors influences hydrogen ion concentration in muscle after intense exercise. J Appl Physiol 65(5):2080–2089PubMedCrossRef
Zurück zum Zitat Lindholm H, Löfberg M, Somer H, Näveri H, Sovijärvi A (2004) Abnormal blood lactate accumulation after exercise in patients with multiple mitochondrial DNA deletions and minor muscular symptoms. Clin Physiol Funct Imaging 24(2):109–115PubMedCrossRef Lindholm H, Löfberg M, Somer H, Näveri H, Sovijärvi A (2004) Abnormal blood lactate accumulation after exercise in patients with multiple mitochondrial DNA deletions and minor muscular symptoms. Clin Physiol Funct Imaging 24(2):109–115PubMedCrossRef
Zurück zum Zitat Mar PL, Raj SR (2014) Neuronal and hormonal perturbations in postural tachycardia syndrome. Front Physiol 5(220):1–8 Mar PL, Raj SR (2014) Neuronal and hormonal perturbations in postural tachycardia syndrome. Front Physiol 5(220):1–8
Zurück zum Zitat Maron BA, Cockrill BA, Waxman AB, Systrom DM (2013) Invasive cardiopulmonary exercise test. Circulation 127(10):1157–1164PubMedCrossRef Maron BA, Cockrill BA, Waxman AB, Systrom DM (2013) Invasive cardiopulmonary exercise test. Circulation 127(10):1157–1164PubMedCrossRef
Zurück zum Zitat Meulemans A, Gerlo E, Seneca S, Lissens W, Smet J, Van Coster R, De Meirleir L (2007) The aerobic forearm exercise test, a non-invasive tool to screen for mitochondrial disorders. Acta Neurol Belg 107(3):78–83PubMed Meulemans A, Gerlo E, Seneca S, Lissens W, Smet J, Van Coster R, De Meirleir L (2007) The aerobic forearm exercise test, a non-invasive tool to screen for mitochondrial disorders. Acta Neurol Belg 107(3):78–83PubMed
Zurück zum Zitat Oelberg DA, Evans AB, Hrovat MI, Pappagianopoulos PP, Patz S, Systrom DM (1998) Skeletal muscle chemoreflex and pHi in exercise ventilatory control. J Appl Physiol 84(2):676–682PubMedCrossRef Oelberg DA, Evans AB, Hrovat MI, Pappagianopoulos PP, Patz S, Systrom DM (1998) Skeletal muscle chemoreflex and pHi in exercise ventilatory control. J Appl Physiol 84(2):676–682PubMedCrossRef
Zurück zum Zitat Piepoli MF, Crisafulli A (2014) Pathophysiology of human heart failure: importance of skeletal muscle myopathy and reflexes. Exp Physiol 99(4):609–615PubMedCrossRef Piepoli MF, Crisafulli A (2014) Pathophysiology of human heart failure: importance of skeletal muscle myopathy and reflexes. Exp Physiol 99(4):609–615PubMedCrossRef
Zurück zum Zitat Pinkstaff S, Peberdy MA, Kontos MC, Finucane S, Arena R (2010) Quantifying exertion level during exercise stress testing using percentage of age-predicted maximal heart rate, rate pressure product, and perceived exertion. Mayo Clin Proc 85(12):1095–1100PubMedPubMedCentralCrossRef Pinkstaff S, Peberdy MA, Kontos MC, Finucane S, Arena R (2010) Quantifying exertion level during exercise stress testing using percentage of age-predicted maximal heart rate, rate pressure product, and perceived exertion. Mayo Clin Proc 85(12):1095–1100PubMedPubMedCentralCrossRef
Zurück zum Zitat Reeves JT, Moon RE, Grover RF, Groves BM (1988) Increased wedge pressure facilitates decreased lung vascular resistance during upright exercise. Chest 93(3):97S–99SPubMedCrossRef Reeves JT, Moon RE, Grover RF, Groves BM (1988) Increased wedge pressure facilitates decreased lung vascular resistance during upright exercise. Chest 93(3):97S–99SPubMedCrossRef
Zurück zum Zitat Santos M, Opotowsky AR, Shah AM, Tracy J, Waxman AB, Systrom DM (2015) Central cardiac limit to aerobic capacity in patients with exertional pulmonary venous hypertension: implications for heart failure with preserved ejection fraction. Circ Heart Fail 8(2):278–285PubMedCrossRef Santos M, Opotowsky AR, Shah AM, Tracy J, Waxman AB, Systrom DM (2015) Central cardiac limit to aerobic capacity in patients with exertional pulmonary venous hypertension: implications for heart failure with preserved ejection fraction. Circ Heart Fail 8(2):278–285PubMedCrossRef
Zurück zum Zitat Stewart JM (2002) Pooling in chronic orthostatic intolerance: arterial vasoconstrictive but not venous compliance defects. Circulation 105(19):2274–2281PubMedCrossRef Stewart JM (2002) Pooling in chronic orthostatic intolerance: arterial vasoconstrictive but not venous compliance defects. Circulation 105(19):2274–2281PubMedCrossRef
Zurück zum Zitat Stringer W, Wasserman K, Casaburi R, Pórszász J, Maehara K, French W (1994) Lactic acidosis as a facilitator of oxyhemoglobin dissociation during exercise. J Appl Physiol 76(4):1462–1467PubMedCrossRef Stringer W, Wasserman K, Casaburi R, Pórszász J, Maehara K, French W (1994) Lactic acidosis as a facilitator of oxyhemoglobin dissociation during exercise. J Appl Physiol 76(4):1462–1467PubMedCrossRef
Zurück zum Zitat Taivassalo T, Abbott A, Wyrick P, Haller RG (2002) Venous oxygen levels during aerobic forearm exercise: an index of impaired oxidative metabolism in mitochondrial myopathy. Ann Neurol 51(1):38–44PubMedCrossRef Taivassalo T, Abbott A, Wyrick P, Haller RG (2002) Venous oxygen levels during aerobic forearm exercise: an index of impaired oxidative metabolism in mitochondrial myopathy. Ann Neurol 51(1):38–44PubMedCrossRef
Zurück zum Zitat Taivassalo T, Jensen TD, Kennaway N, DiMauro S, Vissing J, Haller RG (2003) The spectrum of exercise tolerance in mitochondrial myopathies: a study of 40 patients. Brain 126(2):413–423PubMedCrossRef Taivassalo T, Jensen TD, Kennaway N, DiMauro S, Vissing J, Haller RG (2003) The spectrum of exercise tolerance in mitochondrial myopathies: a study of 40 patients. Brain 126(2):413–423PubMedCrossRef
Zurück zum Zitat Tarnopolsky M (2004) Exercise testing as a diagnostic entity in mitochondrial myopathies. Mitochondrion 4(5–6):529–542PubMedCrossRef Tarnopolsky M (2004) Exercise testing as a diagnostic entity in mitochondrial myopathies. Mitochondrion 4(5–6):529–542PubMedCrossRef
Zurück zum Zitat Tarnopolsky MA, Raha S (2005) Mitochondrial myopathies: diagnosis, exercise intolerance, and treatment options. Med Sci Sports Exerc 37(12):2086–2093PubMedCrossRef Tarnopolsky MA, Raha S (2005) Mitochondrial myopathies: diagnosis, exercise intolerance, and treatment options. Med Sci Sports Exerc 37(12):2086–2093PubMedCrossRef
Zurück zum Zitat Taylor DJ, Kemp GJ, Radda GK (1994) Bioenergetics of skeletal muscle in mitochondrial myopathy. J Neurol Sci 127(2):198–206PubMedCrossRef Taylor DJ, Kemp GJ, Radda GK (1994) Bioenergetics of skeletal muscle in mitochondrial myopathy. J Neurol Sci 127(2):198–206PubMedCrossRef
Zurück zum Zitat Tolle J, Waxman A, Systrom D (2008a) Impaired systemic oxygen extraction at maximum exercise in pulmonary hypertension. Med Sci Sports Exerc 40(1):3–8PubMedCrossRef Tolle J, Waxman A, Systrom D (2008a) Impaired systemic oxygen extraction at maximum exercise in pulmonary hypertension. Med Sci Sports Exerc 40(1):3–8PubMedCrossRef
Zurück zum Zitat Tolle JJ, Waxman AB, Van Horn TL, Pappagianopoulos PP, Systrom DM (2008b) Exercise-induced pulmonary arterial hypertension. Circulation 118(21):2183–2189PubMedPubMedCentralCrossRef Tolle JJ, Waxman AB, Van Horn TL, Pappagianopoulos PP, Systrom DM (2008b) Exercise-induced pulmonary arterial hypertension. Circulation 118(21):2183–2189PubMedPubMedCentralCrossRef
Zurück zum Zitat Trenell MI, Sue CM, Kemp GJ, Sachinwalla T, Thompson CH (2006) Aerobic exercise and muscle metabolism in patients with mitochondrial myopathy. Muscle Nerve 33(4):524–531PubMedCrossRef Trenell MI, Sue CM, Kemp GJ, Sachinwalla T, Thompson CH (2006) Aerobic exercise and muscle metabolism in patients with mitochondrial myopathy. Muscle Nerve 33(4):524–531PubMedCrossRef
Zurück zum Zitat Vissing J, MacLean DA, Vissing SF, Sander M, Saltin B, Haller RG (2001) The exercise metaboreflex is maintained in the absence of muscle acidosis: insights from muscle microdialysis in humans with McArdle’s disease. J Physiol 537(2):641–649PubMedPubMedCentralCrossRef Vissing J, MacLean DA, Vissing SF, Sander M, Saltin B, Haller RG (2001) The exercise metaboreflex is maintained in the absence of muscle acidosis: insights from muscle microdialysis in humans with McArdle’s disease. J Physiol 537(2):641–649PubMedPubMedCentralCrossRef
Zurück zum Zitat Wasserman K, Hansen JE, Sue DY, Stringer WW, Sietsma KE, Sun XG, Whipp BJ (2012) Principles of exercise testing and interpretation, 5th edn. Lipincott Williams & Wilkins, Philadelphia Wasserman K, Hansen JE, Sue DY, Stringer WW, Sietsma KE, Sun XG, Whipp BJ (2012) Principles of exercise testing and interpretation, 5th edn. Lipincott Williams & Wilkins, Philadelphia
Zurück zum Zitat Wasserman K, Cox T, Sietsema KE (2014) Ventilatory regulation of arterial H(+) (pH) during exercise. Respir Physiol Neurobiol 190:142–148PubMedCrossRef Wasserman K, Cox T, Sietsema KE (2014) Ventilatory regulation of arterial H(+) (pH) during exercise. Respir Physiol Neurobiol 190:142–148PubMedCrossRef
Metadaten
Titel
Unexplained exertional intolerance associated with impaired systemic oxygen extraction
verfasst von
Kathryn H. Melamed
Mário Santos
Rudolf K. F. Oliveira
Mariana Faria Urbina
Donna Felsenstein
Alexander R. Opotowsky
Aaron B. Waxman
David M. Systrom
Publikationsdatum
06.09.2019
Verlag
Springer Berlin Heidelberg
Erschienen in
European Journal of Applied Physiology / Ausgabe 10/2019
Print ISSN: 1439-6319
Elektronische ISSN: 1439-6327
DOI
https://doi.org/10.1007/s00421-019-04222-6

Weitere Artikel der Ausgabe 10/2019

European Journal of Applied Physiology 10/2019 Zur Ausgabe

Neu im Fachgebiet Arbeitsmedizin

Elterliches Belastungserleben, Unaufmerksamkeits‑/Hyperaktivitätssymptome und elternberichtete ADHS bei Kindern und Jugendlichen: Ergebnisse aus der KiGGS-Studie

Open Access ADHS Leitthema

Die Aufmerksamkeitsdefizit‑/Hyperaktivitätsstörung (ADHS) ist eine der häufigsten psychischen Störungen im Kindes- und Jugendalter [ 1 ]. In Deutschland beträgt die Prävalenz einer elternberichteten ADHS-Diagnose bei Kindern und Jugendlichen 4,4 % …

Substanzkonsum und Nutzung von sozialen Medien, Computerspielen und Glücksspielen unter Auszubildenden an beruflichen Schulen

Open Access Leitthema

Die Begrenzung von Schäden durch Substanzkonsum und andere abhängige Verhaltensweisen von Jugendlichen und jungen Erwachsenen ist ein wichtiges Anliegen der öffentlichen Gesundheit. Der Übergang von der Adoleszenz zum jungen Erwachsenenalter ist …

Berufsbelastung und Stressbewältigung von weiblichen und männlichen Auszubildenden

Leitthema

In der Öffentlichkeit wird die berufliche Ausbildung oftmals unter ökonomischen Gesichtspunkten diskutiert: Mit den geburtenstarken Jahrgängen gehen erfahrene Fachkräfte in Rente und von nachfolgenden Generationen rücken zu wenige Arbeitskräfte …

Rauschtrinken in der frühen Adoleszenz

COVID-19 Leitthema

Alkohol ist in Deutschland die mit Abstand am häufigsten konsumierte psychoaktive Substanz. Mehr als 2 Drittel aller Erwachsenen im Alter von 18 bis 64 Jahren (70,5 %) hat 2021 in den letzten 30 Tagen Alkohol konsumiert [ 1 ]. Von diesen …