Skip to main content
Erschienen in: Langenbeck's Archives of Surgery 4/2012

01.04.2012 | Review Article

Energy metabolism and proliferation in pancreatic carcinogenesis

verfasst von: Ivonne Regel, Bo Kong, Susanne Raulefs, Mert Erkan, Christoph W. Michalski, Mark Hartel, Jörg Kleeff

Erschienen in: Langenbeck's Archives of Surgery | Ausgabe 4/2012

Einloggen, um Zugang zu erhalten

Abstract

Introduction

Pancreatic ductal adenocarcinoma (PDAC) is an aggressive cancer entity with a high proliferative potential. Uncontrolled cell proliferation is mediated by a number of core signaling pathways. Recently, novel data of PDAC biology suggest that these core signal pathways affect cell proliferation and metabolism simultaneously.

Methods

Here, we reviewed the literature on core metabolic signaling pathways in pancreatic carcinogenesis.

Results

Results obtained from mouse genetics and in vitro experiments have demonstrated the significance of the Kras, p53, c-Myc, and Lkb1 networks in the proliferation of pancreatic epithelial and cancer cells. At the same time, these major pathways also affect energy metabolism by influencing glucose and glutamine utilization. In particular, Kras-mediated metabolic changes seem to be directly involved in carcinogenesis. However, there is a lack of solid evidence on how metabolism and proliferation are connected in pancreatic carcinogenesis.

Conclusion

Understanding early and subtle changes in cellular metabolism of pancreatic epithelial—and specifically of acinar—cells, which accompany or directly influence malignant transformation and uncontrolled proliferation, will be paramount to define novel imaging and other modalities for earlier detection of PDAC.
Literatur
1.
Zurück zum Zitat DeBerardinis RJ et al (2008) The biology of cancer: metabolic reprogramming fuels cell growth and proliferation. Cell Metab 7(1):11–20PubMedCrossRef DeBerardinis RJ et al (2008) The biology of cancer: metabolic reprogramming fuels cell growth and proliferation. Cell Metab 7(1):11–20PubMedCrossRef
2.
Zurück zum Zitat Siegel R, Naishadham D, Jemal A (2012) Cancer statistics, 2012. CA: A Cancer Journal for Clinicians 62(1):10–29CrossRef Siegel R, Naishadham D, Jemal A (2012) Cancer statistics, 2012. CA: A Cancer Journal for Clinicians 62(1):10–29CrossRef
3.
Zurück zum Zitat Aichler M et al (2011) Origin of pancreatic ductal adenocarcinoma from atypical flat lesions: a comparative study in transgenic mice and human tissues. J Pathol doi: 10.1002/path.3017 Aichler M et al (2011) Origin of pancreatic ductal adenocarcinoma from atypical flat lesions: a comparative study in transgenic mice and human tissues. J Pathol doi: 10.​1002/​path.​3017
5.
Zurück zum Zitat Warburg O, Posener K, Negelein E (1924) Über den Stoffwechsel der Tumoren. Biochem Z 152:319–344 Warburg O, Posener K, Negelein E (1924) Über den Stoffwechsel der Tumoren. Biochem Z 152:319–344
6.
Zurück zum Zitat Hunt TK et al (2007) Aerobically derived lactate stimulates revascularization and tissue repair via redox mechanisms. Antioxid Redox Signal 9(8):1115–1124PubMedCrossRef Hunt TK et al (2007) Aerobically derived lactate stimulates revascularization and tissue repair via redox mechanisms. Antioxid Redox Signal 9(8):1115–1124PubMedCrossRef
7.
Zurück zum Zitat Fantin VR, St-Pierre J, Leder P (2006) Attenuation of LDH-A expression uncovers a link between glycolysis, mitochondrial physiology, and tumor maintenance. Cancer Cell 9(6):425–434PubMedCrossRef Fantin VR, St-Pierre J, Leder P (2006) Attenuation of LDH-A expression uncovers a link between glycolysis, mitochondrial physiology, and tumor maintenance. Cancer Cell 9(6):425–434PubMedCrossRef
8.
Zurück zum Zitat Le A et al (2010) Inhibition of lactate dehydrogenase A induces oxidative stress and inhibits tumor progression. Proc Natl Acad Sci USA 107(5):2037–2042PubMedCrossRef Le A et al (2010) Inhibition of lactate dehydrogenase A induces oxidative stress and inhibits tumor progression. Proc Natl Acad Sci USA 107(5):2037–2042PubMedCrossRef
9.
Zurück zum Zitat Schneiderhan W et al (2009) CD147 silencing inhibits lactate transport and reduces malignant potential of pancreatic cancer cells in in vivo and in vitro models. Gut 58(10):1391–1398PubMedCrossRef Schneiderhan W et al (2009) CD147 silencing inhibits lactate transport and reduces malignant potential of pancreatic cancer cells in in vivo and in vitro models. Gut 58(10):1391–1398PubMedCrossRef
10.
Zurück zum Zitat Levine AJ, Puzio-Kuter AM (2010) The control of the metabolic switch in cancers by oncogenes and tumor suppressor genes. Science 330(6009):1340–1344PubMedCrossRef Levine AJ, Puzio-Kuter AM (2010) The control of the metabolic switch in cancers by oncogenes and tumor suppressor genes. Science 330(6009):1340–1344PubMedCrossRef
11.
Zurück zum Zitat Zhou W et al (2012) Proteomic analysis reveals warburg effect and anomalous metabolism of glutamine in pancreatic cancer cells. J Proteome Res 11(2):554–563PubMedCrossRef Zhou W et al (2012) Proteomic analysis reveals warburg effect and anomalous metabolism of glutamine in pancreatic cancer cells. J Proteome Res 11(2):554–563PubMedCrossRef
12.
Zurück zum Zitat Kwon SJ, Lee YJ (2005) Effect of low glutamine/glucose on hypoxia-induced elevation of hypoxia-inducible factor-1alpha in human pancreatic cancer MiaPaCa-2 and human prostatic cancer DU-145 cells. Clin Cancer Res: Off J Am Assoc Cancer Res 11(13):4694–4700CrossRef Kwon SJ, Lee YJ (2005) Effect of low glutamine/glucose on hypoxia-induced elevation of hypoxia-inducible factor-1alpha in human pancreatic cancer MiaPaCa-2 and human prostatic cancer DU-145 cells. Clin Cancer Res: Off J Am Assoc Cancer Res 11(13):4694–4700CrossRef
13.
Zurück zum Zitat DeBerardinis RJ et al (2007) Beyond aerobic glycolysis: transformed cells can engage in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis. Proc Natl Acad Sci USA 104(49):19345–19350PubMedCrossRef DeBerardinis RJ et al (2007) Beyond aerobic glycolysis: transformed cells can engage in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis. Proc Natl Acad Sci USA 104(49):19345–19350PubMedCrossRef
14.
Zurück zum Zitat Koppenol WH, Bounds PL, Dang CV (2011) Otto Warburg's contributions to current concepts of cancer metabolism. Nat Rev Cancer 11(5):325–337PubMedCrossRef Koppenol WH, Bounds PL, Dang CV (2011) Otto Warburg's contributions to current concepts of cancer metabolism. Nat Rev Cancer 11(5):325–337PubMedCrossRef
15.
Zurück zum Zitat Frezza C, Pollard PJ, Gottlieb E (2011) Inborn and acquired metabolic defects in cancer. J Mol Med 89(3):213–220PubMedCrossRef Frezza C, Pollard PJ, Gottlieb E (2011) Inborn and acquired metabolic defects in cancer. J Mol Med 89(3):213–220PubMedCrossRef
16.
Zurück zum Zitat Moskaluk CA, Hruban RH, Kern SE (1997) p16 and K-ras gene mutations in the intraductal precursors of human pancreatic adenocarcinoma. Cancer Res 57(11):2140–2143PubMed Moskaluk CA, Hruban RH, Kern SE (1997) p16 and K-ras gene mutations in the intraductal precursors of human pancreatic adenocarcinoma. Cancer Res 57(11):2140–2143PubMed
17.
Zurück zum Zitat Iacobuzio-Donahue CA et al (2009) DPC4 gene status of the primary carcinoma correlates with patterns of failure in patients with pancreatic cancer. J Clin Oncol: Off J Am Soc Clin Oncol 27(11):1806–1813CrossRef Iacobuzio-Donahue CA et al (2009) DPC4 gene status of the primary carcinoma correlates with patterns of failure in patients with pancreatic cancer. J Clin Oncol: Off J Am Soc Clin Oncol 27(11):1806–1813CrossRef
18.
Zurück zum Zitat Hezel AF et al (2006) Genetics and biology of pancreatic ductal adenocarcinoma. Genes Dev 20(10):1218–1249PubMedCrossRef Hezel AF et al (2006) Genetics and biology of pancreatic ductal adenocarcinoma. Genes Dev 20(10):1218–1249PubMedCrossRef
19.
Zurück zum Zitat Gaglio D et al (2011) Oncogenic K-Ras decouples glucose and glutamine metabolism to support cancer cell growth. Mol Syst Biol 7:523PubMedCrossRef Gaglio D et al (2011) Oncogenic K-Ras decouples glucose and glutamine metabolism to support cancer cell growth. Mol Syst Biol 7:523PubMedCrossRef
20.
Zurück zum Zitat Yun J et al (2009) Glucose deprivation contributes to the development of KRAS pathway mutations in tumor cells. Science 325(5947):1555–1559PubMedCrossRef Yun J et al (2009) Glucose deprivation contributes to the development of KRAS pathway mutations in tumor cells. Science 325(5947):1555–1559PubMedCrossRef
21.
Zurück zum Zitat Vizan P et al (2005) K-ras codon-specific mutations produce distinctive metabolic phenotypes in NIH3T3 mice [corrected] fibroblasts. Cancer Res 65(13):5512–5515PubMedCrossRef Vizan P et al (2005) K-ras codon-specific mutations produce distinctive metabolic phenotypes in NIH3T3 mice [corrected] fibroblasts. Cancer Res 65(13):5512–5515PubMedCrossRef
22.
Zurück zum Zitat Chiaradonna F et al (2006) Ras-dependent carbon metabolism and transformation in mouse fibroblasts. Oncogene 25(39):5391–5404PubMedCrossRef Chiaradonna F et al (2006) Ras-dependent carbon metabolism and transformation in mouse fibroblasts. Oncogene 25(39):5391–5404PubMedCrossRef
23.
Zurück zum Zitat Skoudy A, Hernandez-Munoz I, Navarro P (2011) Pancreatic ductal adenocarcinoma and transcription factors: role of c-Myc. J Gastrointest Cancer 42(2):76–84PubMedCrossRef Skoudy A, Hernandez-Munoz I, Navarro P (2011) Pancreatic ductal adenocarcinoma and transcription factors: role of c-Myc. J Gastrointest Cancer 42(2):76–84PubMedCrossRef
24.
25.
Zurück zum Zitat Schleger C et al (2002) c-MYC activation in primary and metastatic ductal adenocarcinoma of the pancreas: incidence, mechanisms, and clinical significance. Mod Pathol 15(4):462–469PubMedCrossRef Schleger C et al (2002) c-MYC activation in primary and metastatic ductal adenocarcinoma of the pancreas: incidence, mechanisms, and clinical significance. Mod Pathol 15(4):462–469PubMedCrossRef
26.
Zurück zum Zitat Sears R et al (2000) Multiple Ras-dependent phosphorylation pathways regulate Myc protein stability. Genes Dev 14(19):2501–2514PubMedCrossRef Sears R et al (2000) Multiple Ras-dependent phosphorylation pathways regulate Myc protein stability. Genes Dev 14(19):2501–2514PubMedCrossRef
27.
Zurück zum Zitat Wise DR et al (2008) Myc regulates a transcriptional program that stimulates mitochondrial glutaminolysis and leads to glutamine addiction. Proc Natl Acad Sci USA 105(48):18782–18787PubMedCrossRef Wise DR et al (2008) Myc regulates a transcriptional program that stimulates mitochondrial glutaminolysis and leads to glutamine addiction. Proc Natl Acad Sci USA 105(48):18782–18787PubMedCrossRef
28.
Zurück zum Zitat Dang CV, Le A, Gao P (2009) MYC-induced cancer cell energy metabolism and therapeutic opportunities. Clin Cancer Res: Off J Am Assoc Cancer Res 15(21):6479–6483CrossRef Dang CV, Le A, Gao P (2009) MYC-induced cancer cell energy metabolism and therapeutic opportunities. Clin Cancer Res: Off J Am Assoc Cancer Res 15(21):6479–6483CrossRef
29.
Zurück zum Zitat Scarpa A et al (1993) Pancreatic adenocarcinomas frequently show p53 gene mutations. Am J Pathol 142(5):1534–1543PubMed Scarpa A et al (1993) Pancreatic adenocarcinomas frequently show p53 gene mutations. Am J Pathol 142(5):1534–1543PubMed
30.
Zurück zum Zitat Pellegata NS et al (1994) K-ras and p53 gene mutations in pancreatic cancer: ductal and nonductal tumors progress through different genetic lesions. Cancer Res 54(6):1556–1560PubMed Pellegata NS et al (1994) K-ras and p53 gene mutations in pancreatic cancer: ductal and nonductal tumors progress through different genetic lesions. Cancer Res 54(6):1556–1560PubMed
31.
Zurück zum Zitat Oren M (2003) Decision making by p53: life, death and cancer. Cell Death Differ 10(4):431–442PubMedCrossRef Oren M (2003) Decision making by p53: life, death and cancer. Cell Death Differ 10(4):431–442PubMedCrossRef
32.
Zurück zum Zitat Shen L et al (2012) The fundamental role of the p53 pathway in tumor metabolism and its implication in tumor therapy. Clinical Cancer Res (in press) Shen L et al (2012) The fundamental role of the p53 pathway in tumor metabolism and its implication in tumor therapy. Clinical Cancer Res (in press)
33.
Zurück zum Zitat Schwartzenberg-Bar-Yoseph F, Armoni M, Karnieli E (2004) The tumor suppressor p53 down-regulates glucose transporters GLUT1 and GLUT4 gene expression. Cancer Res 64(7):2627–2633PubMedCrossRef Schwartzenberg-Bar-Yoseph F, Armoni M, Karnieli E (2004) The tumor suppressor p53 down-regulates glucose transporters GLUT1 and GLUT4 gene expression. Cancer Res 64(7):2627–2633PubMedCrossRef
34.
Zurück zum Zitat Bensaad K et al (2006) TIGAR, a p53-inducible regulator of glycolysis and apoptosis. Cell 126(1):107–120PubMedCrossRef Bensaad K et al (2006) TIGAR, a p53-inducible regulator of glycolysis and apoptosis. Cell 126(1):107–120PubMedCrossRef
35.
Zurück zum Zitat Mathupala SP, Heese C, Pedersen PL (1997) Glucose catabolism in cancer cells. The type II hexokinase promoter contains functionally active response elements for the tumor suppressor p53. J Biol Chem 272(36):22776–22780PubMedCrossRef Mathupala SP, Heese C, Pedersen PL (1997) Glucose catabolism in cancer cells. The type II hexokinase promoter contains functionally active response elements for the tumor suppressor p53. J Biol Chem 272(36):22776–22780PubMedCrossRef
36.
Zurück zum Zitat Hu W et al (2010) Glutaminase 2, a novel p53 target gene regulating energy metabolism and antioxidant function. Proc Natl Acad Sci USA 107(16):7455–7460PubMedCrossRef Hu W et al (2010) Glutaminase 2, a novel p53 target gene regulating energy metabolism and antioxidant function. Proc Natl Acad Sci USA 107(16):7455–7460PubMedCrossRef
37.
38.
Zurück zum Zitat Birnbaum DJ et al (2011) Genome profiling of pancreatic adenocarcinoma. Genes Chromosomes Cancer 50(6):456–465PubMedCrossRef Birnbaum DJ et al (2011) Genome profiling of pancreatic adenocarcinoma. Genes Chromosomes Cancer 50(6):456–465PubMedCrossRef
39.
Zurück zum Zitat Alessi DR, Sakamoto K, Bayascas JR (2006) LKB1-dependent signaling pathways. Annu Rev Biochem 75:137–163PubMedCrossRef Alessi DR, Sakamoto K, Bayascas JR (2006) LKB1-dependent signaling pathways. Annu Rev Biochem 75:137–163PubMedCrossRef
40.
Zurück zum Zitat Katajisto P et al (2007) The LKB1 tumor suppressor kinase in human disease. Biochim Biophys Acta 1775(1):63–75PubMed Katajisto P et al (2007) The LKB1 tumor suppressor kinase in human disease. Biochim Biophys Acta 1775(1):63–75PubMed
41.
Zurück zum Zitat Sauer B (1987) Functional expression of the cre-lox site-specific recombination system in the yeast Saccharomyces cerevisiae. Mol Cell Biol 7(6):2087–2096PubMed Sauer B (1987) Functional expression of the cre-lox site-specific recombination system in the yeast Saccharomyces cerevisiae. Mol Cell Biol 7(6):2087–2096PubMed
42.
Zurück zum Zitat Sauer B, Henderson N (1988) Site-specific DNA recombination in mammalian cells by the Cre recombinase of bacteriophage P1. Proc Natl Acad Sci USA 85(14):5166–5170PubMedCrossRef Sauer B, Henderson N (1988) Site-specific DNA recombination in mammalian cells by the Cre recombinase of bacteriophage P1. Proc Natl Acad Sci USA 85(14):5166–5170PubMedCrossRef
43.
Zurück zum Zitat Orban PC, Chui D, Marth JD (1992) Tissue- and site-specific DNA recombination in transgenic mice. Proc Natl Acad Sci USA 89(15):6861–6865PubMedCrossRef Orban PC, Chui D, Marth JD (1992) Tissue- and site-specific DNA recombination in transgenic mice. Proc Natl Acad Sci USA 89(15):6861–6865PubMedCrossRef
44.
Zurück zum Zitat Jonsson J et al (1994) Insulin-promoter-factor 1 is required for pancreas development in mice. Nature 371(6498):606–609PubMedCrossRef Jonsson J et al (1994) Insulin-promoter-factor 1 is required for pancreas development in mice. Nature 371(6498):606–609PubMedCrossRef
45.
Zurück zum Zitat Offield MF et al (1996) PDX-1 is required for pancreatic outgrowth and differentiation of the rostral duodenum. Development 122(3):983–995PubMed Offield MF et al (1996) PDX-1 is required for pancreatic outgrowth and differentiation of the rostral duodenum. Development 122(3):983–995PubMed
46.
Zurück zum Zitat Krapp A et al (1998) The bHLH protein PTF1-p48 is essential for the formation of the exocrine and the correct spatial organization of the endocrine pancreas. Genes Dev 12(23):3752–3763PubMedCrossRef Krapp A et al (1998) The bHLH protein PTF1-p48 is essential for the formation of the exocrine and the correct spatial organization of the endocrine pancreas. Genes Dev 12(23):3752–3763PubMedCrossRef
47.
Zurück zum Zitat Kawaguchi Y et al (2002) The role of the transcriptional regulator Ptf1a in converting intestinal to pancreatic progenitors. Nat Genet 32(1):128–134PubMedCrossRef Kawaguchi Y et al (2002) The role of the transcriptional regulator Ptf1a in converting intestinal to pancreatic progenitors. Nat Genet 32(1):128–134PubMedCrossRef
48.
Zurück zum Zitat Hingorani SR et al (2005) Trp53R172H and KrasG12D cooperate to promote chromosomal instability and widely metastatic pancreatic ductal adenocarcinoma in mice. Cancer Cell 7(5):469–483PubMedCrossRef Hingorani SR et al (2005) Trp53R172H and KrasG12D cooperate to promote chromosomal instability and widely metastatic pancreatic ductal adenocarcinoma in mice. Cancer Cell 7(5):469–483PubMedCrossRef
49.
Zurück zum Zitat Tuveson DA et al (2004) Endogenous oncogenic K-ras(G12D) stimulates proliferation and widespread neoplastic and developmental defects. Cancer Cell 5(4):375–387PubMedCrossRef Tuveson DA et al (2004) Endogenous oncogenic K-ras(G12D) stimulates proliferation and widespread neoplastic and developmental defects. Cancer Cell 5(4):375–387PubMedCrossRef
50.
Zurück zum Zitat Collins MA et al (2012) Oncogenic Kras is required for both the initiation and maintenance of pancreatic cancer in mice. J Clin Invest 122:639–53PubMedCrossRef Collins MA et al (2012) Oncogenic Kras is required for both the initiation and maintenance of pancreatic cancer in mice. J Clin Invest 122:639–53PubMedCrossRef
51.
Zurück zum Zitat Jones S et al (2008) Core signaling pathways in human pancreatic cancers revealed by global genomic analyses. Science 321(5897):1801–1806PubMedCrossRef Jones S et al (2008) Core signaling pathways in human pancreatic cancers revealed by global genomic analyses. Science 321(5897):1801–1806PubMedCrossRef
52.
Zurück zum Zitat Morton JP et al (2010) Mutant p53 drives metastasis and overcomes growth arrest/senescence in pancreatic cancer. Proc Natl Acad Sci USA 107(1):246–251PubMedCrossRef Morton JP et al (2010) Mutant p53 drives metastasis and overcomes growth arrest/senescence in pancreatic cancer. Proc Natl Acad Sci USA 107(1):246–251PubMedCrossRef
53.
Zurück zum Zitat Nakada D, Saunders TL, Morrison SJ (2010) Lkb1 regulates cell cycle and energy metabolism in haematopoietic stem cells. Nature 468(7324):653–658PubMedCrossRef Nakada D, Saunders TL, Morrison SJ (2010) Lkb1 regulates cell cycle and energy metabolism in haematopoietic stem cells. Nature 468(7324):653–658PubMedCrossRef
54.
Zurück zum Zitat Gurumurthy S et al (2010) The Lkb1 metabolic sensor maintains haematopoietic stem cell survival. Nature 468(7324):659–663PubMedCrossRef Gurumurthy S et al (2010) The Lkb1 metabolic sensor maintains haematopoietic stem cell survival. Nature 468(7324):659–663PubMedCrossRef
55.
Zurück zum Zitat Gan B et al (2010) Lkb1 regulates quiescence and metabolic homeostasis of haematopoietic stem cells. Nature 468(7324):701–704PubMedCrossRef Gan B et al (2010) Lkb1 regulates quiescence and metabolic homeostasis of haematopoietic stem cells. Nature 468(7324):701–704PubMedCrossRef
56.
Zurück zum Zitat Sato N et al (2001) STK11/LKB1 Peutz-Jeghers gene inactivation in intraductal papillary-mucinous neoplasms of the pancreas. Am J Pathol 159(6):2017–2022PubMedCrossRef Sato N et al (2001) STK11/LKB1 Peutz-Jeghers gene inactivation in intraductal papillary-mucinous neoplasms of the pancreas. Am J Pathol 159(6):2017–2022PubMedCrossRef
57.
Zurück zum Zitat Hezel AF et al (2008) Pancreatic LKB1 deletion leads to acinar polarity defects and cystic neoplasms. Mol Cell Biol 28(7):2414–2425PubMedCrossRef Hezel AF et al (2008) Pancreatic LKB1 deletion leads to acinar polarity defects and cystic neoplasms. Mol Cell Biol 28(7):2414–2425PubMedCrossRef
58.
Zurück zum Zitat Morton JP et al (2010) LKB1 haploinsufficiency cooperates with Kras to promote pancreatic cancer through suppression of p21-dependent growth arrest. Gastroenterology 139(2):586–597, 597 e1-6PubMedCrossRef Morton JP et al (2010) LKB1 haploinsufficiency cooperates with Kras to promote pancreatic cancer through suppression of p21-dependent growth arrest. Gastroenterology 139(2):586–597, 597 e1-6PubMedCrossRef
59.
Zurück zum Zitat Bonal C et al (2009) Pancreatic inactivation of c-Myc decreases acinar mass and transdifferentiates acinar cells into adipocytes in mice. Gastroenterology 136(1):309–319, e9PubMedCrossRef Bonal C et al (2009) Pancreatic inactivation of c-Myc decreases acinar mass and transdifferentiates acinar cells into adipocytes in mice. Gastroenterology 136(1):309–319, e9PubMedCrossRef
60.
Zurück zum Zitat Nakhai H et al (2008) Conditional inactivation of Myc impairs development of the exocrine pancreas. Development 135(19):3191–3196PubMedCrossRef Nakhai H et al (2008) Conditional inactivation of Myc impairs development of the exocrine pancreas. Development 135(19):3191–3196PubMedCrossRef
61.
Zurück zum Zitat Sandgren EP et al (1991) Pancreatic tumor pathogenesis reflects the causative genetic lesion. Proc Natl Acad Sci USA 88(1):93–97PubMedCrossRef Sandgren EP et al (1991) Pancreatic tumor pathogenesis reflects the causative genetic lesion. Proc Natl Acad Sci USA 88(1):93–97PubMedCrossRef
62.
Zurück zum Zitat Mazur PK et al (2010) Notch2 is required for progression of pancreatic intraepithelial neoplasia and development of pancreatic ductal adenocarcinoma. Proc Natl Acad Sci USA 107(30):13438–13443PubMedCrossRef Mazur PK et al (2010) Notch2 is required for progression of pancreatic intraepithelial neoplasia and development of pancreatic ductal adenocarcinoma. Proc Natl Acad Sci USA 107(30):13438–13443PubMedCrossRef
Metadaten
Titel
Energy metabolism and proliferation in pancreatic carcinogenesis
verfasst von
Ivonne Regel
Bo Kong
Susanne Raulefs
Mert Erkan
Christoph W. Michalski
Mark Hartel
Jörg Kleeff
Publikationsdatum
01.04.2012
Verlag
Springer-Verlag
Erschienen in
Langenbeck's Archives of Surgery / Ausgabe 4/2012
Print ISSN: 1435-2443
Elektronische ISSN: 1435-2451
DOI
https://doi.org/10.1007/s00423-012-0933-9

Weitere Artikel der Ausgabe 4/2012

Langenbeck's Archives of Surgery 4/2012 Zur Ausgabe

Wie erfolgreich ist eine Re-Ablation nach Rezidiv?

23.04.2024 Ablationstherapie Nachrichten

Nach der Katheterablation von Vorhofflimmern kommt es bei etwa einem Drittel der Patienten zu Rezidiven, meist binnen eines Jahres. Wie sich spätere Rückfälle auf die Erfolgschancen einer erneuten Ablation auswirken, haben Schweizer Kardiologen erforscht.

Hinter dieser Appendizitis steckte ein Erreger

23.04.2024 Appendizitis Nachrichten

Schmerzen im Unterbauch, aber sonst nicht viel, was auf eine Appendizitis hindeutete: Ein junger Mann hatte Glück, dass trotzdem eine Laparoskopie mit Appendektomie durchgeführt und der Wurmfortsatz histologisch untersucht wurde.

Mehr Schaden als Nutzen durch präoperatives Aussetzen von GLP-1-Agonisten?

23.04.2024 Operationsvorbereitung Nachrichten

Derzeit wird empfohlen, eine Therapie mit GLP-1-Rezeptoragonisten präoperativ zu unterbrechen. Eine neue Studie nährt jedoch Zweifel an der Notwendigkeit der Maßnahme.

Ureterstriktur: Innovative OP-Technik bewährt sich

19.04.2024 EAU 2024 Kongressbericht

Die Ureterstriktur ist eine relativ seltene Komplikation, trotzdem bedarf sie einer differenzierten Versorgung. In komplexen Fällen wird dies durch die roboterassistierte OP-Technik gewährleistet. Erste Resultate ermutigen.

Update Chirurgie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.

S3-Leitlinie „Diagnostik und Therapie des Karpaltunnelsyndroms“

Karpaltunnelsyndrom BDC Leitlinien Webinare
CME: 2 Punkte

Das Karpaltunnelsyndrom ist die häufigste Kompressionsneuropathie peripherer Nerven. Obwohl die Anamnese mit dem nächtlichen Einschlafen der Hand (Brachialgia parästhetica nocturna) sehr typisch ist, ist eine klinisch-neurologische Untersuchung und Elektroneurografie in manchen Fällen auch eine Neurosonografie erforderlich. Im Anfangsstadium sind konservative Maßnahmen (Handgelenksschiene, Ergotherapie) empfehlenswert. Bei nicht Ansprechen der konservativen Therapie oder Auftreten von neurologischen Ausfällen ist eine Dekompression des N. medianus am Karpaltunnel indiziert.

Prof. Dr. med. Gregor Antoniadis
Berufsverband der Deutschen Chirurgie e.V.

S2e-Leitlinie „Distale Radiusfraktur“

Radiusfraktur BDC Leitlinien Webinare
CME: 2 Punkte

Das Webinar beschäftigt sich mit Fragen und Antworten zu Diagnostik und Klassifikation sowie Möglichkeiten des Ausschlusses von Zusatzverletzungen. Die Referenten erläutern, welche Frakturen konservativ behandelt werden können und wie. Das Webinar beantwortet die Frage nach aktuellen operativen Therapiekonzepten: Welcher Zugang, welches Osteosynthesematerial? Auf was muss bei der Nachbehandlung der distalen Radiusfraktur geachtet werden?

PD Dr. med. Oliver Pieske
Dr. med. Benjamin Meyknecht
Berufsverband der Deutschen Chirurgie e.V.

S1-Leitlinie „Empfehlungen zur Therapie der akuten Appendizitis bei Erwachsenen“

Appendizitis BDC Leitlinien Webinare
CME: 2 Punkte

Inhalte des Webinars zur S1-Leitlinie „Empfehlungen zur Therapie der akuten Appendizitis bei Erwachsenen“ sind die Darstellung des Projektes und des Erstellungswegs zur S1-Leitlinie, die Erläuterung der klinischen Relevanz der Klassifikation EAES 2015, die wissenschaftliche Begründung der wichtigsten Empfehlungen und die Darstellung stadiengerechter Therapieoptionen.

Dr. med. Mihailo Andric
Berufsverband der Deutschen Chirurgie e.V.