Skip to main content
Erschienen in: Brain Structure and Function 1/2016

01.01.2016 | Original Article

Adaptation in human somatosensory cortex as a model of sensory memory construction: a study using high-density EEG

verfasst von: Claire Bradley, Niamh Joyce, Luis Garcia-Larrea

Erschienen in: Brain Structure and Function | Ausgabe 1/2016

Einloggen, um Zugang zu erhalten

Abstract

Adaptation in sensory cortices has been seen as a mechanism allowing the creation of transient memory representations. Here we tested the adapting properties of early responses in human somatosensory areas SI and SII by analysing somatosensory-evoked potentials over the very first repetitions of a stimulus. SI and SII generators were identified by well-defined scalp potentials and source localisation from high-density 128-channel EEG. Earliest responses (~20 ms) from area 3b in the depth of the post-central gyrus did not show significant adaptation to stimuli repeated at 300 ms intervals. In contrast, responses around 45 ms from the crown of the gyrus (areas 1 and 2) rapidly lessened to a plateau and abated at the 20th stimulation, and activities from SII in the parietal operculum at ~100 ms displayed strong adaptation with a steady amplitude decrease from the first repetition. Although responses in both SI (1–2) and SII areas showed adapting properties and hence sensory memory capacities, evidence of sensory mismatch detection has been demonstrated only for responses reflecting SII activation. This may index the passage from an early form of sensory storage in SI to more operational memory codes in SII, allowing the prediction of forthcoming input and the triggering of a specific signal when such input differs from the previous sequence. This is consistent with a model whereby the length of temporal receptive windows increases with progression in the cortical hierarchy, in parallel with the complexity and abstraction of neural representations.
Fußnoten
1
Initially, stimulation rate was 2 Hz; it was increased to 3 Hz during the course of the study for time reasons. Therefore, participants received one of the two stimulation rates and never both. In our data, there was no significant or systematic difference in responses recorded using these two rates; the data were therefore pooled.
 
2
Amplitude of initial SI-3b responses is known to decline with repetition rates around 10 Hz and higher (e.g. McLaughlin et al 1993 for a review).
 
Literatur
Zurück zum Zitat Akatsuka K, Wasaka T, Nakata H, Kida T, Kakigi R (2007) The effect of stimulus probability on the somatosensory mismatch field. Exp Brain Res 181:607–614CrossRefPubMed Akatsuka K, Wasaka T, Nakata H, Kida T, Kakigi R (2007) The effect of stimulus probability on the somatosensory mismatch field. Exp Brain Res 181:607–614CrossRefPubMed
Zurück zum Zitat Alain C, Woods DL, Knight RT (1998) A distributed cortical network for auditory sensory memory in humans. Brain Res 812:23–37CrossRefPubMed Alain C, Woods DL, Knight RT (1998) A distributed cortical network for auditory sensory memory in humans. Brain Res 812:23–37CrossRefPubMed
Zurück zum Zitat Allison T, McCarthy G, Wood C, Darcey T, Spencer D, Williamson P (1989a) Human cortical potentials evoked by stimulation of the median nerve. I. Cytoarchitectonic areas generating short-latency activity. J Neurophysiol 62(3):694–710PubMed Allison T, McCarthy G, Wood C, Darcey T, Spencer D, Williamson P (1989a) Human cortical potentials evoked by stimulation of the median nerve. I. Cytoarchitectonic areas generating short-latency activity. J Neurophysiol 62(3):694–710PubMed
Zurück zum Zitat Allison T, McCarthy G, Wood CC, Williamson PD, Spencer DD (1989b) Human cortical potentials evoked by stimulation of the median nerve. II. Cytoarchitectonic areas generating long-latency activity. J Neurophysiol 62(3):711–722PubMed Allison T, McCarthy G, Wood CC, Williamson PD, Spencer DD (1989b) Human cortical potentials evoked by stimulation of the median nerve. II. Cytoarchitectonic areas generating long-latency activity. J Neurophysiol 62(3):711–722PubMed
Zurück zum Zitat Allison T, McCarthy G, Wood CC, Jones SJ (1991) Potentials evoked in human and monkey cerebral cortex by stimulation of the median nerve. A review of scalp and intracranial recordings. Brain 114(6):2465–2503CrossRefPubMed Allison T, McCarthy G, Wood CC, Jones SJ (1991) Potentials evoked in human and monkey cerebral cortex by stimulation of the median nerve. A review of scalp and intracranial recordings. Brain 114(6):2465–2503CrossRefPubMed
Zurück zum Zitat Allison T, McCarthy G, Wood CC (1992) The relationship between human long-latency somatosensory evoked potentials recorded from the cortical surface and from the scalp. Electroencephalogr Clin Neurophysiol 84(4):301–314CrossRefPubMed Allison T, McCarthy G, Wood CC (1992) The relationship between human long-latency somatosensory evoked potentials recorded from the cortical surface and from the scalp. Electroencephalogr Clin Neurophysiol 84(4):301–314CrossRefPubMed
Zurück zum Zitat Barba C, Frot M, Mauguière F (2002) Early secondary somatosensory area (SII) SEPs. Data from intracerebral recordings in humans. Clin Neurophysiol 113(11):1778–1786CrossRefPubMed Barba C, Frot M, Mauguière F (2002) Early secondary somatosensory area (SII) SEPs. Data from intracerebral recordings in humans. Clin Neurophysiol 113(11):1778–1786CrossRefPubMed
Zurück zum Zitat Baumgärtner U, Vogel H, Ohara S, Treede RD, Lenz FA (2010) Dipole source analyses of early median nerve SEP components obtained from subdural grid recordings. J Neurophysiol 104(6):3029–3041PubMedCentralCrossRefPubMed Baumgärtner U, Vogel H, Ohara S, Treede RD, Lenz FA (2010) Dipole source analyses of early median nerve SEP components obtained from subdural grid recordings. J Neurophysiol 104(6):3029–3041PubMedCentralCrossRefPubMed
Zurück zum Zitat Brody CD, Romo R, Kepecs A (2003) Basic mechanisms for graded persistent activity: discrete attractors, continuous attractors, and dynamic representations. Curr Opin Neurobiol 13:204–211CrossRefPubMed Brody CD, Romo R, Kepecs A (2003) Basic mechanisms for graded persistent activity: discrete attractors, continuous attractors, and dynamic representations. Curr Opin Neurobiol 13:204–211CrossRefPubMed
Zurück zum Zitat Buchner H, Waberski TD, Fuchs M, Drenckhahn R, Wagner M, Wischmann HA (1996) Postcentral origin of P22: evidence from source reconstruction in a realistically shaped head model and from a patient with a postcentral lesion. Electroencephalogr Clin Neurophysiol 100(4):332–342CrossRefPubMed Buchner H, Waberski TD, Fuchs M, Drenckhahn R, Wagner M, Wischmann HA (1996) Postcentral origin of P22: evidence from source reconstruction in a realistically shaped head model and from a patient with a postcentral lesion. Electroencephalogr Clin Neurophysiol 100(4):332–342CrossRefPubMed
Zurück zum Zitat Coltheart M (1980) The persistences of vision. Philos Trans R Soc Lond B Biol Sci 290(1038):57–69CrossRefPubMed Coltheart M (1980) The persistences of vision. Philos Trans R Soc Lond B Biol Sci 290(1038):57–69CrossRefPubMed
Zurück zum Zitat Cruccu G, Aminoff MJ, Curio G, Guerit JM, Kakigi R, Mauguière F, Rossini PM, Treede RD, Garcia-Larrea L (2008) Recommendations for the clinical use of somatosensory-evoked potentials. Clin Neurophysiol 119(8):1705–1719CrossRefPubMed Cruccu G, Aminoff MJ, Curio G, Guerit JM, Kakigi R, Mauguière F, Rossini PM, Treede RD, Garcia-Larrea L (2008) Recommendations for the clinical use of somatosensory-evoked potentials. Clin Neurophysiol 119(8):1705–1719CrossRefPubMed
Zurück zum Zitat Csépe V, Karmos G, Molnár M (1987) Evoked potential correlates of stimulus deviance during wakefulness and sleep in cat–animal model of mismatch negativity. Electroencephalogr Clin Neurophysiol 66:571–578CrossRefPubMed Csépe V, Karmos G, Molnár M (1987) Evoked potential correlates of stimulus deviance during wakefulness and sleep in cat–animal model of mismatch negativity. Electroencephalogr Clin Neurophysiol 66:571–578CrossRefPubMed
Zurück zum Zitat Desmedt JE, Robertson D (1977) Differential enhancement of early and late components of the cerebral somatosensory evoked potentials during forced-paced cognitive tasks in man. J Physiol 271(3):761–782PubMedCentralCrossRefPubMed Desmedt JE, Robertson D (1977) Differential enhancement of early and late components of the cerebral somatosensory evoked potentials during forced-paced cognitive tasks in man. J Physiol 271(3):761–782PubMedCentralCrossRefPubMed
Zurück zum Zitat Desmedt JE, Huy NT, Bourguet M (1983) The cognitive P40, N60 and P100 components of somatosensory evoked potentials and the earliest electrical signs of sensory processing in man. Electroencephalogr Clin Neurophysiol 56(4):272–282CrossRefPubMed Desmedt JE, Huy NT, Bourguet M (1983) The cognitive P40, N60 and P100 components of somatosensory evoked potentials and the earliest electrical signs of sensory processing in man. Electroencephalogr Clin Neurophysiol 56(4):272–282CrossRefPubMed
Zurück zum Zitat Garcia-Larrea L, Bastuji H, Mauguière F (1991) Mapping study of somatosensory evoked potentials during selective spatial attention. Electroencephalogr Clin Neurophysiol 80(3):201–214CrossRefPubMed Garcia-Larrea L, Bastuji H, Mauguière F (1991) Mapping study of somatosensory evoked potentials during selective spatial attention. Electroencephalogr Clin Neurophysiol 80(3):201–214CrossRefPubMed
Zurück zum Zitat Garcia-Larrea L, Bastuji H, Mauguière F (1992) Unmasking of cortical SEP components by changes in stimulus rate: a topographic study. Electroencephalogr Clin Neurophysiol 84(1):71–83CrossRefPubMed Garcia-Larrea L, Bastuji H, Mauguière F (1992) Unmasking of cortical SEP components by changes in stimulus rate: a topographic study. Electroencephalogr Clin Neurophysiol 84(1):71–83CrossRefPubMed
Zurück zum Zitat Garcia-Larrea L, Lukaszewicz AC, Mauguière F (1995) Somatosensory responses during selective spatial attention: The N120-to-N140 transition. Psychophysiology 32(6):526–537CrossRefPubMed Garcia-Larrea L, Lukaszewicz AC, Mauguière F (1995) Somatosensory responses during selective spatial attention: The N120-to-N140 transition. Psychophysiology 32(6):526–537CrossRefPubMed
Zurück zum Zitat Garraghty PE, Florence SL, Kaas JH (1990) Ablations of areas 3a and 3b of monkey somatosensory cortex abolish cutaneous responsivity in area 1. Brain Res 528(1):165–169CrossRefPubMed Garraghty PE, Florence SL, Kaas JH (1990) Ablations of areas 3a and 3b of monkey somatosensory cortex abolish cutaneous responsivity in area 1. Brain Res 528(1):165–169CrossRefPubMed
Zurück zum Zitat Grill-Spector K, Henson R, Martin A (2006) Repetition and the brain: neural models of stimulus-specific effects. Trends in cognitive sciences 10(1):14–23CrossRefPubMed Grill-Spector K, Henson R, Martin A (2006) Repetition and the brain: neural models of stimulus-specific effects. Trends in cognitive sciences 10(1):14–23CrossRefPubMed
Zurück zum Zitat Hari R, Reinikainen K, Kaukoranta E, Hämäläinen M, Ilmoniemi R, Penttinen A, Salminen J, Teszner D (1984) Somatosensory evoked cerebral magnetic fields from SI and SII in man. Electroencephalogr Clin Neurophysiol 57(3):254–263CrossRefPubMed Hari R, Reinikainen K, Kaukoranta E, Hämäläinen M, Ilmoniemi R, Penttinen A, Salminen J, Teszner D (1984) Somatosensory evoked cerebral magnetic fields from SI and SII in man. Electroencephalogr Clin Neurophysiol 57(3):254–263CrossRefPubMed
Zurück zum Zitat Hari R, Karhu J, Hämäläinen M, Knuutila J, Salonen O, Sams M, Vilkman V (1993) Functional organization of the human first and second somatosensory cortices: a neuromagnetic study. Eur J Neurosci 5(6):724–734CrossRefPubMed Hari R, Karhu J, Hämäläinen M, Knuutila J, Salonen O, Sams M, Vilkman V (1993) Functional organization of the human first and second somatosensory cortices: a neuromagnetic study. Eur J Neurosci 5(6):724–734CrossRefPubMed
Zurück zum Zitat Harris JA, Miniussi C, Harris IM, Diamond ME (2002) Transient storage of a tactile memory trace in primary somatosensory cortex. J Neurosci 22(19):8720–8725PubMed Harris JA, Miniussi C, Harris IM, Diamond ME (2002) Transient storage of a tactile memory trace in primary somatosensory cortex. J Neurosci 22(19):8720–8725PubMed
Zurück zum Zitat Hernández A, Zainos A, Romo R (2000) Neuronal correlates of sensory discrimination in the somatosensory cortex. Proc Natl Acad Sci USA 97(11):6191–6196PubMedCentralCrossRefPubMed Hernández A, Zainos A, Romo R (2000) Neuronal correlates of sensory discrimination in the somatosensory cortex. Proc Natl Acad Sci USA 97(11):6191–6196PubMedCentralCrossRefPubMed
Zurück zum Zitat Hernández A, Zainos A, Romo R (2002) Temporal evolution of a decision-making process in medial premotor cortex. Neuron 33(6):959–972CrossRefPubMed Hernández A, Zainos A, Romo R (2002) Temporal evolution of a decision-making process in medial premotor cortex. Neuron 33(6):959–972CrossRefPubMed
Zurück zum Zitat Hinkley LB, Krubitzer LA, Nagarajan SS, Disbrow EA (2007) Sensorimotor integration in S2, PV, and parietal rostroventral areas of the human sylvian fissure. J Neurophysiol 97(2):1288–1297PubMedCentralCrossRefPubMed Hinkley LB, Krubitzer LA, Nagarajan SS, Disbrow EA (2007) Sensorimotor integration in S2, PV, and parietal rostroventral areas of the human sylvian fissure. J Neurophysiol 97(2):1288–1297PubMedCentralCrossRefPubMed
Zurück zum Zitat Höffken O, Tannwitz J, Lenz M, Sczesny-Kaiser M, Tegenthoff M, Schwenkreis P (2013) Influence of parameter settings on paired-pulse-suppression in somatosensory evoked potentials: a systematic analysis. Clin Neurophysiol 124(3):574–580CrossRefPubMed Höffken O, Tannwitz J, Lenz M, Sczesny-Kaiser M, Tegenthoff M, Schwenkreis P (2013) Influence of parameter settings on paired-pulse-suppression in somatosensory evoked potentials: a systematic analysis. Clin Neurophysiol 124(3):574–580CrossRefPubMed
Zurück zum Zitat Hoshiyama M, Kakigi R (2003) Changes in somatosensory evoked responses by repetition of the median nerve stimulation. Clin Neurophysiol 114(12):2251–2257CrossRefPubMed Hoshiyama M, Kakigi R (2003) Changes in somatosensory evoked responses by repetition of the median nerve stimulation. Clin Neurophysiol 114(12):2251–2257CrossRefPubMed
Zurück zum Zitat Hu L, Zhao C, Li H, Valentini E (2013) Mismatch responses evoked by nociceptive stimuli. Psychophysiology 50:158–173CrossRefPubMed Hu L, Zhao C, Li H, Valentini E (2013) Mismatch responses evoked by nociceptive stimuli. Psychophysiology 50:158–173CrossRefPubMed
Zurück zum Zitat Huttunen J, Pekkonen E, Kivisaari R, Autti T, Kähkönen S (2008) Modulation of somatosensory evoked fields from SI and SII by acute GABA A-agonism and paired-pulse stimulation. NeuroImage 40(2):427–434CrossRefPubMed Huttunen J, Pekkonen E, Kivisaari R, Autti T, Kähkönen S (2008) Modulation of somatosensory evoked fields from SI and SII by acute GABA A-agonism and paired-pulse stimulation. NeuroImage 40(2):427–434CrossRefPubMed
Zurück zum Zitat Hyvarinen J, Poranen A (1978) Receptive field integration and submodality convergence in the hand area of the postcentral gyrus of the alert monkey. J Physiol 283:539–556PubMedCentralCrossRefPubMed Hyvarinen J, Poranen A (1978) Receptive field integration and submodality convergence in the hand area of the postcentral gyrus of the alert monkey. J Physiol 283:539–556PubMedCentralCrossRefPubMed
Zurück zum Zitat Inui K, Wang X, Tamura Y, Kaneoke Y, Kakigi R (2004) Serial processing in the human somatosensory system. Cereb Cortex 14(8):851–857CrossRefPubMed Inui K, Wang X, Tamura Y, Kaneoke Y, Kakigi R (2004) Serial processing in the human somatosensory system. Cereb Cortex 14(8):851–857CrossRefPubMed
Zurück zum Zitat Iwamura Y, Tanaka M, Sakamoto M, Hikosaka O (1985) Diversity in receptive field properties of vertical neuronal arrays in the crown of the postcentral gyrus of the conscious monkey. Exp Brain Res 58:400–411PubMed Iwamura Y, Tanaka M, Sakamoto M, Hikosaka O (1985) Diversity in receptive field properties of vertical neuronal arrays in the crown of the postcentral gyrus of the conscious monkey. Exp Brain Res 58:400–411PubMed
Zurück zum Zitat Jääskeläinen IP, Ahveninen J, Andermann ML, Belliveau JW, Raij T, Sams M (2011) Short-term plasticity as a neural mechanism supporting memory and attentional functions. Brain Res 1422:66–81PubMedCentralCrossRefPubMed Jääskeläinen IP, Ahveninen J, Andermann ML, Belliveau JW, Raij T, Sams M (2011) Short-term plasticity as a neural mechanism supporting memory and attentional functions. Brain Res 1422:66–81PubMedCentralCrossRefPubMed
Zurück zum Zitat Jones SJ, Power CN (1984) Scalp topography of human somatosensory evoked potentials: the effect of interfering tactile stimulation applied to the hand. Electroencephalogr Clin Neurophysiol 58(1):25–36CrossRefPubMed Jones SJ, Power CN (1984) Scalp topography of human somatosensory evoked potentials: the effect of interfering tactile stimulation applied to the hand. Electroencephalogr Clin Neurophysiol 58(1):25–36CrossRefPubMed
Zurück zum Zitat Josiassen RC, Shagass C, Roemer RA, Ercegovac DV, Straumanis JJ (1982) Somatosensory evoked potential changes with a selective attention task. Psychophysiology 19(2):146–159CrossRefPubMed Josiassen RC, Shagass C, Roemer RA, Ercegovac DV, Straumanis JJ (1982) Somatosensory evoked potential changes with a selective attention task. Psychophysiology 19(2):146–159CrossRefPubMed
Zurück zum Zitat Jung P, Baumgärtner U, Bauermann T, Magerl W, Gawehn J, Stoeter P, Treede RD (2003) Asymmetry in the human primary somatosensory cortex and handedness. Neuroimage 19(3):913–923CrossRefPubMed Jung P, Baumgärtner U, Bauermann T, Magerl W, Gawehn J, Stoeter P, Treede RD (2003) Asymmetry in the human primary somatosensory cortex and handedness. Neuroimage 19(3):913–923CrossRefPubMed
Zurück zum Zitat Jung P, Baumgärtner U, Magerl W, Treede RD (2008) Hemispheric asymmetry of hand representation in human primary somatosensory cortex and handedness. Clin Neurophysiol 119(11):2579–2586CrossRefPubMed Jung P, Baumgärtner U, Magerl W, Treede RD (2008) Hemispheric asymmetry of hand representation in human primary somatosensory cortex and handedness. Clin Neurophysiol 119(11):2579–2586CrossRefPubMed
Zurück zum Zitat Kaas JH (2004) Evolution of somatosensory and motor cortex in primates. Anat Rec A Discov Mol Cell Evol Biol 281:1148–1156CrossRefPubMed Kaas JH (2004) Evolution of somatosensory and motor cortex in primates. Anat Rec A Discov Mol Cell Evol Biol 281:1148–1156CrossRefPubMed
Zurück zum Zitat Karhu J, Tesche CD (1999) Simultaneous early processing of sensory input in human primary (SI) and secondary (SII) somatosensory cortices. J Neurophysiol 81(5):2017–2025PubMed Karhu J, Tesche CD (1999) Simultaneous early processing of sensory input in human primary (SI) and secondary (SII) somatosensory cortices. J Neurophysiol 81(5):2017–2025PubMed
Zurück zum Zitat Kekoni J, Tiihonen J, Hämäläinen H (1992) Fast decrement with stimulus repetition in ERPs generated by neuronal systems involving somatosensory SI and SII cortices: electric and magnetic evoked response recordings in humans. Int J Psychophysiol 12(3):281–288CrossRefPubMed Kekoni J, Tiihonen J, Hämäläinen H (1992) Fast decrement with stimulus repetition in ERPs generated by neuronal systems involving somatosensory SI and SII cortices: electric and magnetic evoked response recordings in humans. Int J Psychophysiol 12(3):281–288CrossRefPubMed
Zurück zum Zitat Kekoni J, Hämäläinen H, Saarinen M, Gröhn J, Reinikainen K, Lehtokoski A, Näätänen R (1997) Rate effect and mismatch responses in the somatosensory system: ERP-recordings in humans. Biol Psychol 46:125–142CrossRefPubMed Kekoni J, Hämäläinen H, Saarinen M, Gröhn J, Reinikainen K, Lehtokoski A, Näätänen R (1997) Rate effect and mismatch responses in the somatosensory system: ERP-recordings in humans. Biol Psychol 46:125–142CrossRefPubMed
Zurück zum Zitat Kimura M, Ohira H, Schröger E (2010) Localizing sensory and cognitive systems for pre-attentive visual deviance detection: an sLORETA analysis of the data of Kimura et al. (2009). Neurosci Lett 485(3):198–203CrossRefPubMed Kimura M, Ohira H, Schröger E (2010) Localizing sensory and cognitive systems for pre-attentive visual deviance detection: an sLORETA analysis of the data of Kimura et al. (2009). Neurosci Lett 485(3):198–203CrossRefPubMed
Zurück zum Zitat Klingner CM, Nenadic I, Hasler C, Brodoehl S, Witte OW (2011) Habituation within the somatosensory processing hierarchy. Behav Brain Res 225(2):432–436CrossRefPubMed Klingner CM, Nenadic I, Hasler C, Brodoehl S, Witte OW (2011) Habituation within the somatosensory processing hierarchy. Behav Brain Res 225(2):432–436CrossRefPubMed
Zurück zum Zitat Knecht S, Kunesch E, Schnitzler A (1996) Parallel and serial processing of haptic information in man: effects of parietal lesions on sensorimotor hand function. Neuropsychologia 34(7):669–687CrossRefPubMed Knecht S, Kunesch E, Schnitzler A (1996) Parallel and serial processing of haptic information in man: effects of parietal lesions on sensorimotor hand function. Neuropsychologia 34(7):669–687CrossRefPubMed
Zurück zum Zitat Kojima T, Karino S, Yumoto M, Funayama M (2014) A stroke patient with impairment of auditory sensory (echoic) memory. Neurocase 20:133–143CrossRefPubMed Kojima T, Karino S, Yumoto M, Funayama M (2014) A stroke patient with impairment of auditory sensory (echoic) memory. Neurocase 20:133–143CrossRefPubMed
Zurück zum Zitat Krubitzer LA, Calford MB (1992) Five topographically organized fields in the somatosensory cortex of the flying fox: microelectrode maps, myeloarchitecture, and cortical modules. J Comp Neurol 317:1–30CrossRefPubMed Krubitzer LA, Calford MB (1992) Five topographically organized fields in the somatosensory cortex of the flying fox: microelectrode maps, myeloarchitecture, and cortical modules. J Comp Neurol 317:1–30CrossRefPubMed
Zurück zum Zitat Kujala T, Näätänen R (2010) The adaptive brain: a neurophysiological perspective. Prog Neurobiol 91(1):55–67CrossRefPubMed Kujala T, Näätänen R (2010) The adaptive brain: a neurophysiological perspective. Prog Neurobiol 91(1):55–67CrossRefPubMed
Zurück zum Zitat Kutoku Y, Hagiwara H, Ichikawa Y, Takeda K, Sunada Y (2007) A case of combined sensation disturbance and clumsiness of the left hand caused by an infarction localized to Brodmann areas 1 and 2. Rinsho Shinkeigaku 47:151–155PubMed Kutoku Y, Hagiwara H, Ichikawa Y, Takeda K, Sunada Y (2007) A case of combined sensation disturbance and clumsiness of the left hand caused by an infarction localized to Brodmann areas 1 and 2. Rinsho Shinkeigaku 47:151–155PubMed
Zurück zum Zitat Lenz M, Tegenthoff M, Kohlhaas K, Stude P, Höffken O, Gatica Tossi MA, Kalisch T, Kowalewski R, Dinse HR (2012) Increased excitability of somatosensory cortex in aged humans is associated with impaired tactile acuity. J Neurosci 32(5):1811–1816CrossRefPubMed Lenz M, Tegenthoff M, Kohlhaas K, Stude P, Höffken O, Gatica Tossi MA, Kalisch T, Kowalewski R, Dinse HR (2012) Increased excitability of somatosensory cortex in aged humans is associated with impaired tactile acuity. J Neurosci 32(5):1811–1816CrossRefPubMed
Zurück zum Zitat Lu ZL, Williamson SJ, Kaufman L (1992) Behavioral lifetime of human auditory sensory memory predicted by physiological measures. Science 258(5088):1668–1670CrossRefPubMed Lu ZL, Williamson SJ, Kaufman L (1992) Behavioral lifetime of human auditory sensory memory predicted by physiological measures. Science 258(5088):1668–1670CrossRefPubMed
Zurück zum Zitat Maess B, Jacobsen T, Schröger E, Friederici AD (2007) Localizing pre-attentive auditory memory-based comparison: magnetic mismatch negativity to pitch change. Neuroimage 37:561–571CrossRefPubMed Maess B, Jacobsen T, Schröger E, Friederici AD (2007) Localizing pre-attentive auditory memory-based comparison: magnetic mismatch negativity to pitch change. Neuroimage 37:561–571CrossRefPubMed
Zurück zum Zitat Mauguière F, Desmedt JE (1991) Focal capsular vascular lesions can selectively deafferent the prerolandic or the parietal cortex: somatosensory evoked potentials evidence. Ann Neurol 30(1):71–75CrossRefPubMed Mauguière F, Desmedt JE (1991) Focal capsular vascular lesions can selectively deafferent the prerolandic or the parietal cortex: somatosensory evoked potentials evidence. Ann Neurol 30(1):71–75CrossRefPubMed
Zurück zum Zitat Mauguière F, Desmedt JE, Courjon J (1983) Astereognosis and dissociated loss of frontal or parietal components of somatosensory evoked potentials in hemispheric lesions. Detailed correlations with clinical signs and computerized tomographic scanning. Brain 106(Pt 2):271–311CrossRefPubMed Mauguière F, Desmedt JE, Courjon J (1983) Astereognosis and dissociated loss of frontal or parietal components of somatosensory evoked potentials in hemispheric lesions. Detailed correlations with clinical signs and computerized tomographic scanning. Brain 106(Pt 2):271–311CrossRefPubMed
Zurück zum Zitat Mauguière F, Merlet I, Forss N, Vanni S, Jousmäki V, Adeleine P, Hari R (1997) Activation of a distributed somatosensory cortical network in the human brain. A dipole modelling study of magnetic fields evoked by median nerve stimulation. Part I: location and activation timing of SEF sources. Electroencephalogr Clin Neurophysiol 104(4):281–289CrossRefPubMed Mauguière F, Merlet I, Forss N, Vanni S, Jousmäki V, Adeleine P, Hari R (1997) Activation of a distributed somatosensory cortical network in the human brain. A dipole modelling study of magnetic fields evoked by median nerve stimulation. Part I: location and activation timing of SEF sources. Electroencephalogr Clin Neurophysiol 104(4):281–289CrossRefPubMed
Zurück zum Zitat Mauguière F, Butler SR, Ceranic B, Cooper R, Holder JE, Luxon LM (2004) Evoked potentials; Normal findings by modality. In: Binnie C et al (eds) Clinical neurophysiology, vol. 1 (revised and enlarged edition) EMG, nerve conduction and evoked potentials. Elsevier, pp 429–462 Mauguière F, Butler SR, Ceranic B, Cooper R, Holder JE, Luxon LM (2004) Evoked potentials; Normal findings by modality. In: Binnie C et al (eds) Clinical neurophysiology, vol. 1 (revised and enlarged edition) EMG, nerve conduction and evoked potentials. Elsevier, pp 429–462
Zurück zum Zitat Maule F, Barchiesi G, Brochier T, Cattaneo L (2013) Haptic working memory for grasping: the role of the parietal operculum. Cereb Cortex. doi:10.1093/cercor/bht252 Maule F, Barchiesi G, Brochier T, Cattaneo L (2013) Haptic working memory for grasping: the role of the parietal operculum. Cereb Cortex. doi:10.​1093/​cercor/​bht252
Zurück zum Zitat McLaughlin DF, Kelly EF (1993) Evoked potentials as indices of adaptation in the somatosensory system in humans: a review and prospectus. Brain Res Brain Res Rev 18(2):151–206CrossRefPubMed McLaughlin DF, Kelly EF (1993) Evoked potentials as indices of adaptation in the somatosensory system in humans: a review and prospectus. Brain Res Brain Res Rev 18(2):151–206CrossRefPubMed
Zurück zum Zitat Mountcastle VB, Powell TP (1959) Central nervous mechanisms subserving position sense and kinesthesis. Bull Johns Hopkins Hosp 105:173–200PubMed Mountcastle VB, Powell TP (1959) Central nervous mechanisms subserving position sense and kinesthesis. Bull Johns Hopkins Hosp 105:173–200PubMed
Zurück zum Zitat Näätänen R, Alho K (1995) Generators of electrical and magnetic mismatch responses in humans. Brain Topogr 7(4):315–320CrossRefPubMed Näätänen R, Alho K (1995) Generators of electrical and magnetic mismatch responses in humans. Brain Topogr 7(4):315–320CrossRefPubMed
Zurück zum Zitat Näätänen R, Picton T (1987) The N1 wave of the human electric and magnetic response to sound: a review and an analysis of the component structure. Psychophysiology 24(4):375–425CrossRefPubMed Näätänen R, Picton T (1987) The N1 wave of the human electric and magnetic response to sound: a review and an analysis of the component structure. Psychophysiology 24(4):375–425CrossRefPubMed
Zurück zum Zitat Nagamine T, Mäkelä J, Mima T, Mikuni N, Nishitani N, Satoh T, Akio Ikeda, Shibasaki H (1998) Serial processing of the somesthetic information revealed by different effects of stimulus rate on the somatosensory-evoked potentials and magnetic fields. Brain Res 791(1–2):200–208CrossRefPubMed Nagamine T, Mäkelä J, Mima T, Mikuni N, Nishitani N, Satoh T, Akio Ikeda, Shibasaki H (1998) Serial processing of the somesthetic information revealed by different effects of stimulus rate on the somatosensory-evoked potentials and magnetic fields. Brain Res 791(1–2):200–208CrossRefPubMed
Zurück zum Zitat Onishi H, Sugawara K, Yamashiro K, Sato D, Suzuki M, Kirimoto H, Tamaki H, Murakami H, Kameyama S (2013) Neuromagnetic activation following active and passive finger movements. Brain Behav 3(2):178–192PubMedCentralCrossRefPubMed Onishi H, Sugawara K, Yamashiro K, Sato D, Suzuki M, Kirimoto H, Tamaki H, Murakami H, Kameyama S (2013) Neuromagnetic activation following active and passive finger movements. Brain Behav 3(2):178–192PubMedCentralCrossRefPubMed
Zurück zum Zitat Overduin SA, Servos P (2004) Distributed digit somatotopy in primary somatosensory cortex. Neuroimage 23(2):462–472CrossRefPubMed Overduin SA, Servos P (2004) Distributed digit somatotopy in primary somatosensory cortex. Neuroimage 23(2):462–472CrossRefPubMed
Zurück zum Zitat Papadelis C, Eickhoff SB, Zilles K, Ioannides AA (2011) BA3b and BA1 activate in a serial fashion after median nerve stimulation: direct evidence from combining source analysis of evoked fields and cytoarchitectonic probabilistic maps. Neuroimage 54(1):60–73CrossRefPubMed Papadelis C, Eickhoff SB, Zilles K, Ioannides AA (2011) BA3b and BA1 activate in a serial fashion after median nerve stimulation: direct evidence from combining source analysis of evoked fields and cytoarchitectonic probabilistic maps. Neuroimage 54(1):60–73CrossRefPubMed
Zurück zum Zitat Pasternak T, Greenlee MW (2005) Working memory in primate sensory systems. Nat Rev Neurosci 6(2):97–107CrossRefPubMed Pasternak T, Greenlee MW (2005) Working memory in primate sensory systems. Nat Rev Neurosci 6(2):97–107CrossRefPubMed
Zurück zum Zitat Pons TP, Garraghty PE, Mishkin M (1992) Serial and parallel processing of tactual information in somatosensory cortex of rhesus monkeys. J Neurophysiol 68(2):518–527PubMed Pons TP, Garraghty PE, Mishkin M (1992) Serial and parallel processing of tactual information in somatosensory cortex of rhesus monkeys. J Neurophysiol 68(2):518–527PubMed
Zurück zum Zitat Randolf M, Semmes J (1974) Behavioral consequences of selective subtotal ablations in the postcentral gyrus of Macaca mulatta. Brain Res 70:155–170 Randolf M, Semmes J (1974) Behavioral consequences of selective subtotal ablations in the postcentral gyrus of Macaca mulatta. Brain Res 70:155–170
Zurück zum Zitat Romani A, Bergamaschi R, Versino M, Callieco R, Calabrese G, Cosi V (1995) Recovery functions of early cortical median nerve SSEP components: normative data. Electroencephalogr Clin Neurophysiol 96(5):475–478CrossRefPubMed Romani A, Bergamaschi R, Versino M, Callieco R, Calabrese G, Cosi V (1995) Recovery functions of early cortical median nerve SSEP components: normative data. Electroencephalogr Clin Neurophysiol 96(5):475–478CrossRefPubMed
Zurück zum Zitat Romo R, Hernández A, Zainos A, Brody C, Salinas E (2002a) Exploring the cortical evidence of a sensory-discrimination process. Philos Trans R Soc Lond B Biol Sci 357(1424):1039–1051PubMedCentralCrossRefPubMed Romo R, Hernández A, Zainos A, Brody C, Salinas E (2002a) Exploring the cortical evidence of a sensory-discrimination process. Philos Trans R Soc Lond B Biol Sci 357(1424):1039–1051PubMedCentralCrossRefPubMed
Zurück zum Zitat Romo R, Hernández A, Zainos A, Lemus L, Brody CD (2002b) Neuronal correlates of decision-making in secondary somatosensory cortex. Nat Neurosci 5(11):1217–1225CrossRefPubMed Romo R, Hernández A, Zainos A, Lemus L, Brody CD (2002b) Neuronal correlates of decision-making in secondary somatosensory cortex. Nat Neurosci 5(11):1217–1225CrossRefPubMed
Zurück zum Zitat Salinas E, Hernández A, Zainos A, Romo R (2000) Periodicity and firing rate as candidate neural codes for the frequency of vibrotactile stimuli. J Neurosci 20(14):5503–5515PubMed Salinas E, Hernández A, Zainos A, Romo R (2000) Periodicity and firing rate as candidate neural codes for the frequency of vibrotactile stimuli. J Neurosci 20(14):5503–5515PubMed
Zurück zum Zitat Schubert R, Ritter P, Wüstenberg T, Preuschhof C, Curio G, Sommer W, Villringer A (2008) Spatial attention related SEP amplitude modulations covary with BOLD signal in S1—a simultaneous EEG–fMRI study. Cereb Cortex 18(11):2686–2700CrossRefPubMed Schubert R, Ritter P, Wüstenberg T, Preuschhof C, Curio G, Sommer W, Villringer A (2008) Spatial attention related SEP amplitude modulations covary with BOLD signal in S1—a simultaneous EEG–fMRI study. Cereb Cortex 18(11):2686–2700CrossRefPubMed
Zurück zum Zitat Seung HS, Lee DD, Reis BY, Tank DW (2000) Stability of the memory of eye position in a recurrent network of conductance-based model neurons. Neuron 26:259–271CrossRefPubMed Seung HS, Lee DD, Reis BY, Tank DW (2000) Stability of the memory of eye position in a recurrent network of conductance-based model neurons. Neuron 26:259–271CrossRefPubMed
Zurück zum Zitat Thees S, Blankenburg F, Taskin B, Curio G, Villringer A (2003) Dipole source localization and fMRI of simultaneously recorded data applied to somatosensory categorization. NeuroImage 18(3):707–719CrossRefPubMed Thees S, Blankenburg F, Taskin B, Curio G, Villringer A (2003) Dipole source localization and fMRI of simultaneously recorded data applied to somatosensory categorization. NeuroImage 18(3):707–719CrossRefPubMed
Zurück zum Zitat Tomberg C, Desmedt JE, Ozaki I, Nguyen TH, Chalklin V (1989) Mapping somatosensory evoked potentials to finger stimulation at intervals of 450 to 4000 msec and the issue of habituation when assessing early cognitive components. Electroencephalogr Clin Neurophysiol 74(5):347–358CrossRefPubMed Tomberg C, Desmedt JE, Ozaki I, Nguyen TH, Chalklin V (1989) Mapping somatosensory evoked potentials to finger stimulation at intervals of 450 to 4000 msec and the issue of habituation when assessing early cognitive components. Electroencephalogr Clin Neurophysiol 74(5):347–358CrossRefPubMed
Zurück zum Zitat Ulanovsky N, Las L, Nelken I (2003) Processing of low-probability sounds by cortical neurons. Nat Neurosci 6(4):391–398CrossRefPubMed Ulanovsky N, Las L, Nelken I (2003) Processing of low-probability sounds by cortical neurons. Nat Neurosci 6(4):391–398CrossRefPubMed
Zurück zum Zitat Ulanovsky N, Las L, Farkas D, Nelken I (2004) Multiple time scales of adaptation in auditory cortex neurons. J Neurosci 24(46):10440–10453CrossRefPubMed Ulanovsky N, Las L, Farkas D, Nelken I (2004) Multiple time scales of adaptation in auditory cortex neurons. J Neurosci 24(46):10440–10453CrossRefPubMed
Zurück zum Zitat Valeriani M, Restuccia D, Di Lazzaro V, Le Pera D, Scerrati M, Tonali P, Mauguière F (1997) Giant central N20-P22 with normal area 3b N20-P20: an argument in favour of an area 3a generator of early median nerve cortical SEPs? Electroencephalogr Clin Neurophysiol 104(1):60–67CrossRefPubMed Valeriani M, Restuccia D, Di Lazzaro V, Le Pera D, Scerrati M, Tonali P, Mauguière F (1997) Giant central N20-P22 with normal area 3b N20-P20: an argument in favour of an area 3a generator of early median nerve cortical SEPs? Electroencephalogr Clin Neurophysiol 104(1):60–67CrossRefPubMed
Zurück zum Zitat Weiland BJ, Boutros NN, Moran JM, Tepley N, Bowyer SM (2008) Evidence for a frontal cortex role in both auditory and somatosensory habituation: a MEG study. NeuroImage 42(2):827–835PubMedCentralCrossRefPubMed Weiland BJ, Boutros NN, Moran JM, Tepley N, Bowyer SM (2008) Evidence for a frontal cortex role in both auditory and somatosensory habituation: a MEG study. NeuroImage 42(2):827–835PubMedCentralCrossRefPubMed
Zurück zum Zitat Wikström H, Huttunen J, Korvenoja A, Virtanen J, Salonen O, Aronen H, Ilmoniemi RJ (1996) Effects of interstimulus interval on somatosensory evoked magnetic fields (SEFs): a hypothesis concerning SEF generation at the primary sensorimotor cortex. Electroencephalogr Clin Neurophysiol 100(6):479–487CrossRefPubMed Wikström H, Huttunen J, Korvenoja A, Virtanen J, Salonen O, Aronen H, Ilmoniemi RJ (1996) Effects of interstimulus interval on somatosensory evoked magnetic fields (SEFs): a hypothesis concerning SEF generation at the primary sensorimotor cortex. Electroencephalogr Clin Neurophysiol 100(6):479–487CrossRefPubMed
Metadaten
Titel
Adaptation in human somatosensory cortex as a model of sensory memory construction: a study using high-density EEG
verfasst von
Claire Bradley
Niamh Joyce
Luis Garcia-Larrea
Publikationsdatum
01.01.2016
Verlag
Springer Berlin Heidelberg
Erschienen in
Brain Structure and Function / Ausgabe 1/2016
Print ISSN: 1863-2653
Elektronische ISSN: 1863-2661
DOI
https://doi.org/10.1007/s00429-014-0915-5

Weitere Artikel der Ausgabe 1/2016

Brain Structure and Function 1/2016 Zur Ausgabe

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.