Skip to main content
Erschienen in: Neurological Sciences 8/2015

01.08.2015 | Original Article

Cerebral cortex, hippocampus, striatum and cerebellum show differential susceptibility to quinolinic acid-induced oxidative stress

verfasst von: Samuel Vandresen-Filho, Wagner Carbolin Martins, Daniela Bohn Bertoldo, Gianni Mancini, Andreza Fabro De Bem, Carla Inês Tasca

Erschienen in: Neurological Sciences | Ausgabe 8/2015

Einloggen, um Zugang zu erhalten

Abstract

Quinolinic acid (QA) is a NMDA receptor agonist implicated in pathological conditions, such as neurodegenerative diseases and epilepsy. Time-course responses of different brain regions after QA i.c.v. infusion are not known. We aimed to investigate the time-course effects of QA infusion on oxidative stress-related parameters on different brain regions. In cerebral cortex, QA infusion promoted an early (1 h) decrease of NPSH levels and GR activity followed by a later increase in ROS production (8 h) and TBARS detection (24–72 h). In the hippocampus, QA promoted an increase in ROS production that lasted 8 h. Striatal tissue presented a later increase in ROS generation (8–72 h) after QA infusion. In the cerebellum, an increase in the GPx activity after 8 h was the only effect observed. These results show that oxidative stress induced by QA i.c.v. infusion is region and time dependent.
Literatur
1.
Zurück zum Zitat Vandresen-Filho S, Severino PC, Constantino LC, Martins WC, Molz S, Dal-Cim T, Bertoldo DB, Silva FR, Tasca CI (2014) N-methyl-D-aspartate preconditioning prevents quinolinic acid-induced deregulation of glutamate and calcium homeostasis in mice hippocampus. Neurotox Res. doi:10.1007/s12640-014-9496-6 PubMed Vandresen-Filho S, Severino PC, Constantino LC, Martins WC, Molz S, Dal-Cim T, Bertoldo DB, Silva FR, Tasca CI (2014) N-methyl-D-aspartate preconditioning prevents quinolinic acid-induced deregulation of glutamate and calcium homeostasis in mice hippocampus. Neurotox Res. doi:10.​1007/​s12640-014-9496-6 PubMed
2.
Zurück zum Zitat Stone TW (2001) Kynurenines in the CNS: from endogenous obscurity to therapeutic importance. Prog Neurobiol 64(2):185–218PubMedCrossRef Stone TW (2001) Kynurenines in the CNS: from endogenous obscurity to therapeutic importance. Prog Neurobiol 64(2):185–218PubMedCrossRef
3.
Zurück zum Zitat Piermartiri TC, Vandresen-Filho S, de Araujo Herculano B, Martins WC, Dal’agnolo D, Stroeh E, Carqueja CL, Boeck CR, Tasca CI (2009) Atorvastatin prevents hippocampal cell death due to quinolinic acid-induced seizures in mice by increasing Akt phosphorylation and glutamate uptake. Neurotox Res 16(2):106–115PubMedCrossRef Piermartiri TC, Vandresen-Filho S, de Araujo Herculano B, Martins WC, Dal’agnolo D, Stroeh E, Carqueja CL, Boeck CR, Tasca CI (2009) Atorvastatin prevents hippocampal cell death due to quinolinic acid-induced seizures in mice by increasing Akt phosphorylation and glutamate uptake. Neurotox Res 16(2):106–115PubMedCrossRef
4.
Zurück zum Zitat Tavares RG, Tasca CI, Santos CE, Wajner M, Souza DO, Dutra-Filho CS (2000) Quinolinic acid inhibits glutamate uptake into synaptic vesicles from rat brain. Neuro Report 11(2):249–253 Tavares RG, Tasca CI, Santos CE, Wajner M, Souza DO, Dutra-Filho CS (2000) Quinolinic acid inhibits glutamate uptake into synaptic vesicles from rat brain. Neuro Report 11(2):249–253
5.
Zurück zum Zitat Severino PC, Muller Gdo A, Vandresen-Filho S, Tasca CI (2011) Cell signaling in NMDA preconditioning and neuroprotection in convulsions induced by quinolinic acid. Life Sci 89(15–16):570–576PubMedCrossRef Severino PC, Muller Gdo A, Vandresen-Filho S, Tasca CI (2011) Cell signaling in NMDA preconditioning and neuroprotection in convulsions induced by quinolinic acid. Life Sci 89(15–16):570–576PubMedCrossRef
6.
Zurück zum Zitat Torres FV, da Silva Filho M, Antunes C, Kalinine E, Antoniolli E, Portela LV, Souza DO, Tort AB (2010) Electrophysiological effects of guanosine and MK-801 in a quinolinic acid-induced seizure model. Exp Neurol 221(2):296–306PubMedCrossRef Torres FV, da Silva Filho M, Antunes C, Kalinine E, Antoniolli E, Portela LV, Souza DO, Tort AB (2010) Electrophysiological effects of guanosine and MK-801 in a quinolinic acid-induced seizure model. Exp Neurol 221(2):296–306PubMedCrossRef
7.
Zurück zum Zitat Zeni AL, Vandresen-Filho S, Dal-Cim T, Martins WC, Bertoldo DB, Maraschin M, Tasca CI (2014) Aloysia gratissima prevents cellular damage induced by glutamatergic excitotoxicity. J Pharm Pharmacol 66(9):1294–1302PubMedCrossRef Zeni AL, Vandresen-Filho S, Dal-Cim T, Martins WC, Bertoldo DB, Maraschin M, Tasca CI (2014) Aloysia gratissima prevents cellular damage induced by glutamatergic excitotoxicity. J Pharm Pharmacol 66(9):1294–1302PubMedCrossRef
8.
Zurück zum Zitat Russi MA, Vandresen-Filho S, Rieger DK, Costa AP, Lopes MW, Cunha RM, Teixeira EH, Nascimento KS, Cavada BS, Tasca CI, Leal RB (2012) ConBr, a lectin from Canavalia brasiliensis seeds, protects against quinolinic acid-induced seizures in mice. Neurochem Res 37(2):288–297PubMedCrossRef Russi MA, Vandresen-Filho S, Rieger DK, Costa AP, Lopes MW, Cunha RM, Teixeira EH, Nascimento KS, Cavada BS, Tasca CI, Leal RB (2012) ConBr, a lectin from Canavalia brasiliensis seeds, protects against quinolinic acid-induced seizures in mice. Neurochem Res 37(2):288–297PubMedCrossRef
9.
Zurück zum Zitat Vandresen-Filho S, Hoeller AA, Herculano BA, Duzzioni M, Duarte FS, Piermartiri TC, Boeck CC, de Lima TC, Marino-Neto J, Tasca CI (2013) NMDA preconditioning attenuates cortical and hippocampal seizures induced by intracerebroventricular quinolinic acid infusion. Neurotox Res 24(1):55–62PubMedCrossRef Vandresen-Filho S, Hoeller AA, Herculano BA, Duzzioni M, Duarte FS, Piermartiri TC, Boeck CC, de Lima TC, Marino-Neto J, Tasca CI (2013) NMDA preconditioning attenuates cortical and hippocampal seizures induced by intracerebroventricular quinolinic acid infusion. Neurotox Res 24(1):55–62PubMedCrossRef
10.
Zurück zum Zitat Ganzella M, Jardim FM, Boeck CR, Vendite D (2006) Time course of oxidative events in the hippocampus following intracerebroventricular infusion of quinolinic acid in mice. Neurosci Res 55(4):397–402PubMedCrossRef Ganzella M, Jardim FM, Boeck CR, Vendite D (2006) Time course of oxidative events in the hippocampus following intracerebroventricular infusion of quinolinic acid in mice. Neurosci Res 55(4):397–402PubMedCrossRef
11.
Zurück zum Zitat Santamaria A, Salvatierra-Sanchez R, Vazquez-Roman B, Santiago-Lopez D, Villeda-Hernandez J, Galvan-Arzate S, Jimenez-Capdeville ME, Ali SF (2003) Protective effects of the antioxidant selenium on quinolinic acid-induced neurotoxicity in rats: in vitro and in vivo studies. J Neurochem 86(2):479–488PubMedCrossRef Santamaria A, Salvatierra-Sanchez R, Vazquez-Roman B, Santiago-Lopez D, Villeda-Hernandez J, Galvan-Arzate S, Jimenez-Capdeville ME, Ali SF (2003) Protective effects of the antioxidant selenium on quinolinic acid-induced neurotoxicity in rats: in vitro and in vivo studies. J Neurochem 86(2):479–488PubMedCrossRef
12.
Zurück zum Zitat Vandresen-Filho S, de Araujo Herculano B, Franco JL, Boeck CR, Dafre AL, Tasca CI (2007) Evaluation of glutathione metabolism in NMDA preconditioning against quinolinic acid-induced seizures in mice cerebral cortex and hippocampus. Brain Res 1184:38–45PubMedCrossRef Vandresen-Filho S, de Araujo Herculano B, Franco JL, Boeck CR, Dafre AL, Tasca CI (2007) Evaluation of glutathione metabolism in NMDA preconditioning against quinolinic acid-induced seizures in mice cerebral cortex and hippocampus. Brain Res 1184:38–45PubMedCrossRef
13.
Zurück zum Zitat de Araujo Herculano B, Vandresen-Filho S, Martins WC, Boeck CR, Tasca CI (2011) NMDA preconditioning protects against quinolinic acid-induced seizures via PKA, PI3 K and MAPK/ERK signaling pathways. Behav Brain Res 219(1):92–97CrossRef de Araujo Herculano B, Vandresen-Filho S, Martins WC, Boeck CR, Tasca CI (2011) NMDA preconditioning protects against quinolinic acid-induced seizures via PKA, PI3 K and MAPK/ERK signaling pathways. Behav Brain Res 219(1):92–97CrossRef
15.
Zurück zum Zitat Mancini G, de Oliveira J, Hort MA, Moreira EL, Ribeiro-do-Valle RM, Rocha JB, de Bem AF (2013) Diphenyl diselenide differently modulates cardiovascular redox responses in young adult and middle-aged low-density lipoprotein receptor knockout hypercholesterolemic mice. J Pharm Pharmacol 66(3):387–397PubMedCrossRef Mancini G, de Oliveira J, Hort MA, Moreira EL, Ribeiro-do-Valle RM, Rocha JB, de Bem AF (2013) Diphenyl diselenide differently modulates cardiovascular redox responses in young adult and middle-aged low-density lipoprotein receptor knockout hypercholesterolemic mice. J Pharm Pharmacol 66(3):387–397PubMedCrossRef
16.
Zurück zum Zitat Hempel SL, Buettner GR, O’Malley YQ, Wessels DA, Flaherty DM (1999) Dihydrofluorescein diacetate is superior for detecting intracellular oxidants: comparison with 2′,7′-dichlorodihydrofluorescein diacetate, 5(and 6)-carboxy-2′,7′-dichlorodihydrofluorescein diacetate, and dihydrorhodamine 123. Free Radic Biol Med 27(1–2):146–159PubMedCrossRef Hempel SL, Buettner GR, O’Malley YQ, Wessels DA, Flaherty DM (1999) Dihydrofluorescein diacetate is superior for detecting intracellular oxidants: comparison with 2′,7′-dichlorodihydrofluorescein diacetate, 5(and 6)-carboxy-2′,7′-dichlorodihydrofluorescein diacetate, and dihydrorhodamine 123. Free Radic Biol Med 27(1–2):146–159PubMedCrossRef
17.
19.
Zurück zum Zitat Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193(1):265–275PubMed Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193(1):265–275PubMed
20.
Zurück zum Zitat Stone TW (1993) Neuropharmacology of quinolinic and kynurenic acids. Pharmacol Rev 45(3):309–379PubMed Stone TW (1993) Neuropharmacology of quinolinic and kynurenic acids. Pharmacol Rev 45(3):309–379PubMed
21.
Zurück zum Zitat Behan WM, McDonald M, Darlington LG, Stone TW (1999) Oxidative stress as a mechanism for quinolinic acid-induced hippocampal damage: protection by melatonin and deprenyl. Br J Pharmacol 128(8):1754–1760PubMedCentralPubMedCrossRef Behan WM, McDonald M, Darlington LG, Stone TW (1999) Oxidative stress as a mechanism for quinolinic acid-induced hippocampal damage: protection by melatonin and deprenyl. Br J Pharmacol 128(8):1754–1760PubMedCentralPubMedCrossRef
22.
Zurück zum Zitat Stone TW, Behan WM, MacDonald M, Darlington LG (2000) Possible mediation of quinolinic acid-induced hippocampal damage by reactive oxygen species. Amino Acids 19(1):275–281PubMedCrossRef Stone TW, Behan WM, MacDonald M, Darlington LG (2000) Possible mediation of quinolinic acid-induced hippocampal damage by reactive oxygen species. Amino Acids 19(1):275–281PubMedCrossRef
23.
Zurück zum Zitat Schwarcz R, Kohler C (1983) Differential vulnerability of central neurons of the rat to quinolinic acid. Neurosci Lett 38(1):85–90PubMedCrossRef Schwarcz R, Kohler C (1983) Differential vulnerability of central neurons of the rat to quinolinic acid. Neurosci Lett 38(1):85–90PubMedCrossRef
24.
Zurück zum Zitat Schwarcz R, Pellicciari R (2002) Manipulation of brain kynurenines: glial targets, neuronal effects, and clinical opportunities. J Pharmacol Exp Ther 303(1):1–10PubMedCrossRef Schwarcz R, Pellicciari R (2002) Manipulation of brain kynurenines: glial targets, neuronal effects, and clinical opportunities. J Pharmacol Exp Ther 303(1):1–10PubMedCrossRef
25.
Zurück zum Zitat Maharaj H, Maharaj DS, Daya S (2006) Acetylsalicylic acid and acetaminophen protect against oxidative neurotoxicity. Metab Brain Dis 21(2–3):189–199PubMed Maharaj H, Maharaj DS, Daya S (2006) Acetylsalicylic acid and acetaminophen protect against oxidative neurotoxicity. Metab Brain Dis 21(2–3):189–199PubMed
26.
Zurück zum Zitat Kuo A, Smith MT (2014) Theoretical and practical applications of the intracerebroventricular route for CSF sampling and drug administration in CNS drug discovery research: a mini review. J Neurosci Methods 233:166–171PubMedCrossRef Kuo A, Smith MT (2014) Theoretical and practical applications of the intracerebroventricular route for CSF sampling and drug administration in CNS drug discovery research: a mini review. J Neurosci Methods 233:166–171PubMedCrossRef
27.
Zurück zum Zitat Celso Constantino L, Tasca CI, Boeck CR (2014) The role of NMDA receptors in the development of brain resistance through pre- and postconditioning. Aging Dis 5(6):430–441PubMedCentralPubMed Celso Constantino L, Tasca CI, Boeck CR (2014) The role of NMDA receptors in the development of brain resistance through pre- and postconditioning. Aging Dis 5(6):430–441PubMedCentralPubMed
28.
Zurück zum Zitat Vizi ES, Kisfali M, Lorincz T (2013) Role of nonsynaptic GluN2B-containing NMDA receptors in excitotoxicity: evidence that fluoxetine selectively inhibits these receptors and may have neuroprotective effects. Brain Res Bull 93:32–38PubMedCrossRef Vizi ES, Kisfali M, Lorincz T (2013) Role of nonsynaptic GluN2B-containing NMDA receptors in excitotoxicity: evidence that fluoxetine selectively inhibits these receptors and may have neuroprotective effects. Brain Res Bull 93:32–38PubMedCrossRef
29.
30.
Zurück zum Zitat Hassoun EA, Al-Ghafri M, Abushaban A (2003) The role of antioxidant enzymes in TCDD-induced oxidative stress in various brain regions of rats after subchronic exposure. Free Radic Biol Med 35(9):1028–1036PubMedCrossRef Hassoun EA, Al-Ghafri M, Abushaban A (2003) The role of antioxidant enzymes in TCDD-induced oxidative stress in various brain regions of rats after subchronic exposure. Free Radic Biol Med 35(9):1028–1036PubMedCrossRef
31.
Zurück zum Zitat Brannan TS, Maker HS, Weiss C, Cohen G (1980) Regional distribution of glutathione peroxidase in the adult rat brain. J Neurochem 35(4):1013–1014PubMedCrossRef Brannan TS, Maker HS, Weiss C, Cohen G (1980) Regional distribution of glutathione peroxidase in the adult rat brain. J Neurochem 35(4):1013–1014PubMedCrossRef
32.
Zurück zum Zitat Maher P (2005) The effects of stress and aging on glutathione metabolism. Ageing Res Rev 4(2):288–314PubMedCrossRef Maher P (2005) The effects of stress and aging on glutathione metabolism. Ageing Res Rev 4(2):288–314PubMedCrossRef
33.
Zurück zum Zitat Cardoso S, Santos MS, Seica R, Moreira PI (2010) Cortical and hippocampal mitochondria bioenergetics and oxidative status during hyperglycemia and/or insulin-induced hypoglycemia. Biochim Biophys Acta 1802(11):942–951PubMedCrossRef Cardoso S, Santos MS, Seica R, Moreira PI (2010) Cortical and hippocampal mitochondria bioenergetics and oxidative status during hyperglycemia and/or insulin-induced hypoglycemia. Biochim Biophys Acta 1802(11):942–951PubMedCrossRef
34.
Zurück zum Zitat Siqueira IR, Fochesatto C, de Andrade A, Santos M, Hagen M, Bello-Klein A, Netto CA (2005) Total antioxidant capacity is impaired in different structures from aged rat brain. Int J Dev Neurosci 23(8):663–671PubMedCrossRef Siqueira IR, Fochesatto C, de Andrade A, Santos M, Hagen M, Bello-Klein A, Netto CA (2005) Total antioxidant capacity is impaired in different structures from aged rat brain. Int J Dev Neurosci 23(8):663–671PubMedCrossRef
35.
Zurück zum Zitat Candelario-Jalil E, Mhadu NH, Al-Dalain SM, Martinez G, Leon OS (2001) Time course of oxidative damage in different brain regions following transient cerebral ischemia in gerbils. Neurosci Res 41(3):233–241PubMedCrossRef Candelario-Jalil E, Mhadu NH, Al-Dalain SM, Martinez G, Leon OS (2001) Time course of oxidative damage in different brain regions following transient cerebral ischemia in gerbils. Neurosci Res 41(3):233–241PubMedCrossRef
36.
Zurück zum Zitat Perez-Severiano F, Montes S, Geronimo-Olvera C, Segovia J (2013) Study of oxidative damage and antioxidant systems in two Huntington’s disease rodent models. Methods Mol Biol 1010:177–200PubMedCrossRef Perez-Severiano F, Montes S, Geronimo-Olvera C, Segovia J (2013) Study of oxidative damage and antioxidant systems in two Huntington’s disease rodent models. Methods Mol Biol 1010:177–200PubMedCrossRef
37.
Zurück zum Zitat Fatokun AA, Smith RA, Stone TW (2008) Resistance to kynurenic acid of the NMDA receptor-dependent toxicity of 3-nitropropionic acid and cyanide in cerebellar granule neurons. Brain Res 1215:200–207PubMedCrossRef Fatokun AA, Smith RA, Stone TW (2008) Resistance to kynurenic acid of the NMDA receptor-dependent toxicity of 3-nitropropionic acid and cyanide in cerebellar granule neurons. Brain Res 1215:200–207PubMedCrossRef
38.
Zurück zum Zitat Yan E, Castillo-Melendez M, Smythe G, Walker D (2005) Quinolinic acid promotes albumin deposition in Purkinje cell, astrocytic activation and lipid peroxidation in fetal brain. Neuroscience 134(3):867–875PubMedCrossRef Yan E, Castillo-Melendez M, Smythe G, Walker D (2005) Quinolinic acid promotes albumin deposition in Purkinje cell, astrocytic activation and lipid peroxidation in fetal brain. Neuroscience 134(3):867–875PubMedCrossRef
39.
Zurück zum Zitat Monaghan DT, Beaton JA (1991) Quinolinate differentiates between forebrain and cerebellar NMDA receptors. Eur J Pharmacol 194(1):123–125PubMedCrossRef Monaghan DT, Beaton JA (1991) Quinolinate differentiates between forebrain and cerebellar NMDA receptors. Eur J Pharmacol 194(1):123–125PubMedCrossRef
40.
Zurück zum Zitat Wu W, Nicolazzo JA, Wen L, Chung R, Stankovic R, Bao SS, Lim CK, Brew BJ, Cullen KM, Guillemin GJ (2013) Expression of tryptophan 2,3-dioxygenase and production of kynurenine pathway metabolites in triple transgenic mice and human Alzheimer’s disease brain. PLoS One 8(4):e59749PubMedCentralPubMedCrossRef Wu W, Nicolazzo JA, Wen L, Chung R, Stankovic R, Bao SS, Lim CK, Brew BJ, Cullen KM, Guillemin GJ (2013) Expression of tryptophan 2,3-dioxygenase and production of kynurenine pathway metabolites in triple transgenic mice and human Alzheimer’s disease brain. PLoS One 8(4):e59749PubMedCentralPubMedCrossRef
Metadaten
Titel
Cerebral cortex, hippocampus, striatum and cerebellum show differential susceptibility to quinolinic acid-induced oxidative stress
verfasst von
Samuel Vandresen-Filho
Wagner Carbolin Martins
Daniela Bohn Bertoldo
Gianni Mancini
Andreza Fabro De Bem
Carla Inês Tasca
Publikationsdatum
01.08.2015
Verlag
Springer Milan
Erschienen in
Neurological Sciences / Ausgabe 8/2015
Print ISSN: 1590-1874
Elektronische ISSN: 1590-3478
DOI
https://doi.org/10.1007/s10072-015-2180-7

Weitere Artikel der Ausgabe 8/2015

Neurological Sciences 8/2015 Zur Ausgabe

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.