Skip to main content
Erschienen in: Journal of the Association for Research in Otolaryngology 2/2014

01.04.2014 | Research Article

Speech Perception in Noise with a Harmonic Complex Excited Vocoder

verfasst von: Tyler H. Churchill, Alan Kan, Matthew J. Goupell, Antje Ihlefeld, Ruth Y. Litovsky

Erschienen in: Journal of the Association for Research in Otolaryngology | Ausgabe 2/2014

Einloggen, um Zugang zu erhalten

Abstract

A cochlear implant (CI) presents band-pass-filtered acoustic envelope information by modulating current pulse train levels. Similarly, a vocoder presents envelope information by modulating an acoustic carrier. By studying how normal hearing (NH) listeners are able to understand degraded speech signals with a vocoder, the parameters that best simulate electric hearing and factors that might contribute to the NH-CI performance difference may be better understood. A vocoder with harmonic complex carriers (fundamental frequency, f 0 = 100 Hz) was used to study the effect of carrier phase dispersion on speech envelopes and intelligibility. The starting phases of the harmonic components were randomly dispersed to varying degrees prior to carrier filtering and modulation. NH listeners were tested on recognition of a closed set of vocoded words in background noise. Two sets of synthesis filters simulated different amounts of current spread in CIs. Results showed that the speech vocoded with carriers whose starting phases were maximally dispersed was the most intelligible. Superior speech understanding may have been a result of the flattening of the dispersed-phase carrier’s intrinsic temporal envelopes produced by the large number of interacting components in the high-frequency channels. Cross-correlogram analyses of auditory nerve model simulations confirmed that randomly dispersing the carrier’s component starting phases resulted in better neural envelope representation. However, neural metrics extracted from these analyses were not found to accurately predict speech recognition scores for all vocoded speech conditions. It is possible that central speech understanding mechanisms are insensitive to the envelope-fine structure dichotomy exploited by vocoders.
Literatur
Zurück zum Zitat Carlyon RP (1996) Spread of excitation produced by maskers with damped and ramped envelopes. J Acoust Soc Am 99:3647–3655CrossRef Carlyon RP (1996) Spread of excitation produced by maskers with damped and ramped envelopes. J Acoust Soc Am 99:3647–3655CrossRef
Zurück zum Zitat Deeks JM, Carlyon RP (2004) Simulations of cochlear implant hearing using filtered harmonic complexes: implications for concurrent sound segregation. J Acoust Soc Am 115:1736–1746PubMedCrossRef Deeks JM, Carlyon RP (2004) Simulations of cochlear implant hearing using filtered harmonic complexes: implications for concurrent sound segregation. J Acoust Soc Am 115:1736–1746PubMedCrossRef
Zurück zum Zitat Dorman MF, Loizou PC, Rainey D (1997) Speech intelligibility as a function of the number of channels of stimulation for signal processors using sine-wave and noise-band outputs. J Acoust Soc Am 102:2403–2411PubMedCrossRef Dorman MF, Loizou PC, Rainey D (1997) Speech intelligibility as a function of the number of channels of stimulation for signal processors using sine-wave and noise-band outputs. J Acoust Soc Am 102:2403–2411PubMedCrossRef
Zurück zum Zitat Eskridge EN, Galvin JJ, Aronoff JM, Li T, Fu QJ (2012) Speech perception with music maskers by cochlear implant users and normal hearing listeners. J Speech Lang Hear Res 55:800–810PubMedCrossRef Eskridge EN, Galvin JJ, Aronoff JM, Li T, Fu QJ (2012) Speech perception with music maskers by cochlear implant users and normal hearing listeners. J Speech Lang Hear Res 55:800–810PubMedCrossRef
Zurück zum Zitat Friesen LM, Shannon RV, Baskent D, Wang X (2001) Speech recognition in noise as a function of the number of spectral channels: comparison of acoustic hearing and cochlear implants. J Acoust Soc Am 110:1150–1163PubMedCrossRef Friesen LM, Shannon RV, Baskent D, Wang X (2001) Speech recognition in noise as a function of the number of spectral channels: comparison of acoustic hearing and cochlear implants. J Acoust Soc Am 110:1150–1163PubMedCrossRef
Zurück zum Zitat Fu QJ, Nogaki G (2005) Noise susceptibility of cochlear implant users: the role of spectral resolution and smearing. J Assoc Res Otolaryngol 6:19–27PubMedCentralPubMedCrossRef Fu QJ, Nogaki G (2005) Noise susceptibility of cochlear implant users: the role of spectral resolution and smearing. J Assoc Res Otolaryngol 6:19–27PubMedCentralPubMedCrossRef
Zurück zum Zitat Fu QJ, Shannon RV, Wang X (1998) Effects of noise and spectral resolution on vowel and consonant recognition: acoustic and electric hearing. J Acoust Soc Am 104:3586–3596PubMedCrossRef Fu QJ, Shannon RV, Wang X (1998) Effects of noise and spectral resolution on vowel and consonant recognition: acoustic and electric hearing. J Acoust Soc Am 104:3586–3596PubMedCrossRef
Zurück zum Zitat Fu QJ, Chinchilla S, Galvin JJ (2004) The role of spectral and temporal cues in voice gender discrimination by normal-hearing listeners and cochlear implant users. J Assoc Res Otolaryngol 5:253–260PubMedCentralPubMedCrossRef Fu QJ, Chinchilla S, Galvin JJ (2004) The role of spectral and temporal cues in voice gender discrimination by normal-hearing listeners and cochlear implant users. J Assoc Res Otolaryngol 5:253–260PubMedCentralPubMedCrossRef
Zurück zum Zitat Greenwood DD (1990) A cochlear frequency-position function for several species—29 years later. J Acoust Soc Am 87:2592–2605PubMedCrossRef Greenwood DD (1990) A cochlear frequency-position function for several species—29 years later. J Acoust Soc Am 87:2592–2605PubMedCrossRef
Zurück zum Zitat Heinz MG, Swaminathan J (2009) Quantifying envelope and fine-structure coding in auditory nerve responses to chimaeric speech. J Assoc Res Otolaryngol 10:407–423PubMedCentralPubMedCrossRef Heinz MG, Swaminathan J (2009) Quantifying envelope and fine-structure coding in auditory nerve responses to chimaeric speech. J Assoc Res Otolaryngol 10:407–423PubMedCentralPubMedCrossRef
Zurück zum Zitat Hervais-Adelman AG, Davis MH, Johnsrude IS, Taylor KJ, Carlyon RP (2011) Generalization of perceptual learning of vocoded speech. J Exp Psychol Hum Percept Perform 37:283–295PubMedCrossRef Hervais-Adelman AG, Davis MH, Johnsrude IS, Taylor KJ, Carlyon RP (2011) Generalization of perceptual learning of vocoded speech. J Exp Psychol Hum Percept Perform 37:283–295PubMedCrossRef
Zurück zum Zitat Joris PX (2003) Interaural time sensitivity dominated by cochlea-induced envelope patterns. J Neurosci 23:6345–6350PubMed Joris PX (2003) Interaural time sensitivity dominated by cochlea-induced envelope patterns. J Neurosci 23:6345–6350PubMed
Zurück zum Zitat Kates JM (2011) Spectro-temporal envelope changes caused by temporal fine structure modification. J Acoust Soc Am 129:3981–3990PubMedCrossRef Kates JM (2011) Spectro-temporal envelope changes caused by temporal fine structure modification. J Acoust Soc Am 129:3981–3990PubMedCrossRef
Zurück zum Zitat Kiang NY, Moxon EC (1972) Physiological considerations in artificial stimulation of the inner ear. Ann Otol 81:714–730 Kiang NY, Moxon EC (1972) Physiological considerations in artificial stimulation of the inner ear. Ann Otol 81:714–730
Zurück zum Zitat Kohlrausch A, Sander A (1995) Phase effects in masking related to dispersion in the inner ear. J Acoust Soc Am 97:1817–1829PubMedCrossRef Kohlrausch A, Sander A (1995) Phase effects in masking related to dispersion in the inner ear. J Acoust Soc Am 97:1817–1829PubMedCrossRef
Zurück zum Zitat Loizou PC (2006) Speech processing in vocoder-centric cochlear implants. In: A. Moller (ed) Cochlear and brainstem implants, vol 64. Karger, Basel, pp 109–143 Loizou PC (2006) Speech processing in vocoder-centric cochlear implants. In: A. Moller (ed) Cochlear and brainstem implants, vol 64. Karger, Basel, pp 109–143
Zurück zum Zitat Louage DH, van der Heijden M, Joris PX (2004) Temporal properties of responses to broadband noise in the auditory nerve. J Neurophysiol 91:2051–2065PubMedCrossRef Louage DH, van der Heijden M, Joris PX (2004) Temporal properties of responses to broadband noise in the auditory nerve. J Neurophysiol 91:2051–2065PubMedCrossRef
Zurück zum Zitat Lu T, Carroll J, Zeng FG (2007) On acoustic simulations of cochlear implants. Conference on Implantable Auditory Prostheses, Lake Tahoe, CA Lu T, Carroll J, Zeng FG (2007) On acoustic simulations of cochlear implants. Conference on Implantable Auditory Prostheses, Lake Tahoe, CA
Zurück zum Zitat Moxon EC (1971) Neural and mechanical responses to electrical stimulation of the cat’s inner ear. Dissertation, Massachusetts Institute of Technology Moxon EC (1971) Neural and mechanical responses to electrical stimulation of the cat’s inner ear. Dissertation, Massachusetts Institute of Technology
Zurück zum Zitat Nelson PB, Jin S-H, Carney AE, Nelson DA (2003) Understanding speech in modulated interference: cochlear implant users and normal-hearing listeners. J Acoust Soc Am 113:961–968PubMedCrossRef Nelson PB, Jin S-H, Carney AE, Nelson DA (2003) Understanding speech in modulated interference: cochlear implant users and normal-hearing listeners. J Acoust Soc Am 113:961–968PubMedCrossRef
Zurück zum Zitat Schroeder MR (1966) Vocoders: analysis and synthesis. Proc IEEE 54:720–734CrossRef Schroeder MR (1966) Vocoders: analysis and synthesis. Proc IEEE 54:720–734CrossRef
Zurück zum Zitat Schroeder MR (1970) Synthesis of low peak-factor signals and binary sequences with low autocorrelation. IEEE Trans Inf Theory 16:85–89 Schroeder MR (1970) Synthesis of low peak-factor signals and binary sequences with low autocorrelation. IEEE Trans Inf Theory 16:85–89
Zurück zum Zitat Shamma S, Lorenzi C (2013) On the balance of envelope and temporal fine structure in the encoding of speech in the early auditory system. J Acoust Soc Am 133:2818–2833PubMedCrossRef Shamma S, Lorenzi C (2013) On the balance of envelope and temporal fine structure in the encoding of speech in the early auditory system. J Acoust Soc Am 133:2818–2833PubMedCrossRef
Zurück zum Zitat Shannon RV, Zeng F-G, Kamath V, Wygonski J, Ekelid M (1995) Speech recognition with primarily temporal cues. Science 270:303–304PubMedCrossRef Shannon RV, Zeng F-G, Kamath V, Wygonski J, Ekelid M (1995) Speech recognition with primarily temporal cues. Science 270:303–304PubMedCrossRef
Zurück zum Zitat Stone MA, Füllgrabe C, Moore BCJ (2008) Benefit of high-rate envelope cues in vocoder processing: effect of number of channels and spectral region. J Acoust Soc Am 124:2272–2282PubMedCrossRef Stone MA, Füllgrabe C, Moore BCJ (2008) Benefit of high-rate envelope cues in vocoder processing: effect of number of channels and spectral region. J Acoust Soc Am 124:2272–2282PubMedCrossRef
Zurück zum Zitat Studebaker GA (1985) A “rationalized” arcsine transform. J Speech Hear Res 28:455–462PubMed Studebaker GA (1985) A “rationalized” arcsine transform. J Speech Hear Res 28:455–462PubMed
Zurück zum Zitat Swaminathan J, Heinz MG (2011) Predicted effects of sensorineural hearing loss on across-fiber envelope coding in the auditory nerve. J Acoust Soc Am 129:4001–4013PubMedCentralPubMedCrossRef Swaminathan J, Heinz MG (2011) Predicted effects of sensorineural hearing loss on across-fiber envelope coding in the auditory nerve. J Acoust Soc Am 129:4001–4013PubMedCentralPubMedCrossRef
Zurück zum Zitat Swaminathan J, Heinz MG (2012) Psychophysiological analyses demonstrate the importance of neural envelope coding for speech perception in noise. J Neurosci 32:1747–1756PubMedCentralPubMedCrossRef Swaminathan J, Heinz MG (2012) Psychophysiological analyses demonstrate the importance of neural envelope coding for speech perception in noise. J Neurosci 32:1747–1756PubMedCentralPubMedCrossRef
Zurück zum Zitat Van Deun L, Van Wieringen A, Wouters J (2010) Spatial hearing perception benefits in young children with normal hearing and cochlear implants. Ear Hear 31:702–713PubMed Van Deun L, Van Wieringen A, Wouters J (2010) Spatial hearing perception benefits in young children with normal hearing and cochlear implants. Ear Hear 31:702–713PubMed
Zurück zum Zitat van Hoesel RJM, Tyler RS (2003) Speech perception, localization, and lateralization with bilateral cochlear implants. J Acoust Soc Am 113:1617–1630PubMedCrossRef van Hoesel RJM, Tyler RS (2003) Speech perception, localization, and lateralization with bilateral cochlear implants. J Acoust Soc Am 113:1617–1630PubMedCrossRef
Zurück zum Zitat Whitmal NA, Poissant SF, Freyman RL, Helfer KS (2007) Speech intelligibility in cochlear implant simulations: effects of carrier type, interfering noise, and subject experience. J Acoust Soc Am 122:2376–2388PubMedCrossRef Whitmal NA, Poissant SF, Freyman RL, Helfer KS (2007) Speech intelligibility in cochlear implant simulations: effects of carrier type, interfering noise, and subject experience. J Acoust Soc Am 122:2376–2388PubMedCrossRef
Zurück zum Zitat Young E, Sachs M (1979) Representation of steady-state vowels in the temporal aspects of the discharge patterns of populations of auditory-nerve fibers. J Acoust Soc Am 66:1381–1403PubMedCrossRef Young E, Sachs M (1979) Representation of steady-state vowels in the temporal aspects of the discharge patterns of populations of auditory-nerve fibers. J Acoust Soc Am 66:1381–1403PubMedCrossRef
Zurück zum Zitat Zilany MS, Bruce IC (2006) Modeling auditory-nerve responses for high sound pressure levels in the normal and impaired auditory periphery. J Acoust Soc Am 120:1446–1466 Zilany MS, Bruce IC (2006) Modeling auditory-nerve responses for high sound pressure levels in the normal and impaired auditory periphery. J Acoust Soc Am 120:1446–1466
Zurück zum Zitat Zilany MS, Bruce IC (2007) Representation of the vowel /ε/ in normal and impaired auditory nerve fibers: model predictions of responses in cats. J Acoust Soc Am 122:402–417PubMedCrossRef Zilany MS, Bruce IC (2007) Representation of the vowel /ε/ in normal and impaired auditory nerve fibers: model predictions of responses in cats. J Acoust Soc Am 122:402–417PubMedCrossRef
Zurück zum Zitat Zilany MS, Bruce IC, Nelson PC, Carney LH (2009) A phenomenological model of the synapse between the inner hair cell and auditory nerve: long-term adaptation with power-law dynamics. J Acoust Soc Am 126:2390–2412PubMedCentralPubMedCrossRef Zilany MS, Bruce IC, Nelson PC, Carney LH (2009) A phenomenological model of the synapse between the inner hair cell and auditory nerve: long-term adaptation with power-law dynamics. J Acoust Soc Am 126:2390–2412PubMedCentralPubMedCrossRef
Metadaten
Titel
Speech Perception in Noise with a Harmonic Complex Excited Vocoder
verfasst von
Tyler H. Churchill
Alan Kan
Matthew J. Goupell
Antje Ihlefeld
Ruth Y. Litovsky
Publikationsdatum
01.04.2014
Verlag
Springer US
Erschienen in
Journal of the Association for Research in Otolaryngology / Ausgabe 2/2014
Print ISSN: 1525-3961
Elektronische ISSN: 1438-7573
DOI
https://doi.org/10.1007/s10162-013-0435-7

Weitere Artikel der Ausgabe 2/2014

Journal of the Association for Research in Otolaryngology 2/2014 Zur Ausgabe

Update HNO

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert – ganz bequem per eMail.