Skip to main content
Erschienen in: Magnetic Resonance Materials in Physics, Biology and Medicine 2/2015

01.04.2015 | Research Article

Influence of blood/tissue differences in contrast agent relaxivity on tracer-based MR perfusion measurements

verfasst von: Arvid Morell, Fredrik Lennmyr, Ove Jonsson, Thomas Tovedal, Jean Pettersson, Jonas Bergquist, Vitas Zemgulis, Gunnar Myrdal Einarsson, Stefan Thelin, Håkan Ahlström, Atle Bjørnerud

Erschienen in: Magnetic Resonance Materials in Physics, Biology and Medicine | Ausgabe 2/2015

Einloggen, um Zugang zu erhalten

Abstract

Purpose

Perfusion assessment by monitoring the transport of a tracer bolus depends critically on conversion of signal intensity into tracer concentration. Two main assumptions are generally applied for this conversion; (1) contrast agent relaxivity is identical in blood and tissue, (2) change in signal intensity depends only on the primary relaxation effect. The purpose of the study was to assess the validity and influence of these assumptions.

Materials and methods

Blood and cerebral tissue relaxivities r1, r2, and r2* for gadodiamide were measured in four pigs at 1.5 T. Gadolinium concentration was determined by inductively coupled plasma atomic emission spectroscopy. Influence of the relaxivities, secondary relaxation effects and choice of singular value decomposition (SVD) regularization threshold was studied by simulations.

Results

In vivo relaxivities relative to blood concentration [in s−1 mM−1 for blood, gray matter (GM), white matter (WM)] were for r1 (2.614 ± 1.061, 0.010 ± 0.001, 0.004 ± 0.002), r2 (5.088 ± 0.952, 0.091 ± 0.008, 0.059 ± 0.014), and r2* (13.292 ± 3.928, 1.696 ± 0.157, 0.910 ± 0.139). Although substantial, by a nonparametric test for paired samples, the differences were not statistically significant. The GM to WM blood volume ratio was estimated to 2.6 ± 0.9 by r1, 1.6 ± 0.3 by r2, and 1.9 ± 0.2 by r2*. Secondary relaxation was found to reduce the tissue blood flow, as did the SVD regularization threshold.

Conclusion

Contrast agent relaxivity is not identical in blood and tissue leading to substantial errors. Further errors are introduced by secondary relaxation effects and the SVD regularization.
Literatur
1.
Zurück zum Zitat Meier P, Zierler KL (1954) On the theory of the indicator-dilution method for measurement of blood flow and volume. J Appl Physiol 6:731–744CrossRef Meier P, Zierler KL (1954) On the theory of the indicator-dilution method for measurement of blood flow and volume. J Appl Physiol 6:731–744CrossRef
2.
Zurück zum Zitat Zierler KL (1965) Equations for measuring blood flow by external monitoring of radioisotopes. Circ Res 16:309–321CrossRef Zierler KL (1965) Equations for measuring blood flow by external monitoring of radioisotopes. Circ Res 16:309–321CrossRef
3.
Zurück zum Zitat Belliveau JW, Rosen BR, Kantor HL, Rzedzian RR, Kennedy DN, McKinstry RC, Vevea JM, Cohen MS, Pykett IL, Brady TJ (1990) Functional cerebral imaging by susceptibility-contrast NMR. Magn Reson Med 14:538–546CrossRef Belliveau JW, Rosen BR, Kantor HL, Rzedzian RR, Kennedy DN, McKinstry RC, Vevea JM, Cohen MS, Pykett IL, Brady TJ (1990) Functional cerebral imaging by susceptibility-contrast NMR. Magn Reson Med 14:538–546CrossRef
4.
Zurück zum Zitat Larson KB, Perman WH, Perlmutter JS, Gado MH, Ollinger JM, Zierler K (1994) Tracer-kinetic analysis for measuring regional cerebral blood flow by dynamic nuclear magnetic resonance imaging. J Theor Biol 170:1–14CrossRef Larson KB, Perman WH, Perlmutter JS, Gado MH, Ollinger JM, Zierler K (1994) Tracer-kinetic analysis for measuring regional cerebral blood flow by dynamic nuclear magnetic resonance imaging. J Theor Biol 170:1–14CrossRef
5.
Zurück zum Zitat Villringer A, Rosen BR, Belliveau JW, Ackerman JL, Lauffer RB, Buxton RB, Chao YS, Wedeen VJ, Brady TJ (1988) Dynamic imaging with lanthanide chelates in normal brain: contrast due to magnetic susceptibility effects. Magn Reson Med 6:164–174CrossRef Villringer A, Rosen BR, Belliveau JW, Ackerman JL, Lauffer RB, Buxton RB, Chao YS, Wedeen VJ, Brady TJ (1988) Dynamic imaging with lanthanide chelates in normal brain: contrast due to magnetic susceptibility effects. Magn Reson Med 6:164–174CrossRef
6.
Zurück zum Zitat Larsson HB, Hansen AE, Berg HK, Rostrup E, Haraldseth O (2008) Dynamic contrast-enhanced quantitative perfusion measurement of the brain using T1-weighted MRI at 3T. J Magn Reson Imaging 27:754–762CrossRef Larsson HB, Hansen AE, Berg HK, Rostrup E, Haraldseth O (2008) Dynamic contrast-enhanced quantitative perfusion measurement of the brain using T1-weighted MRI at 3T. J Magn Reson Imaging 27:754–762CrossRef
7.
Zurück zum Zitat Young GS, Setayesh K (2009) Spin-echo echo-planar perfusion MR imaging in the differential diagnosis of solitary enhancing brain lesions: distinguishing solitary metastases from primary glioma. AJNR Am J Neuroradiol 30:575–577CrossRef Young GS, Setayesh K (2009) Spin-echo echo-planar perfusion MR imaging in the differential diagnosis of solitary enhancing brain lesions: distinguishing solitary metastases from primary glioma. AJNR Am J Neuroradiol 30:575–577CrossRef
8.
Zurück zum Zitat Knutsson L, Stahlberg F, Wirestam R (2010) Absolute quantification of perfusion using dynamic susceptibility contrast MRI: pitfalls and possibilities. Magn Reson Mater Phys 23:1–21CrossRef Knutsson L, Stahlberg F, Wirestam R (2010) Absolute quantification of perfusion using dynamic susceptibility contrast MRI: pitfalls and possibilities. Magn Reson Mater Phys 23:1–21CrossRef
9.
Zurück zum Zitat Rempp KA, Brix G, Wenz F, Becker CR, Guckel F, Lorenz WJ (1994) Quantification of regional cerebral blood flow and volume with dynamic susceptibility contrast-enhanced MR imaging. Radiology 193:637–641CrossRef Rempp KA, Brix G, Wenz F, Becker CR, Guckel F, Lorenz WJ (1994) Quantification of regional cerebral blood flow and volume with dynamic susceptibility contrast-enhanced MR imaging. Radiology 193:637–641CrossRef
10.
Zurück zum Zitat Ostergaard L, Weisskoff RM, Chesler DA, Gyldensted C, Rosen BR (1996) High resolution measurement of cerebral blood flow using intravascular tracer bolus passages. Part I: mathematical approach and statistical analysis. Magn Reson Med 36:715–725CrossRef Ostergaard L, Weisskoff RM, Chesler DA, Gyldensted C, Rosen BR (1996) High resolution measurement of cerebral blood flow using intravascular tracer bolus passages. Part I: mathematical approach and statistical analysis. Magn Reson Med 36:715–725CrossRef
11.
Zurück zum Zitat Jonsson O, Morell A, Zemgulis V, Lundstrom E, Tovedal T, Einarsson GM, Thelin S, Ahlstrom H, Bjornerud A, Lennmyr F (2011) Minimal safe arterial blood flow during selective antegrade cerebral perfusion at 20 degrees centigrade. Ann Thorac Surg 91:1198–1205CrossRef Jonsson O, Morell A, Zemgulis V, Lundstrom E, Tovedal T, Einarsson GM, Thelin S, Ahlstrom H, Bjornerud A, Lennmyr F (2011) Minimal safe arterial blood flow during selective antegrade cerebral perfusion at 20 degrees centigrade. Ann Thorac Surg 91:1198–1205CrossRef
12.
Zurück zum Zitat Van Wagoner M, Worah D (1993) Gadodiamide injection. First human experience with the nonionic magnetic resonance imaging enhancement agent. Invest Radiol 28(Suppl 1):S44–S48CrossRef Van Wagoner M, Worah D (1993) Gadodiamide injection. First human experience with the nonionic magnetic resonance imaging enhancement agent. Invest Radiol 28(Suppl 1):S44–S48CrossRef
13.
Zurück zum Zitat Deichmann R, Haase A (1992) Quantification of T1 values by SNAPSHOT-FLASH NMR imaging. J Magn Reson 96:5 Deichmann R, Haase A (1992) Quantification of T1 values by SNAPSHOT-FLASH NMR imaging. J Magn Reson 96:5
14.
Zurück zum Zitat Kuppusamy K, Lin W, Cizek GR, Haacke EM (1996) In vivo regional cerebral blood volume: quantitative assessment with 3D T1-weighted pre- and postcontrast MR imaging. Radiology 201:106–112CrossRef Kuppusamy K, Lin W, Cizek GR, Haacke EM (1996) In vivo regional cerebral blood volume: quantitative assessment with 3D T1-weighted pre- and postcontrast MR imaging. Radiology 201:106–112CrossRef
15.
Zurück zum Zitat Lin W, Celik A, Paczynski RP (1999) Regional cerebral blood volume: a comparison of the dynamic imaging and the steady state methods. J Magn Reson Imaging 9:44–52CrossRef Lin W, Celik A, Paczynski RP (1999) Regional cerebral blood volume: a comparison of the dynamic imaging and the steady state methods. J Magn Reson Imaging 9:44–52CrossRef
16.
Zurück zum Zitat Newman GC, Delucia-Deranja E, Tudorica A, Hospod FE, Patlak CS (2003) Cerebral blood volume measurements by T*2-weighted MRI and contrast infusion. Magn Reson Med 50:844–855CrossRef Newman GC, Delucia-Deranja E, Tudorica A, Hospod FE, Patlak CS (2003) Cerebral blood volume measurements by T*2-weighted MRI and contrast infusion. Magn Reson Med 50:844–855CrossRef
17.
Zurück zum Zitat Ito H, Kanno I, Kato C, Sasaki T, Ishii K, Ouchi Y, Iida A, Okazawa H, Hayashida K, Tsuyuguchi N, Kuwabara Y, Senda M (2004) Database of normal human cerebral blood flow, cerebral blood volume, cerebral oxygen extraction fraction and cerebral metabolic rate of oxygen measured by positron emission tomography with 15O-labelled carbon dioxide or water, carbon monoxide and oxygen: a multicentre study in Japan. Eur J Nucl Med Mol Imaging 31:635–643CrossRef Ito H, Kanno I, Kato C, Sasaki T, Ishii K, Ouchi Y, Iida A, Okazawa H, Hayashida K, Tsuyuguchi N, Kuwabara Y, Senda M (2004) Database of normal human cerebral blood flow, cerebral blood volume, cerebral oxygen extraction fraction and cerebral metabolic rate of oxygen measured by positron emission tomography with 15O-labelled carbon dioxide or water, carbon monoxide and oxygen: a multicentre study in Japan. Eur J Nucl Med Mol Imaging 31:635–643CrossRef
18.
Zurück zum Zitat Morell A, Ahlstrom H, Schoenberg SO, Abildgaard A, Bock M, Bjornerud A (2008) Quantitative renal cortical perfusion in human subjects with magnetic resonance imaging using iron-oxide nanoparticles: influence of T1 shortening. Acta Radiol 49:955–962CrossRef Morell A, Ahlstrom H, Schoenberg SO, Abildgaard A, Bock M, Bjornerud A (2008) Quantitative renal cortical perfusion in human subjects with magnetic resonance imaging using iron-oxide nanoparticles: influence of T1 shortening. Acta Radiol 49:955–962CrossRef
19.
Zurück zum Zitat Bjornerud A, Emblem KE (2010) A fully automated method for quantitative cerebral hemodynamic analysis using DSC–MRI. J Cereb Blood Flow Metab 30:1066–1078CrossRef Bjornerud A, Emblem KE (2010) A fully automated method for quantitative cerebral hemodynamic analysis using DSC–MRI. J Cereb Blood Flow Metab 30:1066–1078CrossRef
20.
Zurück zum Zitat Calamante F, Connelly A, van Osch MJ (2009) Nonlinear DeltaR*2 effects in perfusion quantification using bolus-tracking MRI. Magn Reson Med 61:486–492CrossRef Calamante F, Connelly A, van Osch MJ (2009) Nonlinear DeltaR*2 effects in perfusion quantification using bolus-tracking MRI. Magn Reson Med 61:486–492CrossRef
21.
Zurück zum Zitat Calamante F, Gadian DG, Connelly A (2000) Delay and dispersion effects in dynamic susceptibility contrast MRI: simulations using singular value decomposition. Magn Reson Med 44:466–473CrossRef Calamante F, Gadian DG, Connelly A (2000) Delay and dispersion effects in dynamic susceptibility contrast MRI: simulations using singular value decomposition. Magn Reson Med 44:466–473CrossRef
22.
Zurück zum Zitat Rohrer M, Bauer H, Mintorovitch J, Requardt M, Weinmann HJ (2005) Comparison of magnetic properties of MRI contrast media solutions at different magnetic field strengths. Invest Radiol 40:715–724CrossRef Rohrer M, Bauer H, Mintorovitch J, Requardt M, Weinmann HJ (2005) Comparison of magnetic properties of MRI contrast media solutions at different magnetic field strengths. Invest Radiol 40:715–724CrossRef
23.
Zurück zum Zitat Knutsson L, Stahlberg F, Wirestam R (2004) Aspects on the accuracy of cerebral perfusion parameters obtained by dynamic susceptibility contrast MRI: a simulation study. Magn Reson Imaging 22:789–798CrossRef Knutsson L, Stahlberg F, Wirestam R (2004) Aspects on the accuracy of cerebral perfusion parameters obtained by dynamic susceptibility contrast MRI: a simulation study. Magn Reson Imaging 22:789–798CrossRef
24.
Zurück zum Zitat Liu HL, Pu Y, Liu Y, Nickerson L, Andrews T, Fox PT, Gao JH (1999) Cerebral blood flow measurement by dynamic contrast MRI using singular value decomposition with an adaptive threshold. Magn Reson Med 42:167–172CrossRef Liu HL, Pu Y, Liu Y, Nickerson L, Andrews T, Fox PT, Gao JH (1999) Cerebral blood flow measurement by dynamic contrast MRI using singular value decomposition with an adaptive threshold. Magn Reson Med 42:167–172CrossRef
25.
Zurück zum Zitat Murase K, Shinohara M, Yamazaki Y (2001) Accuracy of deconvolution analysis based on singular value decomposition for quantification of cerebral blood flow using dynamic susceptibility contrast-enhanced magnetic resonance imaging. Phys Med Biol 46:3147–3159CrossRef Murase K, Shinohara M, Yamazaki Y (2001) Accuracy of deconvolution analysis based on singular value decomposition for quantification of cerebral blood flow using dynamic susceptibility contrast-enhanced magnetic resonance imaging. Phys Med Biol 46:3147–3159CrossRef
26.
Zurück zum Zitat Calamante F, Vonken EJ, van Osch MJ (2007) Contrast agent concentration measurements affecting quantification of bolus-tracking perfusion MRI. Magn Reson Med 58:544–553CrossRef Calamante F, Vonken EJ, van Osch MJ (2007) Contrast agent concentration measurements affecting quantification of bolus-tracking perfusion MRI. Magn Reson Med 58:544–553CrossRef
27.
Zurück zum Zitat Knutsson L, Stahlberg F, Wirestam R, van Osch MJ (2013) Effects of blood DeltaR2* non-linearity on absolute perfusion quantification using DSC–MRI: comparison with Xe-133 SPECT. Magn Reson Imaging 31:651–655CrossRef Knutsson L, Stahlberg F, Wirestam R, van Osch MJ (2013) Effects of blood DeltaR2* non-linearity on absolute perfusion quantification using DSC–MRI: comparison with Xe-133 SPECT. Magn Reson Imaging 31:651–655CrossRef
28.
Zurück zum Zitat van Osch MJ, Vonken EJ, Viergever MA, van der Grond J, Bakker CJ (2003) Measuring the arterial input function with gradient echo sequences. Magn Reson Med 49:1067–1076CrossRef van Osch MJ, Vonken EJ, Viergever MA, van der Grond J, Bakker CJ (2003) Measuring the arterial input function with gradient echo sequences. Magn Reson Med 49:1067–1076CrossRef
29.
Zurück zum Zitat Kiselev VG (2001) On the theoretical basis of perfusion measurements by dynamic susceptibility contrast MRI. Magn Reson Med 46:1113–1122CrossRef Kiselev VG (2001) On the theoretical basis of perfusion measurements by dynamic susceptibility contrast MRI. Magn Reson Med 46:1113–1122CrossRef
30.
Zurück zum Zitat Simonsen CZ, Ostergaard L, Smith DF, Vestergaard-Poulsen P, Gyldensted C (2000) Comparison of gradient- and spin-echo imaging: CBF, CBV, and MTT measurements by bolus tracking. J Magn Reson Imaging 12:411–416CrossRef Simonsen CZ, Ostergaard L, Smith DF, Vestergaard-Poulsen P, Gyldensted C (2000) Comparison of gradient- and spin-echo imaging: CBF, CBV, and MTT measurements by bolus tracking. J Magn Reson Imaging 12:411–416CrossRef
31.
Zurück zum Zitat Boxerman JL, Hamberg LM, Rosen BR, Weisskoff RM (1995) MR contrast due to intravascular magnetic susceptibility perturbations. Magn Reson Med 34:555–566CrossRef Boxerman JL, Hamberg LM, Rosen BR, Weisskoff RM (1995) MR contrast due to intravascular magnetic susceptibility perturbations. Magn Reson Med 34:555–566CrossRef
32.
Zurück zum Zitat Bjornerud A, Johansson LO, Ahlstrom HK (2002) Renal T(*)(2) perfusion using an iron oxide nanoparticle contrast agent–influence of T(1) relaxation on the first-pass response. Magn Reson Med 47:298–304CrossRef Bjornerud A, Johansson LO, Ahlstrom HK (2002) Renal T(*)(2) perfusion using an iron oxide nanoparticle contrast agent–influence of T(1) relaxation on the first-pass response. Magn Reson Med 47:298–304CrossRef
33.
Zurück zum Zitat Kjolby BF, Ostergaard L, Kiselev VG (2006) Theoretical model of intravascular paramagnetic tracers effect on tissue relaxation. Magn Reson Med 56:187–197CrossRef Kjolby BF, Ostergaard L, Kiselev VG (2006) Theoretical model of intravascular paramagnetic tracers effect on tissue relaxation. Magn Reson Med 56:187–197CrossRef
34.
Zurück zum Zitat Newman GC, Hospod FE, Patlak CS, Fain SE, Pulfer KA, Cook TD, O’Sullivan F (2006) Experimental estimates of the constants relating signal change to contrast concentration for cerebral blood volume by T2* MRI. J Cereb Blood Flow Metab 26:760–770CrossRef Newman GC, Hospod FE, Patlak CS, Fain SE, Pulfer KA, Cook TD, O’Sullivan F (2006) Experimental estimates of the constants relating signal change to contrast concentration for cerebral blood volume by T2* MRI. J Cereb Blood Flow Metab 26:760–770CrossRef
35.
Zurück zum Zitat Johnson KM, Tao JZ, Kennan RP, Gore JC (2000) Intravascular susceptibility agent effects on tissue transverse relaxation rates in vivo. Magn Reson Med 44:909–914CrossRef Johnson KM, Tao JZ, Kennan RP, Gore JC (2000) Intravascular susceptibility agent effects on tissue transverse relaxation rates in vivo. Magn Reson Med 44:909–914CrossRef
36.
Zurück zum Zitat Morkenborg J, Taagehoj JF, Vaever PN, Frokiaer J, Djurhuus JC, Stodkilde-Jorgensen H (1998) In vivo measurement of T1 and T2 relaxivity in the kidney cortex of the pig-based on a two-compartment steady-state model. Magn Reson Imaging 16:933–942CrossRef Morkenborg J, Taagehoj JF, Vaever PN, Frokiaer J, Djurhuus JC, Stodkilde-Jorgensen H (1998) In vivo measurement of T1 and T2 relaxivity in the kidney cortex of the pig-based on a two-compartment steady-state model. Magn Reson Imaging 16:933–942CrossRef
37.
Zurück zum Zitat Pedersen M, Klarhofer M, Christensen S, Ouallet JC, Ostergaard L, Dousset V, Moonen C (2004) Quantitative cerebral perfusion using the PRESTO acquisition scheme. J Magn Reson Imaging 20:930–940CrossRef Pedersen M, Klarhofer M, Christensen S, Ouallet JC, Ostergaard L, Dousset V, Moonen C (2004) Quantitative cerebral perfusion using the PRESTO acquisition scheme. J Magn Reson Imaging 20:930–940CrossRef
Metadaten
Titel
Influence of blood/tissue differences in contrast agent relaxivity on tracer-based MR perfusion measurements
verfasst von
Arvid Morell
Fredrik Lennmyr
Ove Jonsson
Thomas Tovedal
Jean Pettersson
Jonas Bergquist
Vitas Zemgulis
Gunnar Myrdal Einarsson
Stefan Thelin
Håkan Ahlström
Atle Bjørnerud
Publikationsdatum
01.04.2015
Verlag
Springer Berlin Heidelberg
Erschienen in
Magnetic Resonance Materials in Physics, Biology and Medicine / Ausgabe 2/2015
Print ISSN: 0968-5243
Elektronische ISSN: 1352-8661
DOI
https://doi.org/10.1007/s10334-014-0452-5

Weitere Artikel der Ausgabe 2/2015

Magnetic Resonance Materials in Physics, Biology and Medicine 2/2015 Zur Ausgabe

Ein Drittel der jungen Ärztinnen und Ärzte erwägt abzuwandern

07.05.2024 Medizinstudium Nachrichten

Extreme Arbeitsverdichtung und kaum Supervision: Dr. Andrea Martini, Sprecherin des Bündnisses Junge Ärztinnen und Ärzte (BJÄ) über den Frust des ärztlichen Nachwuchses und die Vorteile des Rucksack-Modells.

Endlich: Zi zeigt, mit welchen PVS Praxen zufrieden sind

IT für Ärzte Nachrichten

Darauf haben viele Praxen gewartet: Das Zi hat eine Liste von Praxisverwaltungssystemen veröffentlicht, die von Nutzern positiv bewertet werden. Eine gute Grundlage für wechselwillige Ärztinnen und Psychotherapeuten.

Akuter Schwindel: Wann lohnt sich eine MRT?

28.04.2024 Schwindel Nachrichten

Akuter Schwindel stellt oft eine diagnostische Herausforderung dar. Wie nützlich dabei eine MRT ist, hat eine Studie aus Finnland untersucht. Immerhin einer von sechs Patienten wurde mit akutem ischämischem Schlaganfall diagnostiziert.

Screening-Mammografie offenbart erhöhtes Herz-Kreislauf-Risiko

26.04.2024 Mammografie Nachrichten

Routinemäßige Mammografien helfen, Brustkrebs frühzeitig zu erkennen. Anhand der Röntgenuntersuchung lassen sich aber auch kardiovaskuläre Risikopatientinnen identifizieren. Als zuverlässiger Anhaltspunkt gilt die Verkalkung der Brustarterien.

Update Radiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.