Skip to main content
Erschienen in: Magnetic Resonance Materials in Physics, Biology and Medicine 3/2015

01.06.2015 | Research Article

Free-breathing, zero-TE MR lung imaging

verfasst von: Fabio Gibiino, Laura Sacolick, Anne Menini, Luigi Landini, Florian Wiesinger

Erschienen in: Magnetic Resonance Materials in Physics, Biology and Medicine | Ausgabe 3/2015

Einloggen, um Zugang zu erhalten

Abstract

Object

The investigation of three-dimensional radial, zero-echo time (TE) imaging for high-resolution, free-breathing magnetic resonance (MR) lung imaging using prospective and retrospective motion correction.

Materials and methods

Zero-TE was implemented similarly to the rotating-ultra-fast-imaging-sequence, providing 3D, isotropic, radial imaging with proton density contrast. Respiratory motion was addressed using prospective triggering (PT), prospective gating (PG) and retrospective gating (RG) with physiological signals obtained from a respiratory belt and interleaved pencil beam and DC navigators. The methods were demonstrated on four healthy volunteers at 3T.

Results

3D, radial zero-TE imaging with high imaging bandwidth and nominally zero echo-time enables efficient capture of short-lived signals from the lung parenchyma and the vessels. Compared to Cartesian encoding, unaccounted for free-breathing respiration resulted in only benign blurring artifacts confined to the origin of motion. Breath holding froze respiration but achieved only limited image resolution (~1.8 mm, 30 s). PT and PG obtained similar quality expiratory-phase images at 1.2 mm resolution in ~6 min scan time. RG allowed multi-phase imaging in ~15 min, derived from eight individually stored averages.

Conclusion

Zero-TE appears to be an attractive pulse sequence for 3D isotropic lung imaging. Prospective and retrospective approaches provide high-quality, free-breathing MR lung imaging within reasonable scan time.
Literatur
1.
Zurück zum Zitat Hatabu H, Alsop DC, Listerud J, Bonnet M, Gefter WB (1999) T2* and proton density measurement of normal human lung parenchyma using submillisecond echo time gradient echo magnetic resonance imaging. Eur J Radiol 29:245–252CrossRefPubMed Hatabu H, Alsop DC, Listerud J, Bonnet M, Gefter WB (1999) T2* and proton density measurement of normal human lung parenchyma using submillisecond echo time gradient echo magnetic resonance imaging. Eur J Radiol 29:245–252CrossRefPubMed
2.
Zurück zum Zitat Stock KW, Chen Q, Hatabu H, Edelman RR (1999) Magnetic resonance T2* measurements of the normal human lung in vivo with ultra-short echo times. Magn Reson Imaging 17:997–1000CrossRefPubMed Stock KW, Chen Q, Hatabu H, Edelman RR (1999) Magnetic resonance T2* measurements of the normal human lung in vivo with ultra-short echo times. Magn Reson Imaging 17:997–1000CrossRefPubMed
3.
Zurück zum Zitat Yu J, Xue Y, Song HK (2011) Comparison of lung T2* during free-breathing at 1.5 T and 3.0 T with ultrashort echo time imaging. Magn Reson Med 66:248–254CrossRefPubMedCentralPubMed Yu J, Xue Y, Song HK (2011) Comparison of lung T2* during free-breathing at 1.5 T and 3.0 T with ultrashort echo time imaging. Magn Reson Med 66:248–254CrossRefPubMedCentralPubMed
4.
Zurück zum Zitat Wild JM, Marshall H, Bock M, Schad LR, Jakob PM, Puderbach M, Molinari F, Van Beek EJ, Biederer J (2012) MRI of the lung (1/3): methods. Insights Imaging 3(4):345–353CrossRefPubMedCentralPubMed Wild JM, Marshall H, Bock M, Schad LR, Jakob PM, Puderbach M, Molinari F, Van Beek EJ, Biederer J (2012) MRI of the lung (1/3): methods. Insights Imaging 3(4):345–353CrossRefPubMedCentralPubMed
5.
Zurück zum Zitat Biederer J, Beer M, Hirsch W, Wild J, Fabel M, Puderbach M, Van Beek EJ (2012) MRI of the lung (2/3). Why … when … how? Insights. Imaging 3(4):355–371 Biederer J, Beer M, Hirsch W, Wild J, Fabel M, Puderbach M, Van Beek EJ (2012) MRI of the lung (2/3). Why … when … how? Insights. Imaging 3(4):355–371
6.
Zurück zum Zitat Biederer J, Mirsadraee S, Beer M, Molinari F, Hintze C, Bauman G, Both M, Van Beek EJ, Wild J, Puderbach M (2012) MRI of the lung (3/3)—current applications and future perspectives. Insights Imaging 3(4):373–386CrossRefPubMedCentralPubMed Biederer J, Mirsadraee S, Beer M, Molinari F, Hintze C, Bauman G, Both M, Van Beek EJ, Wild J, Puderbach M (2012) MRI of the lung (3/3)—current applications and future perspectives. Insights Imaging 3(4):373–386CrossRefPubMedCentralPubMed
7.
Zurück zum Zitat Wielpütz M, Kauczor H (2012) MRI of the lung: state of the art. Diagn Interv Radiol 18:344–353PubMed Wielpütz M, Kauczor H (2012) MRI of the lung: state of the art. Diagn Interv Radiol 18:344–353PubMed
8.
Zurück zum Zitat Weick S, Breuer FA, Ehses P, Völker M, Hintze C, Biederer J, Jakob PM (2013) DC-gated high resolution three-dimensional lung imaging during free-breathing. J Magn Reson Imaging 37:727–732CrossRefPubMed Weick S, Breuer FA, Ehses P, Völker M, Hintze C, Biederer J, Jakob PM (2013) DC-gated high resolution three-dimensional lung imaging during free-breathing. J Magn Reson Imaging 37:727–732CrossRefPubMed
9.
Zurück zum Zitat Rajaram S, Swift AJ, Capener D, Telfer A, Davies C, Hill C, Condliffe R, Elliot C, Hurdman J, Kiely DG, Wild JM (2012) Lung morphology assessment with balanced steady-state free precession MR imaging compared with CT. Radiology 263(2):569–577CrossRefPubMed Rajaram S, Swift AJ, Capener D, Telfer A, Davies C, Hill C, Condliffe R, Elliot C, Hurdman J, Kiely DG, Wild JM (2012) Lung morphology assessment with balanced steady-state free precession MR imaging compared with CT. Radiology 263(2):569–577CrossRefPubMed
10.
Zurück zum Zitat Bieri O (2013) Ultra-fast steady state free precession and its application to in vivo1H morphological and functional lung imaging at 1.5 Tesla. Magn Reson Med 70:657–663CrossRefPubMed Bieri O (2013) Ultra-fast steady state free precession and its application to in vivo1H morphological and functional lung imaging at 1.5 Tesla. Magn Reson Med 70:657–663CrossRefPubMed
11.
Zurück zum Zitat Hatabu H, Gaa J, Tadamura E, Edinburgh KJ, Stock KW, Garpestad E, Edelman RR (1999) MR imaging of pulmonary parenchyma with a half-Fourier single-shot turbo spin-echo (HASTE) sequence. Eur J Radiol 29(2):152–159CrossRefPubMed Hatabu H, Gaa J, Tadamura E, Edinburgh KJ, Stock KW, Garpestad E, Edelman RR (1999) MR imaging of pulmonary parenchyma with a half-Fourier single-shot turbo spin-echo (HASTE) sequence. Eur J Radiol 29(2):152–159CrossRefPubMed
12.
Zurück zum Zitat Bergin CJ, Pauly JM, Macovski A (1991) Lung parenchyma: projection reconstruction MR imaging. Radiology 179(3):777–781CrossRefPubMed Bergin CJ, Pauly JM, Macovski A (1991) Lung parenchyma: projection reconstruction MR imaging. Radiology 179(3):777–781CrossRefPubMed
14.
Zurück zum Zitat Lewis CE, Prato FS, Drost DJ, Nicholson RL (1986) Comparison of respiratory triggering and gating techniques for the removal of respiratory artifacts in MR imaging. Radiology 160:803–810CrossRefPubMed Lewis CE, Prato FS, Drost DJ, Nicholson RL (1986) Comparison of respiratory triggering and gating techniques for the removal of respiratory artifacts in MR imaging. Radiology 160:803–810CrossRefPubMed
15.
Zurück zum Zitat Li D, Kaushikkar S, Haacke EM, Woodard PK, Dhawale PJ, Kroeker RM, Laub G, Kuginuki Y, Gutierrez FR (1996) Coronary arteries: three-dimensional MR imaging with retrospective respiratory gating. Radiology 201:857–863CrossRefPubMed Li D, Kaushikkar S, Haacke EM, Woodard PK, Dhawale PJ, Kroeker RM, Laub G, Kuginuki Y, Gutierrez FR (1996) Coronary arteries: three-dimensional MR imaging with retrospective respiratory gating. Radiology 201:857–863CrossRefPubMed
16.
Zurück zum Zitat Morita S, Suzuki K, Machida H, Fujimura M, Ohnishi T, Imura C, Ueno E (2008) Compression belt for navigator-triggered trueFISP whole-heart coronary magnetic resonance angiography: study in healthy volunteers. Magn Reson Med Sci 7(2):79–83CrossRefPubMed Morita S, Suzuki K, Machida H, Fujimura M, Ohnishi T, Imura C, Ueno E (2008) Compression belt for navigator-triggered trueFISP whole-heart coronary magnetic resonance angiography: study in healthy volunteers. Magn Reson Med Sci 7(2):79–83CrossRefPubMed
17.
Zurück zum Zitat Hafner S (1994) Fast imaging in liquids and solids with the back-projection Low Angle ShoT (BLAST) technique. Magn Reson Imaging 12(7):1047–1051CrossRefPubMed Hafner S (1994) Fast imaging in liquids and solids with the back-projection Low Angle ShoT (BLAST) technique. Magn Reson Imaging 12(7):1047–1051CrossRefPubMed
18.
Zurück zum Zitat Madio DP, Lowe IJ (1995) Ultra-fast imaging using low flip angles and fids. Magn Reson Med 34:525–529CrossRefPubMed Madio DP, Lowe IJ (1995) Ultra-fast imaging using low flip angles and fids. Magn Reson Med 34:525–529CrossRefPubMed
19.
Zurück zum Zitat Corum CA, Idiyatullin D, Moeller S, Chamberlain R, Sachdev D, Garwood M (2010) Lung Imaging in the Mouse with SWIFT. ISMRM p. 204 Corum CA, Idiyatullin D, Moeller S, Chamberlain R, Sachdev D, Garwood M (2010) Lung Imaging in the Mouse with SWIFT. ISMRM p. 204
20.
Zurück zum Zitat Wu Y, Ackerman JL, Chesler DA, Graham L, Wang Y, Glimcher MJ (2003) Density of organic matrix of native mineralized bone measured by water-and fat-suppressed proton projection MRI. Magn Reson Med 50:59–68CrossRefPubMed Wu Y, Ackerman JL, Chesler DA, Graham L, Wang Y, Glimcher MJ (2003) Density of organic matrix of native mineralized bone measured by water-and fat-suppressed proton projection MRI. Magn Reson Med 50:59–68CrossRefPubMed
21.
Zurück zum Zitat Weiger M, Brunner DO, Dietrich BE, Müller CF, Pruessmann KP (2013) ZTE imaging in humans. Magn Reson Med 70(2):328–332CrossRefPubMed Weiger M, Brunner DO, Dietrich BE, Müller CF, Pruessmann KP (2013) ZTE imaging in humans. Magn Reson Med 70(2):328–332CrossRefPubMed
22.
Zurück zum Zitat Weiger M, Pruessmann KP, Hennel F (2011) MRI with zero echo time: hard versus sweep pulse excitation. Magn Reson Med 66(2):379–389CrossRefPubMed Weiger M, Pruessmann KP, Hennel F (2011) MRI with zero echo time: hard versus sweep pulse excitation. Magn Reson Med 66(2):379–389CrossRefPubMed
23.
Zurück zum Zitat Grodzki DM, Jakob PM, Heismann B (2012) Ultrashort echo time imaging using pointwise encoding time reduction with radial acquisition (PETRA). Magn Reson Med 67:510–518CrossRefPubMed Grodzki DM, Jakob PM, Heismann B (2012) Ultrashort echo time imaging using pointwise encoding time reduction with radial acquisition (PETRA). Magn Reson Med 67:510–518CrossRefPubMed
24.
Zurück zum Zitat Weiger M, Pruessmann KP (2012) MRI with zero echo time. Encyclopedia Magn Reson 1:311–322 Weiger M, Pruessmann KP (2012) MRI with zero echo time. Encyclopedia Magn Reson 1:311–322
25.
Zurück zum Zitat Kuethe DO, Adolphi NL, Fukushima E (2007) Short data-acquisition times improve projection images of lung tissue. Magn Reson Med 57:1058–1064CrossRefPubMed Kuethe DO, Adolphi NL, Fukushima E (2007) Short data-acquisition times improve projection images of lung tissue. Magn Reson Med 57:1058–1064CrossRefPubMed
26.
Zurück zum Zitat Grodzki DM, Jakob PM, Heismann B (2012) Correcting slice selectivity in hard pulse sequences. J Magn Reson 214(1):61–67CrossRefPubMed Grodzki DM, Jakob PM, Heismann B (2012) Correcting slice selectivity in hard pulse sequences. J Magn Reson 214(1):61–67CrossRefPubMed
27.
Zurück zum Zitat Wong STS, Roos MS (1994) A strategy for sampling on a sphere applied to 3D selective RF pulse design. Magn Reson Med 32(6):778–784CrossRefPubMed Wong STS, Roos MS (1994) A strategy for sampling on a sphere applied to 3D selective RF pulse design. Magn Reson Med 32(6):778–784CrossRefPubMed
28.
Zurück zum Zitat Nehrke K, Börnert P, Groen J, Smink J, Böck JC (1999) On the performance and accuracy of 2D navigator pulses. Magn Reson Imaging 17(8):1173–1181CrossRefPubMed Nehrke K, Börnert P, Groen J, Smink J, Böck JC (1999) On the performance and accuracy of 2D navigator pulses. Magn Reson Imaging 17(8):1173–1181CrossRefPubMed
29.
Zurück zum Zitat Brau AC, Brittain JH (2006) Generalized self-navigated motion detection technique: Preliminary investigation in abdominal imaging. Magn Reson Med 55(2):263–270CrossRefPubMed Brau AC, Brittain JH (2006) Generalized self-navigated motion detection technique: Preliminary investigation in abdominal imaging. Magn Reson Med 55(2):263–270CrossRefPubMed
31.
Zurück zum Zitat Lustig M, Donoho D, Pauly JM (2007) Sparse MRI: the application of compressed sensing for rapid MR imaging. Magn Reson Med 58(6):1182–1195CrossRefPubMed Lustig M, Donoho D, Pauly JM (2007) Sparse MRI: the application of compressed sensing for rapid MR imaging. Magn Reson Med 58(6):1182–1195CrossRefPubMed
32.
Zurück zum Zitat Block KT, Uecker M, Frahm J (2007) Undersampled radial MRI with multiple coils. Iterative image reconstruction using a total variation constraint. Magn Reson Med 57:1086–1098CrossRefPubMed Block KT, Uecker M, Frahm J (2007) Undersampled radial MRI with multiple coils. Iterative image reconstruction using a total variation constraint. Magn Reson Med 57:1086–1098CrossRefPubMed
33.
Zurück zum Zitat Knoll F, Clason C, Bredies K, Uecker M, Stollberger R (2012) Parallel imaging with nonlinear reconstruction using variational penalties. Magn Reson Med 67(1):34–41CrossRefPubMedCentralPubMed Knoll F, Clason C, Bredies K, Uecker M, Stollberger R (2012) Parallel imaging with nonlinear reconstruction using variational penalties. Magn Reson Med 67(1):34–41CrossRefPubMedCentralPubMed
34.
Zurück zum Zitat Tsao J, Boesiger P, Pruessmann KP (2003) k-t BLAST and k-t SENSE: dynamic MRI with high frame rate exploiting spatiotemporal correlations. Magn Reson Med 50(5):1031–1042CrossRefPubMed Tsao J, Boesiger P, Pruessmann KP (2003) k-t BLAST and k-t SENSE: dynamic MRI with high frame rate exploiting spatiotemporal correlations. Magn Reson Med 50(5):1031–1042CrossRefPubMed
35.
Zurück zum Zitat Odille F, Vuissoz PA, Marie PY, Felblinger J (2008) Generalized reconstruction by inversion of coupled systems (GRICS) applied to free-breathing MRI. Magn Reson Med 60(1):146–157CrossRefPubMed Odille F, Vuissoz PA, Marie PY, Felblinger J (2008) Generalized reconstruction by inversion of coupled systems (GRICS) applied to free-breathing MRI. Magn Reson Med 60(1):146–157CrossRefPubMed
36.
Zurück zum Zitat Usman M, Atkinson D, Odille F, Kolbitsch C, Vaillant G, Schaeffter T, Batchelor PG, Prieto C (2013) Motion corrected compressed sensing for free-breathing dynamic cardiac MRI. Magn Reson Med 70(2):504–516CrossRefPubMed Usman M, Atkinson D, Odille F, Kolbitsch C, Vaillant G, Schaeffter T, Batchelor PG, Prieto C (2013) Motion corrected compressed sensing for free-breathing dynamic cardiac MRI. Magn Reson Med 70(2):504–516CrossRefPubMed
Metadaten
Titel
Free-breathing, zero-TE MR lung imaging
verfasst von
Fabio Gibiino
Laura Sacolick
Anne Menini
Luigi Landini
Florian Wiesinger
Publikationsdatum
01.06.2015
Verlag
Springer Berlin Heidelberg
Erschienen in
Magnetic Resonance Materials in Physics, Biology and Medicine / Ausgabe 3/2015
Print ISSN: 0968-5243
Elektronische ISSN: 1352-8661
DOI
https://doi.org/10.1007/s10334-014-0459-y

Weitere Artikel der Ausgabe 3/2015

Magnetic Resonance Materials in Physics, Biology and Medicine 3/2015 Zur Ausgabe

Endlich: Zi zeigt, mit welchen PVS Praxen zufrieden sind

IT für Ärzte Nachrichten

Darauf haben viele Praxen gewartet: Das Zi hat eine Liste von Praxisverwaltungssystemen veröffentlicht, die von Nutzern positiv bewertet werden. Eine gute Grundlage für wechselwillige Ärzte und Psychotherapeuten.

Akuter Schwindel: Wann lohnt sich eine MRT?

28.04.2024 Schwindel Nachrichten

Akuter Schwindel stellt oft eine diagnostische Herausforderung dar. Wie nützlich dabei eine MRT ist, hat eine Studie aus Finnland untersucht. Immerhin einer von sechs Patienten wurde mit akutem ischämischem Schlaganfall diagnostiziert.

Screening-Mammografie offenbart erhöhtes Herz-Kreislauf-Risiko

26.04.2024 Mammografie Nachrichten

Routinemäßige Mammografien helfen, Brustkrebs frühzeitig zu erkennen. Anhand der Röntgenuntersuchung lassen sich aber auch kardiovaskuläre Risikopatientinnen identifizieren. Als zuverlässiger Anhaltspunkt gilt die Verkalkung der Brustarterien.

S3-Leitlinie zu Pankreaskrebs aktualisiert

23.04.2024 Pankreaskarzinom Nachrichten

Die Empfehlungen zur Therapie des Pankreaskarzinoms wurden um zwei Off-Label-Anwendungen erweitert. Und auch im Bereich der Früherkennung gibt es Aktualisierungen.

Update Radiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.