Skip to main content
Erschienen in: Journal of Inherited Metabolic Disease 1/2013

01.01.2013 | Original Article

Human neuronal coenzyme Q10 deficiency results in global loss of mitochondrial respiratory chain activity, increased mitochondrial oxidative stress and reversal of ATP synthase activity: implications for pathogenesis and treatment

verfasst von: Kate E. C. Duberley, Andrey Y. Abramov, Annapurna Chalasani, Simon J. Heales, Shamima Rahman, Iain P. Hargreaves

Erschienen in: Journal of Inherited Metabolic Disease | Ausgabe 1/2013

Einloggen, um Zugang zu erhalten

Abstract

Disorders of coenzyme Q10 (CoQ10) biosynthesis represent the most treatable subgroup of mitochondrial diseases. Neurological involvement is frequently observed in CoQ10 deficiency, typically presenting as cerebellar ataxia and/or seizures. The aetiology of the neurological presentation of CoQ10 deficiency has yet to be fully elucidated and therefore in order to investigate these phenomena we have established a neuronal cell model of CoQ10 deficiency by treatment of neuronal SH-SY5Y cell line with para-aminobenzoic acid (PABA). PABA is a competitive inhibitor of the CoQ10 biosynthetic pathway enzyme, COQ2. PABA treatment (1 mM) resulted in a 54 % decrease (46 % residual CoQ10) decrease in neuronal CoQ10 status (p < 0.01). Reduction of neuronal CoQ10 status was accompanied by a progressive decrease in mitochondrial respiratory chain enzyme activities, with a 67.5 % decrease in cellular ATP production at 46 % residual CoQ10. Mitochondrial oxidative stress increased four-fold at 77 % and 46 % residual CoQ10. A 40 % increase in mitochondrial membrane potential was detected at 46 % residual CoQ10 with depolarisation following oligomycin treatment suggesting a reversal of complex V activity. This neuronal cell model provides insights into the effects of CoQ10 deficiency on neuronal mitochondrial function and oxidative stress, and will be an important tool to evaluate candidate therapies for neurological conditions associated with CoQ10 deficiency.
Literatur
Zurück zum Zitat Abramov AY et al (2010) Mechanism of neurodegeneration of neurons with mitochondrial DNA mutations. Brain 133(Pt 3):797–807PubMedCrossRef Abramov AY et al (2010) Mechanism of neurodegeneration of neurons with mitochondrial DNA mutations. Brain 133(Pt 3):797–807PubMedCrossRef
Zurück zum Zitat Alam S, Nambudiri A, Rudney H (1975) 4-Hydroxybenzoate: polyprenyl transferase and the prenylation of 4-aminobenzoate in mammalian tissues. Arch Biochem Biophys 171(1):183–190PubMedCrossRef Alam S, Nambudiri A, Rudney H (1975) 4-Hydroxybenzoate: polyprenyl transferase and the prenylation of 4-aminobenzoate in mammalian tissues. Arch Biochem Biophys 171(1):183–190PubMedCrossRef
Zurück zum Zitat Auré K et al (2004) Progression despite replacement of a myopathic form of coenzyme Progression despite replacement of a myopathic form of coenzyme Q10 defect. Neurology 63(4):727–729PubMedCrossRef Auré K et al (2004) Progression despite replacement of a myopathic form of coenzyme Progression despite replacement of a myopathic form of coenzyme Q10 defect. Neurology 63(4):727–729PubMedCrossRef
Zurück zum Zitat Benzi G, Curti D, Pastoris O, Marzatico F, Villa RF (1991) Sequential damage in mitochondrial complexes by peroxidative stress. Neurochem Res 16(12):1295–1302PubMedCrossRef Benzi G, Curti D, Pastoris O, Marzatico F, Villa RF (1991) Sequential damage in mitochondrial complexes by peroxidative stress. Neurochem Res 16(12):1295–1302PubMedCrossRef
Zurück zum Zitat Biedler JL et al (1978) Multiple neurotransmitter synthesis by human neuroblastoma cell lines and clones multiple neurotransmitter synthesis by human neuroblastoma cell lines and clones. Cancer Res 38:3751–3757PubMed Biedler JL et al (1978) Multiple neurotransmitter synthesis by human neuroblastoma cell lines and clones multiple neurotransmitter synthesis by human neuroblastoma cell lines and clones. Cancer Res 38:3751–3757PubMed
Zurück zum Zitat Bradford M (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254PubMedCrossRef Bradford M (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254PubMedCrossRef
Zurück zum Zitat Davey GP, Peuchen S, Clark JB (1998) Energy thresholds in brain mitochondria. Biochemistry 273(21):12753–12757 Davey GP, Peuchen S, Clark JB (1998) Energy thresholds in brain mitochondria. Biochemistry 273(21):12753–12757
Zurück zum Zitat Duncan A et al (2005) Determination of coenzyme Q10 status in blood mononuclear cells, skeletal muscle, and plasma by HPLC with di-propoxy-coenzyme Q10 as an internal standard. Clin Chem 51(12):2380–2382PubMedCrossRef Duncan A et al (2005) Determination of coenzyme Q10 status in blood mononuclear cells, skeletal muscle, and plasma by HPLC with di-propoxy-coenzyme Q10 as an internal standard. Clin Chem 51(12):2380–2382PubMedCrossRef
Zurück zum Zitat Gandhi S et al (2009) PINK1-associated Parkinson’s disease is caused by neuronal vulnerability to calcium-induced cell death. Mol Cell 33:627–638PubMedCrossRef Gandhi S et al (2009) PINK1-associated Parkinson’s disease is caused by neuronal vulnerability to calcium-induced cell death. Mol Cell 33:627–638PubMedCrossRef
Zurück zum Zitat González-Aragón D et al (2005) Coenzyme Q and the regulation of intracellular steady-state levels of superoxide in HL-60 cells. BioFactors 25(1–4):31–41CrossRef González-Aragón D et al (2005) Coenzyme Q and the regulation of intracellular steady-state levels of superoxide in HL-60 cells. BioFactors 25(1–4):31–41CrossRef
Zurück zum Zitat Hargreaves, Heales, Land (1999) Mitochondrial respiratory chain defects are not accompanied by an increase in the activities of lactate dehydrogenase or manganese superoxide dismutase in paediatric skeletal muscle biopsies. J Inherit Metab Dis 22(8):925–931PubMedCrossRef Hargreaves, Heales, Land (1999) Mitochondrial respiratory chain defects are not accompanied by an increase in the activities of lactate dehydrogenase or manganese superoxide dismutase in paediatric skeletal muscle biopsies. J Inherit Metab Dis 22(8):925–931PubMedCrossRef
Zurück zum Zitat Heales SJ, Davies SE, Bates TE (1995) Depletion of brain glutathione is accompanied by impaired mitochondrial function and decreased N-acetyl aspartate concentration. Neurochem Res 20(1):31–38PubMedCrossRef Heales SJ, Davies SE, Bates TE (1995) Depletion of brain glutathione is accompanied by impaired mitochondrial function and decreased N-acetyl aspartate concentration. Neurochem Res 20(1):31–38PubMedCrossRef
Zurück zum Zitat Kowaltowski V (1999) Mitochondrial damage induced by conditions of oxidative stress. Free Radic Biol Med 26(3–4):463–471PubMedCrossRef Kowaltowski V (1999) Mitochondrial damage induced by conditions of oxidative stress. Free Radic Biol Med 26(3–4):463–471PubMedCrossRef
Zurück zum Zitat López-Martín JM et al (2007) Missense mutation of the COQ2 gene causes defects of bioenergetics and de novo pyrimidine synthesis. Hum Mol Genet 16(9):1091–1097PubMedCrossRef López-Martín JM et al (2007) Missense mutation of the COQ2 gene causes defects of bioenergetics and de novo pyrimidine synthesis. Hum Mol Genet 16(9):1091–1097PubMedCrossRef
Zurück zum Zitat Lowry O et al (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193(1):265–271PubMed Lowry O et al (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193(1):265–271PubMed
Zurück zum Zitat McKenzie M et al (2007) Mitochondrial ND5 gene variation associated with encephalomyopathy and mitochondrial ATP consumption. J Biol Chem 282(51):36845–36852PubMedCrossRef McKenzie M et al (2007) Mitochondrial ND5 gene variation associated with encephalomyopathy and mitochondrial ATP consumption. J Biol Chem 282(51):36845–36852PubMedCrossRef
Zurück zum Zitat Montero R et al (2007) Clinical, biochemical and molecular aspects of cerebellar ataxia and Coenzyme Q10 deficiency. Cerebellum 6(2):118–122PubMedCrossRef Montero R et al (2007) Clinical, biochemical and molecular aspects of cerebellar ataxia and Coenzyme Q10 deficiency. Cerebellum 6(2):118–122PubMedCrossRef
Zurück zum Zitat Ogasahara S et al (1989) Muscle coenzyme Q deficiency in familial mitochondrial encephalomyopathy. Proc Natl Acad Sci U S A 86(7):2379–2382PubMedCrossRef Ogasahara S et al (1989) Muscle coenzyme Q deficiency in familial mitochondrial encephalomyopathy. Proc Natl Acad Sci U S A 86(7):2379–2382PubMedCrossRef
Zurück zum Zitat Papa S, Skulachev VP (1997) Reactive oxygen species, mitochondria, apoptosis and aging. Mol Cell Biochem 174(1–2):305–319PubMedCrossRef Papa S, Skulachev VP (1997) Reactive oxygen species, mitochondria, apoptosis and aging. Mol Cell Biochem 174(1–2):305–319PubMedCrossRef
Zurück zum Zitat Pineda M et al (2010) Coenzyme Q10-responsive ataxia: 2-year-treatment follow-up. Mov Disord 25(9):1262–1268CrossRef Pineda M et al (2010) Coenzyme Q10-responsive ataxia: 2-year-treatment follow-up. Mov Disord 25(9):1262–1268CrossRef
Zurück zum Zitat Quinzii CM et al (2008) Respiratory chain dysfunction and oxidative stress correlate with severity of primary CoQ10 deficiency. FASEB J 22(6):1874–1885PubMedCrossRef Quinzii CM et al (2008) Respiratory chain dysfunction and oxidative stress correlate with severity of primary CoQ10 deficiency. FASEB J 22(6):1874–1885PubMedCrossRef
Zurück zum Zitat Quinzii CM et al (2010) Reactive oxygen species, oxidative stress, and cell death correlate with level of CoQ10 deficiency. FASEB J 24:3733–3743PubMedCrossRef Quinzii CM et al (2010) Reactive oxygen species, oxidative stress, and cell death correlate with level of CoQ10 deficiency. FASEB J 24:3733–3743PubMedCrossRef
Zurück zum Zitat Rahman et al (2001) Neonatal presentation of coenzyme Q10 deficiency. J Pediatr 139(3):456–458PubMedCrossRef Rahman et al (2001) Neonatal presentation of coenzyme Q10 deficiency. J Pediatr 139(3):456–458PubMedCrossRef
Zurück zum Zitat Rahman S, Clarke CF, Hirano M (2012) 176th ENMC International Workshop: Diagnosis and treatment of coenzyme Q10 deficiency. Neuromuscul Disord 22(1):76–86PubMedCrossRef Rahman S, Clarke CF, Hirano M (2012) 176th ENMC International Workshop: Diagnosis and treatment of coenzyme Q10 deficiency. Neuromuscul Disord 22(1):76–86PubMedCrossRef
Zurück zum Zitat Riederer P et al (1989) Transition metals, ferritin, glutathione, and ascorbic acid in parkinsonian brains. J Neurochem 52(2):515–520PubMedCrossRef Riederer P et al (1989) Transition metals, ferritin, glutathione, and ascorbic acid in parkinsonian brains. J Neurochem 52(2):515–520PubMedCrossRef
Zurück zum Zitat Rodríguez-Hernández A et al (2009) Coenzyme Q deficiency triggers mitochondria degradation by mitophagy. Autophagy 5(1):19–32PubMedCrossRef Rodríguez-Hernández A et al (2009) Coenzyme Q deficiency triggers mitochondria degradation by mitophagy. Autophagy 5(1):19–32PubMedCrossRef
Zurück zum Zitat Skulachev VP (1998) Uncoupling: new approaches to an old problem of bioenergetics. Biochim Biophys Acta 1363(2):100–124PubMedCrossRef Skulachev VP (1998) Uncoupling: new approaches to an old problem of bioenergetics. Biochim Biophys Acta 1363(2):100–124PubMedCrossRef
Zurück zum Zitat Soussi B et al (1990) Cytochrome c oxidase and cardiolipin alterations in response to skeletal muscle ischaemia and reperfusion. Acta Physiol Scand 138(2):107–114PubMedCrossRef Soussi B et al (1990) Cytochrome c oxidase and cardiolipin alterations in response to skeletal muscle ischaemia and reperfusion. Acta Physiol Scand 138(2):107–114PubMedCrossRef
Zurück zum Zitat Sugioka K, Nakano M, Totsune-Nakano H, Minakami H, Tero-Kubota S (1988) Mechanism of O2- generation in reduction and oxidation cycle of ubiquinones in a model of mitochondrial electron transport systems. Biochim Biophys Acta 936(3):377–385PubMedCrossRef Sugioka K, Nakano M, Totsune-Nakano H, Minakami H, Tero-Kubota S (1988) Mechanism of O2- generation in reduction and oxidation cycle of ubiquinones in a model of mitochondrial electron transport systems. Biochim Biophys Acta 936(3):377–385PubMedCrossRef
Zurück zum Zitat Turrens JF, Boveris A (1980) Generation of superoxide anion by the NADH dehydrogenase of bovine heart mitochondria. Biochem J 191(2):421–427PubMed Turrens JF, Boveris A (1980) Generation of superoxide anion by the NADH dehydrogenase of bovine heart mitochondria. Biochem J 191(2):421–427PubMed
Zurück zum Zitat Turrens, Alexandre, Lehninger (1985) Ubisemiquinone is the electron donor for superoxide by complex iii of heart mitochondria ’ formation. Arch Biochem Biophys 237(2):408–414PubMedCrossRef Turrens, Alexandre, Lehninger (1985) Ubisemiquinone is the electron donor for superoxide by complex iii of heart mitochondria ’ formation. Arch Biochem Biophys 237(2):408–414PubMedCrossRef
Zurück zum Zitat Turunen M, Olsson J, Dallner G (2004) Metabolism and function of coenzyme Q. Biochim Biophys Acta Biomembr 1660(1-2):171–199CrossRef Turunen M, Olsson J, Dallner G (2004) Metabolism and function of coenzyme Q. Biochim Biophys Acta Biomembr 1660(1-2):171–199CrossRef
Zurück zum Zitat Ullrich O et al (1999) Poly-ADP ribose polymerase activates nuclear proteasome to degrade oxidatively damaged histones. Proc Natl Acad Sci U S A 96(11):6223–6228PubMedCrossRef Ullrich O et al (1999) Poly-ADP ribose polymerase activates nuclear proteasome to degrade oxidatively damaged histones. Proc Natl Acad Sci U S A 96(11):6223–6228PubMedCrossRef
Zurück zum Zitat Wallace DC (2000) Mitochondrial defects in cardiomyopathy and neuromuscular disease. Am Hear J 139(2 Pt 3):S70–S85CrossRef Wallace DC (2000) Mitochondrial defects in cardiomyopathy and neuromuscular disease. Am Hear J 139(2 Pt 3):S70–S85CrossRef
Zurück zum Zitat Wittig I et al (2007) Functional assays in high-resolution clear native gels to quantify mitochondrial complexes in human biopsies and cell lines. Electrophoresis 28(21):3811–3820PubMedCrossRef Wittig I et al (2007) Functional assays in high-resolution clear native gels to quantify mitochondrial complexes in human biopsies and cell lines. Electrophoresis 28(21):3811–3820PubMedCrossRef
Zurück zum Zitat Yao Z et al (2012) Cell metabolism affects selective vulnerability in PINK1-associated Parkinson’s disease. J Cell Sci 124:4194–4202CrossRef Yao Z et al (2012) Cell metabolism affects selective vulnerability in PINK1-associated Parkinson’s disease. J Cell Sci 124:4194–4202CrossRef
Zurück zum Zitat Zhang Y, Marcillat O, Giulivi C, Ernster L (1990) The oxidative inactivation of mitochondrial electron transport chain components and ATPase. J Biol Chem 265(27):16330–16336PubMed Zhang Y, Marcillat O, Giulivi C, Ernster L (1990) The oxidative inactivation of mitochondrial electron transport chain components and ATPase. J Biol Chem 265(27):16330–16336PubMed
Zurück zum Zitat Zhu H et al (2005) Role of Nrf2 signaling in regulation of antioxidants and phase 2 enzymes in cardiac fibroblasts: protection against reactive oxygen and nitrogen species-induced cell injury. FEBS Lett 579(14):3029–3036PubMedCrossRef Zhu H et al (2005) Role of Nrf2 signaling in regulation of antioxidants and phase 2 enzymes in cardiac fibroblasts: protection against reactive oxygen and nitrogen species-induced cell injury. FEBS Lett 579(14):3029–3036PubMedCrossRef
Zurück zum Zitat Zhu H et al (2007) Glutathione and glutathione-linked enzymes in normal human aortic smooth muscle cells: chemical inducibility and protection against reactive oxygen and nitrogen species-induced injury. Mol Cell Biochem 301(1–2):47–59PubMedCrossRef Zhu H et al (2007) Glutathione and glutathione-linked enzymes in normal human aortic smooth muscle cells: chemical inducibility and protection against reactive oxygen and nitrogen species-induced injury. Mol Cell Biochem 301(1–2):47–59PubMedCrossRef
Metadaten
Titel
Human neuronal coenzyme Q10 deficiency results in global loss of mitochondrial respiratory chain activity, increased mitochondrial oxidative stress and reversal of ATP synthase activity: implications for pathogenesis and treatment
verfasst von
Kate E. C. Duberley
Andrey Y. Abramov
Annapurna Chalasani
Simon J. Heales
Shamima Rahman
Iain P. Hargreaves
Publikationsdatum
01.01.2013
Verlag
Springer Netherlands
Erschienen in
Journal of Inherited Metabolic Disease / Ausgabe 1/2013
Print ISSN: 0141-8955
Elektronische ISSN: 1573-2665
DOI
https://doi.org/10.1007/s10545-012-9511-0

Weitere Artikel der Ausgabe 1/2013

Journal of Inherited Metabolic Disease 1/2013 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Echinokokkose medikamentös behandeln oder operieren?

06.05.2024 DCK 2024 Kongressbericht

Die Therapie von Echinokokkosen sollte immer in spezialisierten Zentren erfolgen. Eine symptomlose Echinokokkose kann – egal ob von Hunde- oder Fuchsbandwurm ausgelöst – konservativ erfolgen. Wenn eine Op. nötig ist, kann es sinnvoll sein, vorher Zysten zu leeren und zu desinfizieren. 

Umsetzung der POMGAT-Leitlinie läuft

03.05.2024 DCK 2024 Kongressbericht

Seit November 2023 gibt es evidenzbasierte Empfehlungen zum perioperativen Management bei gastrointestinalen Tumoren (POMGAT) auf S3-Niveau. Vieles wird schon entsprechend der Empfehlungen durchgeführt. Wo es im Alltag noch hapert, zeigt eine Umfrage in einem Klinikverbund.

Proximale Humerusfraktur: Auch 100-Jährige operieren?

01.05.2024 DCK 2024 Kongressbericht

Mit dem demographischen Wandel versorgt auch die Chirurgie immer mehr betagte Menschen. Von Entwicklungen wie Fast-Track können auch ältere Menschen profitieren und bei proximaler Humerusfraktur können selbst manche 100-Jährige noch sicher operiert werden.

Die „Zehn Gebote“ des Endokarditis-Managements

30.04.2024 Endokarditis Leitlinie kompakt

Worauf kommt es beim Management von Personen mit infektiöser Endokarditis an? Eine Kardiologin und ein Kardiologe fassen die zehn wichtigsten Punkte der neuen ESC-Leitlinie zusammen.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.