Skip to main content
Erschienen in: Journal of Inherited Metabolic Disease 6/2013

Open Access 01.11.2013 | Original Article

A structural mapping of mutations causing succinyl-CoA:3-ketoacid CoA transferase (SCOT) deficiency

verfasst von: Naeem Shafqat, Kate L. Kavanagh, Jörn Oliver Sass, Ernst Christensen, Toshiyuki Fukao, Wen Hwa Lee, Udo Oppermann, Wyatt W. Yue

Erschienen in: Journal of Inherited Metabolic Disease | Ausgabe 6/2013

Abstract

Succinyl-CoA:3-ketoacid CoA transferase (SCOT) deficiency is a rare inherited metabolic disorder of ketone metabolism, characterized by ketoacidotic episodes and often permanent ketosis. To date there are ∼20 disease-associated alleles on the OXCT1 gene that encodes the mitochondrial enzyme SCOT. SCOT catalyzes the first, rate-limiting step of ketone body utilization in peripheral tissues, by transferring a CoA moiety from succinyl-CoA to form acetoacetyl-CoA, for entry into the tricarboxylic acid cycle for energy production. We have determined the crystal structure of human SCOT, providing a molecular understanding of the reported mutations based on their potential structural effects. An interactive version of this manuscript (which may contain additional mutations appended after acceptance of this manuscript) may be found on the web address: http://​www.​thesgc.​org/​jimd/​SCOT.
Begleitmaterial
Hinweise
Communicated by: Johannes Zschocke

Electronic supplementary material

The online version of this article (doi:10.​1007/​s10545-013-9589-z) contains supplementary material, which is available to authorized users.

Database reference

OMIM, 245050; GenBank, 4557817; URL, http://​www.​thesgc.​org/​SCOT; PDB code, 3DLX
Abkürzungen
SCOT
Succinyl-CoA:3-ketoacid CoA transferase
OXCT1
3-oxoacid CoA transferase 1

Introduction

Ketone bodies (acetoacetate, 3-hydroxybutyrate, acetone), predominantly produced in the liver, provide extrahepatic organs such as heart and brain with energy when glucose supply is limited (Sass 2012). Any enzyme malfunction in ketone body utilization (ketolysis) could lead to a buildup of unused ketone bodies and result in ketoacidosis. Succinyl-CoA:3-ketoacid CoA transferase (SCOT; gene name OXCT1; EC 2.8.3.5) catalyzes the first and rate-determining step of ketolysis (Fukao et al 2000; Kassovska-Bratinova et al 1996). SCOT is a member of the CoA transferase family I that activates acetoacetate by transferring a CoA moiety from succinyl-CoA to form acetoacetyl-CoA. Acetoacetyl-CoA is further metabolized by acetoacetyl-CoA thiolase into two acetyl-CoA molecules which enter the citric acid cycle for energy production (Williamson et al 1971). SCOT is a mitochondrial enzyme expressed in all extrahepatic tissues, but abundant in the heart, brain and kidney (Fukao et al 1997). There exists also a testis-specific isoform SCOT-t (gene name OXCT2), sharing 74 % amino acid identity with SCOT (Tanaka et al 2002).
Mutations in the human OXCT1 gene on chromosome location 5p13 result in the rare autosomal recessive deficiency of SCOT (OMIM 245050) (Mitchell and Fukao 2001). SCOT-deficient patients, often with neonatal onset, present with recurrent ketoacidosis episodes that could be life-threatening, but with no symptoms between episodes (Niezen-Koning et al 1997). The number of reported cases is few, and symptoms, which may vary among individuals, include vomiting, lethargy and tachypnea, as well as unconsciousness caused by severe ketoacidosis (Berry et al 2001; Sakazaki et al 1995; Snyderman et al 1998). Permanent ketosis or ketonuria is a characteristic symptom but may be absent in patients retaining residual SCOT activity (Fukao et al 2010; Fukao et al 2011; Fukao et al 2004). Approximately 30 affected probands were reported to date and 24 mutations identified (Table 1). Here we report the crystal structure of human SCOT, and present an interactive mapping of missense mutations to understand the molecular basis of SCOT deficiency.
Table 1
Mutations reported for the human OXCT1 gene causing SCOT deficiency. Additional phenotype information can be found in the supplementary text
#
DNA change
Exon
Mutation site
Mutated residue
Protein change
Conservation
Reference
1a,c,d
c.112C > Tb
2
Arg38
Cys
p.R38C
 
(Alkén 2008)
2c
c.335T > Ab
4
Val112
Asp
p.V112D
Semi-Conserved
(Alkén 2008)
3
c.398T > A
4
Val133
Glu
p.V133E
Semi-Conserved
(Song et al 1998)
4
c.644C > T
6
Ala215
Val
p.A215V
Conserved
(Fukao et al 2011)
5
c.656G > A
6
Gly219
Glu
p.G219E
Conserved
(Fukao et al 2000)
6
c.661G > A
6
Val221
Met
p.V221M
Semi-Conserved
(Fukao et al 2000)
7
c.677G > A
7
Ser226
Asn
p.S226N
Semi-Conserved
(Fukao et al 2011)
8c
c.785C > G
8
Pro262
Arg
p.P262R
Conserved
Sass et al (unpublished)
9c
c.802C > T
8
Arg268
Cys
p.R268C
Conserved
Sass et al (unpublished)
10
c.803G > A
8
Arg268
His
p.R268H
Conserved
(Fukao et al 2007)
11
c.971G > A
10
Gly324
Glu
p.G324E
Conserved
(Fukao et al 2000)
12
c.980T > C
10
Leu327
Pro
p.L327P
Conserved
(Fukao et al 2011)
13
c.1162A > Gb
12
Met388
Val
p.M388V
Conserved
(Alkén 2008)
14
c.1210G > T
13
Val404
Phe
p.V404F
Conserved
(Fukao et al 2011)
15
c.1213T > C
13
Ser405
Pro
p.S405P
Conserved
(Fukao et al 2011)
16†‡
b
14
Leu429
Phe
p.L429F
Conserved
(Alkén 2008)
17
c.1304C > A
14
Thr435
Asn
p.T435N
Conserved
(Fukao et al 2010; Fukao et al 2004)
18
c.1367G > T
15
Cys456
Phe
p.C456F
Conserved
(Song et al 1998)
19
c.1402C > T
15
Arg468
Cys
p.R468C
Low-conserved
(Fukao et al 2011)
Insertion, deletion, frameshift mutations
20
c.649C > T
6
Arg217
X
p.R217X
Semi-Conserved
(Longo et al 2004)
21
c.817G > T
8
Glu273
X
p.E273X
Variable
(Fukao et al 2011)
22
c.848C > G
9
Ser283
X
p.S283X
Conserved
(Yamada et al 2007)
23
c.658-666dup
6
Asn220-Ile222
 
p.N220-I222 dup
Conserved (Asn220), Semi-conserved (Val221,Ile222)
(Fukao et al 2010)
24
c.1561T > Cb
6
X521R
Arg
Adding 20 AAs
 
(Alkén 2008)
a The R38C mutation resides in the N-terminus of the protein that is disordered and not modelled in the crystal structure
bDNA change in the R38C, V122D, M388V and X521R mutations are deduced from amino acid substitution. The DNA change in the L429F mutation is not reported and cannot be deduced from amino acid substitution
cThese mutations have not been confirmed as pathogenic by expression analysis
dR38C and L429F mutations coexisted in one mutant allele

Experimental procedures

Expression, purification & crystallization

DNA fragment encoding the catalytic domain of human SCOT (aa 40–520; GenBank entry 4557817) was subcloned into pNIC-CTHF vector incorporating a C-terminal His6-tag. The plasmid was transformed into BL21(DE3)-R3-pRARE2, cultured in Terrific Broth at 37 °C, and induced with 0.5 mM IPTG. Cells were homogenized in lysis buffer (50 mM HEPES pH 7.5, 500 mM NaCl, 5 % glycerol, 5 mM imidazole, 1 mM PMSF, 0.5 mM TCEP), centrifuged to remove cell debris, and the supernatant was purified by Nickel affinity (HisTrap 1 ml GE/Amersham) and size exclusion (HiLoad 16/60 Superdex S200) chromatography. Purified protein was concentrated to 21 mg/ml and stored in 10 mM HEPES pH 7.5, 500 mM NaCl, 5 % (w/v) glycerol and 0.5 mM TCEP at −80 °C. Crystals were grown by vapour diffusion at 20 °C, in sitting drops mixing 100 nl protein pre-incubated with 2 mM acetyl-CoA and 300 nl reservoir solution containing 0.20 M sodium chloride, 0.1 M Tris pH 9.0 and 25 % (w/v) polyethylene glycol 3,350. Crystals were cryo-protected in mother liquor containing 20 % (w/v) glycerol and flash-frozen in liquid nitrogen.

Data collection & structure determination

Diffraction data to maximum resolution of 2.20 Å were collected on beamline X10A at the Swiss Light Source, and processed using the CCP4 Program suite (CCP4 1994). SCOT crystallized in the P21 space group with four molecules in the asymmetric unit (Supplementary Table 1). The structure of human SCOT was solved by molecular replacement with PHASER (McCoy et al 2005), using the pig heart structure as search model (PDB code 1M3E)(Bateman et al 2002). Initial automated model building was performed with ARP/wARP (Perrakis et al 2001), followed by cycles of iterative manual model building with COOT (Emsley and Cowtan 2004) and REFMAC5 refinement (Murshudov et al 1997). The refined model consists of protein residues 40–285 and 297–519. No electron density was observed for part of the inter-domain linker (residues 286–296). No ligand density for acetyl-CoA was found in the active site though it was added during crystallization. Structure factors and coordinates were deposited in the Protein Data Bank under the accession code 3DLX.

Results and discussion

We have determined the crystal structure of human SCOT which exhibits a homodimer architecture containing two active sites (Fig. 1). Each monomer consists of the amino-terminal (N-; aa 40–272) and carboxy-terminal (C-; aa 298–510) domains, connected by a linker region (aa 273–297). The N- and C-domains share a common α/β structural fold for CoA transferase family I members (Heider 2001), as previously seen in the pig SCOT structure (89 % sequence identity)(Bateman et al 2002). The active site of each monomer is situated at the interface of the two domains, where a strictly conserved residue Glu344 (Fig. 1, orange sticks) attacks the incoming succinyl-CoA substrate and forms an enzyme-CoA thioester intermediate, as an integral part of the catalytic mechanism (Solomon and Jencks 1969). Residues in the active site of human SCOT are also conserved in the testis-specific isoform SCOT-t, suggesting it may have enzymatic activity.
To date, three nonsense, two insertion and 19 missense mutations leading to SCOT deficiency are known from literature or newly reported here (Table 1 and Supplementary text), although six missense mutations have not been confirmed as pathogenic mutations by expression analysis. There is a polymorphism c.173C > T (T58M) which retains full enzyme activity (Song et al 1998). The three nonsense mutations (R217X, E273X, S283X) are expected to cause premature translation termination, resulting in truncated SCOT proteins that lack completely the C-domain and hence abolish part of the active site. Another mutation c.1561T > C at the termination codon results in X521R and adds 20 amino acids in the C terminus of SCOT peptide (Alkén 2008). The missense mutations are broadly distributed between the N- and C-domains of the protein, although two clusters of ‘mutational hotspots’ can be observed (Fig. 2). One cluster is close to the interface between two SCOT subunits in a dimer. A duplication mutation (N220-I222dup) is also present in this region (Fukao et al 2010). The other cluster is located in secondary structure elements that make up the active site and CoA-binding site of the enzyme.
The mapping of missense mutations onto the human SCOT structure allows us to classify their potential structural consequences broadly into three types. In the first type, amino acids tightly packed in the enzyme are substituted to bulkier and/or charged residues (Fig. 2 and Table 1, #2–7,11,14,16,17). This likely results in severe steric and electrostatic clashes in the local environment which in turn can compromise severely the folding, architecture and stability of the enzyme. These mutants often result in the more severe phenotype (permanent acidosis), consistent with their much diminished enzyme activity (Fukao et al 2000; Song et al 1998). The second type disrupts the integrity of a secondary structure element, either by introducing a conformationally-restrained residue (e.g. Pro, Gly) into an α-helix/β-strand (Fig. 2 and Table 1, #12,15), or by removing such residues from their critical involvement in a loop/turn segment (Fig. 2 and Table 1, #8). The third type involves the substitution of arginine residues where their guanidinium side-chains are involved in salt bridge formation. These charged interactions contributed to stabilizing two neighbouring regions in 3D space that are distant apart in the polypeptide sequence. Substitution of arginine to a weakly positive-charged (Fig. 2 and Table 1, #10) or uncharged amino acid (Fig. 2 and Table 1, #9,19) will abolish these salt bridges. Though retaining partial enzyme activities, these mutant proteins are thermally less stable compared to wild-type (Fukao et al 2007; Fukao et al 2011).

Acknowledgments

Help in x-ray data collection at the Swiss Light Source by Frank von Delft is gratefully acknowledged. The Structural Genomics Consortium is a registered charity (Number 1097737) funded by the Canadian Institutes for Health Research, the Canada Foundation for Innovation, Genome Canada through the Ontario Genomic Institute, GlaxoSmithKline, Karolinska Institutet, the Knut and Alice Wallenberg Innovation, Merck and Co., Inc., the Novartis Research Foundation, the Swedish Agency for Innovation Systems, the Swedish Foundation for Strategic Research and the Wellcome Trust.

Conflict of interest

None

Open Access

This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.
Open AccessThis article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.

Unsere Produktempfehlungen

e.Med Interdisziplinär

Kombi-Abonnement

Für Ihren Erfolg in Klinik und Praxis - Die beste Hilfe in Ihrem Arbeitsalltag

Mit e.Med Interdisziplinär erhalten Sie Zugang zu allen CME-Fortbildungen und Fachzeitschriften auf SpringerMedizin.de.

Anhänge

Electronic supplementary material

Below is the link to the electronic supplementary material.
Literatur
Zurück zum Zitat Alkén J (2008) Glucose and ketone body metabolism—with emphasis on ketotic hypoglycemia. Ph.D. Thesis, Karolinska Institutet, Stockholm Alkén J (2008) Glucose and ketone body metabolism—with emphasis on ketotic hypoglycemia. Ph.D. Thesis, Karolinska Institutet, Stockholm
Zurück zum Zitat Bateman KS, Brownie ER, Wolodko WT, Fraser ME (2002) Structure of the mammalian CoA transferase from pig heart. Biochemistry 41:14455–14462PubMedCrossRef Bateman KS, Brownie ER, Wolodko WT, Fraser ME (2002) Structure of the mammalian CoA transferase from pig heart. Biochemistry 41:14455–14462PubMedCrossRef
Zurück zum Zitat Berry GT, Fukao T, Mitchell GA, Mazur A, Ciafre M, Gibson J, Kondo N, Palmieri MJ (2001) Neonatal hypoglycaemia in severe succinyl-CoA: 3-oxoacid CoA-transferase deficiency. J Inherit Metab Dis 24:587–595PubMedCrossRef Berry GT, Fukao T, Mitchell GA, Mazur A, Ciafre M, Gibson J, Kondo N, Palmieri MJ (2001) Neonatal hypoglycaemia in severe succinyl-CoA: 3-oxoacid CoA-transferase deficiency. J Inherit Metab Dis 24:587–595PubMedCrossRef
Zurück zum Zitat CCP4 (1994) The CCP4 suite: programs for protein crystallography. Acta Crystallogr D: Biol Crystallogr 50:760–763CrossRef CCP4 (1994) The CCP4 suite: programs for protein crystallography. Acta Crystallogr D: Biol Crystallogr 50:760–763CrossRef
Zurück zum Zitat Emsley P, Cowtan K (2004) Coot: model-building tools for molecular graphics. Acta Crystallogr D: Biol Crystallogr 60:2126–2132CrossRef Emsley P, Cowtan K (2004) Coot: model-building tools for molecular graphics. Acta Crystallogr D: Biol Crystallogr 60:2126–2132CrossRef
Zurück zum Zitat Fukao T, Song XQ, Mitchell GA, Yamaguchi S, Sukegawa K, Orii T, Kondo N (1997) Enzymes of ketone body utilization in human tissues: protein and messenger RNA levels of succinyl-coenzyme A (CoA):3-ketoacid CoA transferase and mitochondrial and cytosolic acetoacetyl-CoA thiolases. Pediatr Res 42:498–502PubMedCrossRef Fukao T, Song XQ, Mitchell GA, Yamaguchi S, Sukegawa K, Orii T, Kondo N (1997) Enzymes of ketone body utilization in human tissues: protein and messenger RNA levels of succinyl-coenzyme A (CoA):3-ketoacid CoA transferase and mitochondrial and cytosolic acetoacetyl-CoA thiolases. Pediatr Res 42:498–502PubMedCrossRef
Zurück zum Zitat Fukao T, Mitchell GA, Song XQ, Nakamura H, Kassovska-Bratinova S, Orii KE, Wraith JE, Besley G, Wanders RJ, Niezen-Koning KE, Berry GT, Palmieri M, Kondo N (2000) Succinyl-CoA:3-ketoacid CoA transferase (SCOT): cloning of the human SCOT gene, tertiary structural modeling of the human SCOT monomer, and characterization of three pathogenic mutations. Genomics 68:144–151PubMedCrossRef Fukao T, Mitchell GA, Song XQ, Nakamura H, Kassovska-Bratinova S, Orii KE, Wraith JE, Besley G, Wanders RJ, Niezen-Koning KE, Berry GT, Palmieri M, Kondo N (2000) Succinyl-CoA:3-ketoacid CoA transferase (SCOT): cloning of the human SCOT gene, tertiary structural modeling of the human SCOT monomer, and characterization of three pathogenic mutations. Genomics 68:144–151PubMedCrossRef
Zurück zum Zitat Fukao T, Shintaku H, Kusubae R, Zhang GX, Nakamura K, Kondo M, Kondo N (2004) Patients homozygous for the T435N mutation of succinyl-CoA:3-ketoacid CoA Transferase (SCOT) do not show permanent ketosis. Pediatr Res 56:858–863PubMedCrossRef Fukao T, Shintaku H, Kusubae R, Zhang GX, Nakamura K, Kondo M, Kondo N (2004) Patients homozygous for the T435N mutation of succinyl-CoA:3-ketoacid CoA Transferase (SCOT) do not show permanent ketosis. Pediatr Res 56:858–863PubMedCrossRef
Zurück zum Zitat Fukao T, Kursula P, Owen EP, Kondo N (2007) Identification and characterization of a temperature-sensitive R268H mutation in the human succinyl-CoA:3-ketoacid CoA transferase (SCOT) gene. Mol Genet Metab 92:216–221PubMedCrossRef Fukao T, Kursula P, Owen EP, Kondo N (2007) Identification and characterization of a temperature-sensitive R268H mutation in the human succinyl-CoA:3-ketoacid CoA transferase (SCOT) gene. Mol Genet Metab 92:216–221PubMedCrossRef
Zurück zum Zitat Fukao T, Ishii T, Amano N, Kursula P, Takayanagi M, Murase K, Sakaguchi N, Kondo N, Hasegawa T (2010) A neonatal-onset succinyl-CoA:3-ketoacid CoA transferase (SCOT)-deficient patient with T435N and c.658-666dupAACGTGATT p.N220_I222dup mutations in the OXCT1 gene. J Inherit Metab Dis doi:10.1007/s10545-010-9168-5 Fukao T, Ishii T, Amano N, Kursula P, Takayanagi M, Murase K, Sakaguchi N, Kondo N, Hasegawa T (2010) A neonatal-onset succinyl-CoA:3-ketoacid CoA transferase (SCOT)-deficient patient with T435N and c.658-666dupAACGTGATT p.N220_I222dup mutations in the OXCT1 gene. J Inherit Metab Dis doi:10.​1007/​s10545-010-9168-5
Zurück zum Zitat Fukao T, Sass JO, Kursula P, Thimm E, Wendel U, Ficicioglu C, Monastiri K, Guffon N, Baric I, Zabot MT, Kondo N (2011) Clinical and molecular characterization of five patients with succinyl-CoA:3-ketoacid CoA transferase (SCOT) deficiency. Biochim Biophys Acta 1812:619–624PubMedCrossRef Fukao T, Sass JO, Kursula P, Thimm E, Wendel U, Ficicioglu C, Monastiri K, Guffon N, Baric I, Zabot MT, Kondo N (2011) Clinical and molecular characterization of five patients with succinyl-CoA:3-ketoacid CoA transferase (SCOT) deficiency. Biochim Biophys Acta 1812:619–624PubMedCrossRef
Zurück zum Zitat Kassovska-Bratinova S, Fukao T, Song XQ, Duncan AM, Chen HS, Robert MF, Perez-Cerda C, Ugarte M, Chartrand C, Vobecky S, Kondo N, Mitchell GA (1996) Succinyl CoA: 3-oxoacid CoA transferase (SCOT): human cDNA cloning, human chromosomal mapping to 5p13, and mutation detection in a SCOT-deficient patient. Am J Hum Genet 59:519–528PubMed Kassovska-Bratinova S, Fukao T, Song XQ, Duncan AM, Chen HS, Robert MF, Perez-Cerda C, Ugarte M, Chartrand C, Vobecky S, Kondo N, Mitchell GA (1996) Succinyl CoA: 3-oxoacid CoA transferase (SCOT): human cDNA cloning, human chromosomal mapping to 5p13, and mutation detection in a SCOT-deficient patient. Am J Hum Genet 59:519–528PubMed
Zurück zum Zitat Longo N, Fukao T, Singh R, Pasquali M, Barrios RG, Kondo N, Gibson KM (2004) Succinyl-CoA:3-ketoacid transferase (SCOT) deficiency in a new patient homozygous for an R217X mutation. J Inherit Metab Dis 27:691–692PubMedCrossRef Longo N, Fukao T, Singh R, Pasquali M, Barrios RG, Kondo N, Gibson KM (2004) Succinyl-CoA:3-ketoacid transferase (SCOT) deficiency in a new patient homozygous for an R217X mutation. J Inherit Metab Dis 27:691–692PubMedCrossRef
Zurück zum Zitat McCoy AJ, Grosse-Kunstleve RW, Storoni LC, Read RJ (2005) Likelihood-enhanced fast translation functions. Acta Crystallogr D: Biol Crystallogr 61:458–464CrossRef McCoy AJ, Grosse-Kunstleve RW, Storoni LC, Read RJ (2005) Likelihood-enhanced fast translation functions. Acta Crystallogr D: Biol Crystallogr 61:458–464CrossRef
Zurück zum Zitat Mitchell GA, Fukao T (2001) Inborn errors of ketone body catabolism. In: Scriver CR, Beaudet AL, Sly WS, Valle D (eds) Metabolic and molecular bases of inherited disease. McGraw-Hill, New York, pp 2327–2356 Mitchell GA, Fukao T (2001) Inborn errors of ketone body catabolism. In: Scriver CR, Beaudet AL, Sly WS, Valle D (eds) Metabolic and molecular bases of inherited disease. McGraw-Hill, New York, pp 2327–2356
Zurück zum Zitat Murshudov GN, Vagin AA, Dodson EJ (1997) Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr D: Biol Crystallogr 53:240–255CrossRef Murshudov GN, Vagin AA, Dodson EJ (1997) Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr D: Biol Crystallogr 53:240–255CrossRef
Zurück zum Zitat Niezen-Koning KE, Wanders RJ, Ruiter JP, Ijlst L, Visser G, Reitsma-Bierens WC, Heymans HS, Reijngoud DJ, Smit GP (1997) Succinyl-CoA:acetoacetate transferase deficiency: identification of a new patient with a neonatal onset and review of the literature. Eur J Pediatr 156:870–873PubMedCrossRef Niezen-Koning KE, Wanders RJ, Ruiter JP, Ijlst L, Visser G, Reitsma-Bierens WC, Heymans HS, Reijngoud DJ, Smit GP (1997) Succinyl-CoA:acetoacetate transferase deficiency: identification of a new patient with a neonatal onset and review of the literature. Eur J Pediatr 156:870–873PubMedCrossRef
Zurück zum Zitat Perrakis A, Harkiolaki M, Wilson KS, Lamzin VS (2001) ARP/wARP and molecular replacement. Acta Crystallogr D: Biol Crystallogr 57:1445–1450CrossRef Perrakis A, Harkiolaki M, Wilson KS, Lamzin VS (2001) ARP/wARP and molecular replacement. Acta Crystallogr D: Biol Crystallogr 57:1445–1450CrossRef
Zurück zum Zitat Sakazaki H, Hirayama K, Murakami S, Yonezawa S, Shintaku H, Sawada Y, Fukao T, Watanabe H, Orii T, Isshiki G (1995) A new Japanese case of succinyl-CoA: 3-ketoacid CoA-transferase deficiency. J Inherit Metab Dis 18:323–325PubMedCrossRef Sakazaki H, Hirayama K, Murakami S, Yonezawa S, Shintaku H, Sawada Y, Fukao T, Watanabe H, Orii T, Isshiki G (1995) A new Japanese case of succinyl-CoA: 3-ketoacid CoA-transferase deficiency. J Inherit Metab Dis 18:323–325PubMedCrossRef
Zurück zum Zitat Sass JO (2012) Inborn errors of ketogenesis and ketone body utilization. J Inherit Metab Dis 35:23–28 Sass JO (2012) Inborn errors of ketogenesis and ketone body utilization. J Inherit Metab Dis 35:23–28
Zurück zum Zitat Snyderman SE, Sansaricq C, Middleton B (1998) Succinyl-CoA:3-ketoacid CoA-transferase deficiency. Pediatrics 101:709–711PubMedCrossRef Snyderman SE, Sansaricq C, Middleton B (1998) Succinyl-CoA:3-ketoacid CoA-transferase deficiency. Pediatrics 101:709–711PubMedCrossRef
Zurück zum Zitat Solomon F, Jencks WP (1969) Identification of an enzyme-gamma-glutamyl coenzyme A intermediate from coenzyme A transferase. J Biol Chem 244:1079–1081PubMed Solomon F, Jencks WP (1969) Identification of an enzyme-gamma-glutamyl coenzyme A intermediate from coenzyme A transferase. J Biol Chem 244:1079–1081PubMed
Zurück zum Zitat Song XQ, Fukao T, Watanabe H, Shintaku H, Hirayama K, Kassovska-Bratinova S, Kondo N, Mitchell GA (1998) Succinyl-CoA:3-ketoacid CoA transferase (SCOT) deficiency: two pathogenic mutations, V133E and C456F, in Japanese siblings. Hum Mutat 12:83–88PubMedCrossRef Song XQ, Fukao T, Watanabe H, Shintaku H, Hirayama K, Kassovska-Bratinova S, Kondo N, Mitchell GA (1998) Succinyl-CoA:3-ketoacid CoA transferase (SCOT) deficiency: two pathogenic mutations, V133E and C456F, in Japanese siblings. Hum Mutat 12:83–88PubMedCrossRef
Zurück zum Zitat Tanaka H, Kohroki J, Iguchi N, Onishi M, Nishimune Y (2002) Cloning and characterization of a human orthologue of testis-specific succinyl CoA: 3-oxo acid CoA transferase (Scot-t) cDNA. Mol Hum Reprod 8:16–23PubMedCrossRef Tanaka H, Kohroki J, Iguchi N, Onishi M, Nishimune Y (2002) Cloning and characterization of a human orthologue of testis-specific succinyl CoA: 3-oxo acid CoA transferase (Scot-t) cDNA. Mol Hum Reprod 8:16–23PubMedCrossRef
Zurück zum Zitat Williamson DH, Bates MW, Page MA, Krebs HA (1971) Activities of enzymes involved in acetoacetate utilization in adult mammalian tissues. Biochem J 121:41–47PubMed Williamson DH, Bates MW, Page MA, Krebs HA (1971) Activities of enzymes involved in acetoacetate utilization in adult mammalian tissues. Biochem J 121:41–47PubMed
Zurück zum Zitat Yamada K, Fukao T, Zhang G, Sakurai S, Ruiter JP, Wanders RJ, Kondo N (2007) Single-base substitution at the last nucleotide of exon 6 (c.671 G > A), resulting in the skipping of exon 6, and exons 6 and 7 in human succinyl-CoA:3-ketoacid CoA transferase (SCOT) gene. Mol Genet Metab 90:291–297PubMedCrossRef Yamada K, Fukao T, Zhang G, Sakurai S, Ruiter JP, Wanders RJ, Kondo N (2007) Single-base substitution at the last nucleotide of exon 6 (c.671 G > A), resulting in the skipping of exon 6, and exons 6 and 7 in human succinyl-CoA:3-ketoacid CoA transferase (SCOT) gene. Mol Genet Metab 90:291–297PubMedCrossRef
Metadaten
Titel
A structural mapping of mutations causing succinyl-CoA:3-ketoacid CoA transferase (SCOT) deficiency
verfasst von
Naeem Shafqat
Kate L. Kavanagh
Jörn Oliver Sass
Ernst Christensen
Toshiyuki Fukao
Wen Hwa Lee
Udo Oppermann
Wyatt W. Yue
Publikationsdatum
01.11.2013
Verlag
Springer Netherlands
Erschienen in
Journal of Inherited Metabolic Disease / Ausgabe 6/2013
Print ISSN: 0141-8955
Elektronische ISSN: 1573-2665
DOI
https://doi.org/10.1007/s10545-013-9589-z

Weitere Artikel der Ausgabe 6/2013

Journal of Inherited Metabolic Disease 6/2013 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Notfall-TEP der Hüfte ist auch bei 90-Jährigen machbar

26.04.2024 Hüft-TEP Nachrichten

Ob bei einer Notfalloperation nach Schenkelhalsfraktur eine Hemiarthroplastik oder eine totale Endoprothese (TEP) eingebaut wird, sollte nicht allein vom Alter der Patientinnen und Patienten abhängen. Auch über 90-Jährige können von der TEP profitieren.

Niedriger diastolischer Blutdruck erhöht Risiko für schwere kardiovaskuläre Komplikationen

25.04.2024 Hypotonie Nachrichten

Wenn unter einer medikamentösen Hochdrucktherapie der diastolische Blutdruck in den Keller geht, steigt das Risiko für schwere kardiovaskuläre Ereignisse: Darauf deutet eine Sekundäranalyse der SPRINT-Studie hin.

Bei schweren Reaktionen auf Insektenstiche empfiehlt sich eine spezifische Immuntherapie

Insektenstiche sind bei Erwachsenen die häufigsten Auslöser einer Anaphylaxie. Einen wirksamen Schutz vor schweren anaphylaktischen Reaktionen bietet die allergenspezifische Immuntherapie. Jedoch kommt sie noch viel zu selten zum Einsatz.

Therapiestart mit Blutdrucksenkern erhöht Frakturrisiko

25.04.2024 Hypertonie Nachrichten

Beginnen ältere Männer im Pflegeheim eine Antihypertensiva-Therapie, dann ist die Frakturrate in den folgenden 30 Tagen mehr als verdoppelt. Besonders häufig stürzen Demenzkranke und Männer, die erstmals Blutdrucksenker nehmen. Dafür spricht eine Analyse unter US-Veteranen.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.